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ABSTRACT: This paper aims to study, by means of a laboratory experiment and a simulation model, 

some of the mechanisms which dominate the phenomenon of knowledge diffusion in the process that is 

called ‘interactive learning’. We examine how knowledge spreads in different networks in which 

agents interact by word of mouth. We define a regular network, a randomly generated network and a 

small world network structured as graphs consisting of agents (vertices) and connections (edges), 

situated on a wrapped grid forming a lattice. The target of the paper is to identify the key factors which 

affect the speed and the distribution of knowledge diffusion. We will show how these factors can be 

classified as follow: (1) learning strategies adopted by heterogeneous agents; (2) network architecture 

within which the interaction takes place; (3) geographical distribution of agents and their relative initial 

levels of knowledge. We shall also attempt to single out the relative effect of each of the above factors. 
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1. INTRODUCTION 

Several authors have recently attempted to study how knowledge diffuses by 

means of informal interactions. Both theoretical and empirical works addressed this 

topic with the aim of shedding some light on the complex mechanisms which regulate 

informal learning (Ellison and Fundenberg, 1993; Rauch, 1993; Bala and Goyal, 

1995, 1998; Achemoglu and Angrist, 1999; Chwe, 2000). The growing interest in this 

field of research is due to the increasing importance of knowledge for economic 

growth and development, coupled with the recognition of the dominant role of 

informal interactions in producing and diffusing this knowledge.  In fact, modern 

economy has often been described as knowledge-based, or as a learning economy, due 

to the central role that knowledge and learning play for economic development 

(OECD, 1996).  

The aim of this paper is to present an original contribution to the debate on 

informal learning using a laboratory experiment designed to reproduce the complex 

learning dynamics that take place when people exchange knowledge by means of 

face-to-face interaction. The experiment is based upon the conceptual model of 

knowledge diffusion specified in our earlier work (Morone and Taylor, 2004a) and 

presented in section 3.1. In section four, the experimental findings are investigated by 

comparing these results with the outputs of agent-based simulation models calibrated 

upon the experimental set-up. What we are trying to achieve is to reproduce the core 

dynamics of the experiment in terms of the global behaviour of the system, whilst not 

in any way claiming that the underlying agent motivations are the same.  The final 

part of this paper then further explores the behaviour of the model by simulating over 

much larger range of parameter settings than would be possible with laboratory 

methods, thereby extending the analysis of the influence of network factors upon 

knowledge diffusion patterns and contributing to the debate on informal knowledge 

diffusion.  

 

 

2. LITERACY REVIEW  

The mechanisms which dominate informal processes of knowledge diffusion 

have been increasingly investigated by evolutionary economists as well as by game 

theorists and applied economists. Mechanisms of innovation diffusion (Clark, 1984 

and Rogers, 1995) are often viewed as good examples of informal learning processes 



 2

because they tend to occur through interaction within geographical and other informal 

networks, involving social externalities. Several researchers have investigated the 

patterns through which different agents adopt new technologies by means of 

theoretical as well as simulation models. (Ellison and Fundenberg, 1993, 1995; Bala 

and Goyal, 1995, 1998). Another common way of modelling the mechanisms of social 

learning and technology diffusion makes use of evolutionary game theory (Chwe, 

2000; Ellison, 1993, 2000; Anderlini and Ianni 1996; Berninghaus and Schwalbe, 

1996; Goyal, 1996; Akerlof, 1997; Watts, 2001). 

Along with the speed of new technologies’ diffusion, several researchers have 

focused on the impact of peers’ behaviour upon individual decisions in areas such as 

propensity to crime, use of drugs, school dropout and school attainments (Brock and 

Durlauf, 1995; Bénabou, 1993; Durlauf, 1996; Gleaser, Sacerdote and Scheinkman, 

1996).1 What all the studies considered so far have in common is their reliance on the 

idea that learning from neighbours occurs and that under certain conditions it leads to 

the desirable stable equilibrium. However, none of these studies go beyond a binary 

definition of learning.  

Jovanovic and Rob (1989) proposed for the first time a model in which 

incremental improvements in knowledge were defined as a complex process of 

assembling different ideas by means of information exchange among heterogeneous 

agents. The new insight brought by the authors is that knowledge was defined as 

something more complex than a binary variable and that, therefore, growth of 

knowledge could be defined as an interactive process tightly linked to its diffusion. 

Cowan and Jonard (1999) made a subsequent attempt to study the effects of 

incremental innovations and their diffusion within a network of heterogeneous agents. 

Knowledge in their model is considered as a vector of values and is exchanged via a 

simple process of barter exchange. Depending on the network structure, the authors 

found that there is a trade-off between the speed of knowledge diffusion and the 

variance of knowledge. In other words, there is a spectrum of states of the world, 

varying from a situation of high knowledge inequality and fast knowledge diffusion 

(i.e. small-world), to the opposed situation, more equal in terms of knowledge 

variance but less efficient in terms of knowledge diffusion.  

                                                           
1 For a more detailed review see Morone and Taylor, 2004b. 
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Along the lines of these works, Morone and Taylor (2004b) defined a model in 

which agents exchanged knowledge exclusively by means of face-to-face interactions. 

The network structure was endogenous to the model and could vary over time. The 

authors showed how small-world networks emerged and coexisted with both a very 

unequal and a very equal diffusion of knowledge, different outcomes depending upon 

the initial conditions. 

As already mentioned, the objective of this paper is to shed some light on 

informal learning by means of a laboratory experiment based upon this model of 

knowledge diffusion. Then, the characteristics of the model will be thoroughly 

investigated through agent-based simulation. Moreover the simulation model will be 

calibrated using experimental findings, aiming to reproduce the core dynamics of the 

experiment in terms of the global behaviour of the system. Through analysis of 

experimental data we identify learning strategies followed by the experimental 

subjects, and use this knowledge to inform agent design in the simulation model2.  

 

 

3. THE MODEL 

The model presented in this paper is based on the above revised literature and 

aims at bringing, within this intellectual framework, new insights on the features 

which shape learning patterns. We shall argue that there are three fundamental factors 

which influence the speed and the distribution of knowledge diffusion within any 

closed network. Namely these factors are: (1) the learning strategies adopted by 

heterogeneous agents; (2) the network architecture within which the interaction takes 

place; (3) the geographical distribution of agents and their relative initial levels of 

knowledge.  

In what follows we will single out the impact of each of these factors on 

learning dynamics by testing the model by means of a laboratory experiment. 

Subsequently, the experimental results will be compared with the outcomes of 

simulation modelling, using the same network sizes, architectures, geographical 

distributions, and initial levels of knowledge. In doing so we aim at replicating the 

experimental learning dynamics by means of simple behavioural rules followed by 

artificial agents. 

                                                           
2 We are not in any way claiming that the underlying agent motivations are the same as the 
experimental case. 
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The first objective of the simulation modelling therefore, is to test a number of 

artificial learning strategies to see how they compare with the experiments in terms of 

the efficiency and equality of diffusion. The second objective is to further explore the 

model by considering much larger multi-agent systems, and analyse these over 

hundreds of repetitions to remove any unwanted artefacts associated with particular 

configurations or initialisation routines. We will now discuss more in detail the 

overall framework of the model, the experimental setting and the simulation 

methodology.  

 

3.1 Defining Complex Learning Dynamics 

This paper is grounded on the idea that learning is a complex process 

(Jovanovic and Rob, 1989; Ancori et al., 2000). More precisely, the theoretical 

foundation of the experiment relies on the works of Morone and Taylor (2004a,b), 

where agents exchange knowledge by means of face-to-face interactions, and every 

time there is a knowledge transfer, the knowledge is mastered through a backward 

process by which it is confronted and articulated with previous knowledge. This 

learning process is achieved through the introduction of a nonlinear complex 

cognitive structure. Basically, each agent is endowed with a cognitive map that 

resembles the structure of a tree in which each vertex (node) represents a piece of 

crude knowledge, and each edge (link) represents knowledge that agents have already 

mastered and learned how to use (see Figure 1).  

 

         Figure 1.   Cognitive Map 
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Moving from left to right in the cognitive map, we advance from less to more 

specialised knowledge. This observation justifies the assumption that new nodes can 

only be activated if they are directly connected to active nodes. In other words, new 

knowledge can only be acquired if it can be integrated with the existing, accumulated 

knowledge in order to be used. 

The model is stepped forward through simulated time, where each discrete time-

step is known as a ‘cycle’. From one cycle to the next agent states may change 

according to rules specified in the model. These rules are executed simultaneously for 

each member of the agent population. Interaction amongst agents is based on the 

transmission of knowledge. Every cycle each agent has got the opportunity to initiate 

a learning activity by contacting one of her/his acquaintances in the social network 

(see section 3.3 for description of the network upon which interactions take place) as 

follows. An agent, whom we shall call A, contacts an acquaintance, B, from her/his 

list of acquaintances. She/he then selects a node of her/his cognitive map which 

she/he would like to learn (of course this node has to pegged to already activated 

nodes). If the contacted agent possesses the bit of knowledge required, the player that 

initiated the contact acquires it and activates it in her/his cognitive map. Otherwise, 

he/she will remain at the former level of knowledge. 

 

3.2 Initialising the Cognitive Maps 

While constructing agents’ cognitive maps, it was assumed that everybody 

knew the first node (i.e. was endowed with the most elementary level of knowledge). 

The nodes in the second column were assigned subject to a specialisation process (i.e. 

each agent could specialise either in scientific knowledge, knowing the upper part of 

the tree, or in technical knowledge, knowing the lower part of the tree). The initial 

CM configuration was constructed as follows. Firstly, an integer indicating the depth 

of knowledge was selected at random from the interval between 1 and Ncols, where 

Ncols is the total number of columns in the CM. In all experiments reported here, we 

used a value of 6 for the integer Ncols. 

Subsequently, another integer was chosen to define the kind (i.e. specialisation) 

of the knowledge possessed by each agent. This number was either a 1, indicating 

technical knowledge, or a 2, indicating scientific knowledge. 

If the first integer took the maximum value Ncols, then the whole map was 

activated in the corresponding part of the tree. Otherwise, the nodes in all the columns 
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up to and including the column indexed by the first integer value were activated in the 

region of specialisation defined by the second integer. 

Given the technique used to assign the initial level knowledge we could 

calculate an agent’s initial probability of knowing each node of the CM as follows: 

each agent will know node 1 with probability 1, node 2 (3) with probability 5/12. If 

he/she knows node 2 (3) then could know nodes 4 and 5 (6 and 7) in the third row. 

The probability of knowing these nodes is set equal to 4/12. Following this reasoning 

every agent will know nodes 8, 9, 10 and 11 (12, 13, 14 and 15) with probability 3/12; 

nodes 16-23 (24-31) with probability 2/12 and nodes 32-47 (48-63) with probability 

1/12. 

A consequence of this particular structure of the CM is that we can easily derive 

subjects’ best node selection strategy. Each (rational) agent would try to learn the 

node with the highest probability of being known by any of his/her acquaintances. As 

observed above, scientific and technical knowledge, in the same column, have the 

some associated probabilities, so initially (i.e. at cycle 0) agents are indifferent 

between learning a node allocated in the upper or lower part of the tree. On the 

contrary, nodes allocated in different columns will have different probabilities, more 

precisely each node which appears in column 2 has a higher probability of each node 

in columns 3, 4, 5 and 6. Similarly nodes in column 3 have a higher associated 

probability than those in columns 4, 5 and 6 but a lower probability than nodes in 

column 2. Following this line of reasoning we can conclude that at cycle 0 each 

(rational) agent will try to learn one of the node positioned in the lowest empty (or 

partially empty) column. If this is the best strategy for all agents at cycle 0, this will 

raise the probabilities of the basic nodes of being known at cycle 1. Therefore also at 

cycle 1 the best learning strategy will be to learn one of the nodes positioned in the 

lowest empty (or partially empty) column. This reasoning can be extended to every 

subsequent cycle leading us to the conclusion that learning vertically will be a 

dominant strategy3 for all agents and so it will lead to a Nash equilibrium.  

However, this analysis does not take into consideration the fact that much of this 

information about the structure of the game (i.e. how the CMs are initialised) is not 

available to the agents. Furthermore, in our model players do not know the absolute 

levels of knowledge of others. The existence of different opportunities to learning 

                                                           
3 Note that this is also a stable strategy because subject will not be influenced by the timing. 
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through acquaintance selection - contingent upon the geographical location in the 

network - significantly complicates the task of solving to find the most efficient 

strategy. It is reasonable to assume that the subjects may be able to surmise some of 

this through experience of playing the game. But it is not clear what is the ‘rational’ 

strategy that would lead to the best outcome in terms of individual gains. Furthermore, 

there are a very large number of potential strategies (for acquaintance selection) 

which would need to be tested in this kind of analysis.4 

 

3.3 Setting of the Experiment 

The aim of the “game” for each player is to increase his/her own level of 

knowledge. The cognitive map assigned to players resembles the graphical 

representation reported in figure 1. In figure 2 we reproduce a demonstrative cognitive 

map that each player might see displayed on his/her screen. Each tab is labelled 

between 1 and 63 and represents a node that can be acquired. Yes/No values indicate 

whether or not the tab is activated, i.e. whether that particular piece of knowledge is at 

present in the player’s cognitive map. As already discussed, in order to activate a new 

tab (i.e. to learn a new bit of knowledge) the acquired knowledge has to be linked to 

an already activated tab in the cognitive map. 

The game is simultaneous and composed of N (=100) periods. The networks 

upon which interactions take place are constructed following the method first used by 

Watts and Strogatz (1998). Each agent is initially assigned a random, unique position 

in a one-dimensional wrapped grid (i.e. a ring). The social network is then created by 

connecting an agent with all other agents located within her/his neighbourhood. 

Social neighbourhoods are defined as the region on the grid that includes the adjacent 

cells falling within the agent’s visible range. We therefore specify a regular network 

shaped as a ring lattice within which each agent interacts only with a number (n) of 

nearest neighbours. 

 

 

 
                                                           
4 This should not surprise as it is in the nature of Evolutionary Economics a degree of complexity 
which suggests a close proximity to agent-based simulation techniques as a tool for investigation. 
“While neoclassical theory describes with precision and rigour a simple world that apparently does not 
exist” (Dopfer 2004), “evolutionary economics tries to analyse a complex reality of economic 
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Figure 2. Experimental definition of the cognitive map 

 
 

Departing from this initial network structure we then constructed two other 

networks following the re-wiring procedure first introduced by Watts and Strogatz 

(1998). With a certain probability p, we allowed any individual to disconnect 

him/herself from the local connection and to re-connect that edge to a vertex chosen 

uniform randomly over the entire lattice. As the value of p changes, the structure of 

the network changes. By choosing a fairly small value of p, the lattice remains almost 

regular and highly clustered (i.e. with high degree of cliquishness), but “because each 

non-local connection is a potential short-cut between two vertices the graph has the 

low average path length of an almost-random graph” (Cowan and Jonard,1999: 6). 

The concept of average path length introduced here is a measure of the efficiency of 

the model, giving the average number of steps required to connect each pair of 

vertices in the lattice. 

As suggested in the literature (Watts and Strogatz, 1998; Watts 1998) there is a 

region of p ( )1.001.0 ≤≤ p within which the network structure is that of a small 

                                                                                                                                                                      
phenomena deeply intertwined with cognitive, institutional, organisational and political dimensions, i.e. 
a world of variety full of complexity and informational fuzziness” (Pyka and Ahrweiler, 2004). 
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world: i.e. one in which a short average path length (L) and high degree of 

cliquishness (C) coexist. This contrasts with the two extreme cases of p=0 and p=1 

where the network structure becomes respectively that of a regular network and that 

of a random network. We defined our two new networks architectures by setting the p 

parameter to 0.15 and 1. The experimental networks were then defined as follow: 

regular network (p=0), small world network (p=0.1) and random network (p=1). 

The huge appeal of small-world networks lies in the impact they are said to have 

on dynamical systems. Watts and Strogatz (1998) maintain the point that “models of 

dynamical systems with small-world coupling display enhanced signal propagation 

speed, computational power, and synchronizability.” Furthermore, the authors 

showed, using simplified model for the spread of an infectious disease, that 

“infectious diseases are predicted to spread much more easily and quickly in a small 

world” than in regular lattices (1998: 442). These findings have profound implications 

for many manmade and natural systems. For instance, in a transportation network, 

small-world architecture could improve the flow of people or goods through the 

network. In a network within which people are exchanging knowledge by means of 

face-to-face interactions, small-world connectivity might improve the ease with which 

ideas and knowledge diffuse through the system.  

 

 

4. EMPIRICAL FINDINGS: COMPARING EXPERIMENTAL AND SIMULATION 

RESULTS 

In this section we will present our experimental findings, we will then compare 

those results with simulation outcomes in order to investigate artificial learning 

strategies. By basing the agent strategies upon those identified through analysis of the 

experimental data we shall develop a simulated strategy able to replicate the learning 

patterns observed in the laboratory. In this way we will develop a sort of history 

friendly model (which we should call experimentally-friendly model), following the 

methodological approach first developed by evolutionary economists like Nelson and 

Winter (1982), Silverberg et al. (1988) Dosi et al. (1995).  

                                                           
5 Given the small number of agents composing our network (this constrain was due to the experimental 
nature of the work) we chose the highest possible value to the rewiring probability to generate a small 
world network. We tested the network structure following the Watts and Strogatz (1998) criteria for 
identifying the network as small worlds: ( ) ( )tt randomLL ≅  and ( ) ( )tt randomCC >> .   



 10

After investigating the impact of different learning strategies upon knowledge 

flows, we will turn our attention to the specific role played by the network 

architecture. By means of simulation analysis we shall single out the impact of 

different network structures upon the learning dynamics and knowledge dispersion, 

comparing the performances of small world networks, regular networks and random 

networks. We will finally turn our attention to the role played by the geographical 

distribution of knowledge, pointing out the importance of ‘access to knowledge’ and 

‘equal learning opportunities’ as an inequality-decreasing device.  

 

4.1 Studying learning strategies 

The experimental study was carried out with a network of N=14 players 

interacting in the experiment for a total of 100 cycles. On average to each agent were 

assigned four acquaintances. The experiment was initially conducted under the small 

world network architecture (the experiment was subsequently replicated with different 

network structures as it will be discussed in the following sections). 

Small world phenomena are regarded by some researchers to only be worthy of 

investigation in the case of large, sparse networks. However, under experimental 

conditions it is not practical to undertake studies involving hundreds of participants. 

The largest laboratory available to us has the capacity to accommodate a maximum of 

forty subjects, however we decided to carry out an initial round of experiments with a 

much reduced number of subjects in order to expedite the research6 and to test the 

assumption that large networks are required for small world analysis to have value.  

As mentioned earlier, every cycle each player had the opportunity to contact one 

neighbour and ask for some knowledge. Independently on the network structure the 

experimental agents reached always the steady state within the time frame of the 

experiment. In figures 3 and 4 we present the learning dynamics (both in terms of 

learning speed and knowledge dispersion) for the first experiment.  

 

 

 

 

 

                                                           
6 We are in negotiation to scale up this investigation.  
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Figure 3. Small world network, learning dynamic  

(experimental results) 

                  Source: Experiment results  
 

 

Figure 4. Small world network, variance in learning dynamic  

(experimental results) 

               Source: Experiment results 
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As a first step we shall focus our analysis on the overall picture. As we can see 

all 14 players converge to the steady state in a time frame of less than 80 cycles, 

gaining on average 38 nodes in 79 cycles (hence learning almost at an average speed 

of 0.5 nodes per cycle). Moreover, the knowledge variance grows in the short term, 

showing an initially unequal learning process. After the first 30 cycles it starts 

converging towards the zero-variance steady state. 

In order to elicit the learning strategies followed by experimental agents we both 

studied the cognitive maps of each player as well as used questionnaires asking to 

state how they decided the node to be learned and the acquaintance to contact. For the 

former we allowed a choice of three possibilities: random strategy, width-first strategy 

or depth-first strategy (we also provided an ‘other’ checkbox). As discussed in section 

3.1, the depth-first strategy would entail a specialised learning process, whereas a 

width-first strategy would entail the acquisition of less specialised knowledge first.  

 

Figure 5. Cognitive Map and learning strategies 
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An example could be useful to clarify the different learning strategies. Let us 

assume that a subject has the following cognitive map: {1, 2, 3, 4, 5} (see figure 5). In 

the first cycle she/he can choose the new bit of knowledge to be learned from a set of 

six possible nodes: {6, 7, 8, 9, 10, 11}. 
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We shall maintain that if she/he asks one of the following nodes {6, 7}, then 

she/he adopts a vertical strategy (hence, learning the least specialised knowledge 

first). On the contrary, if she/he tries to learn {8, 9, 10, 11}, then she/he adopts a 

horizontal strategy (hence, she/he is specialising). 

Let us assume now that in the first cycle our subject asked and learned node 6; 

then, in cycle two her/his cognitive map will be updated as follows {1, 2, 3, 4, 5, 6} 

(see figure 6 below). 

 

Figure 6. Cognitive Map and learning strategies 
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In the second cycle she/he can try to learn one of the following nodes {7, 8, 9, 

10, 11, 12, 13}. If she/he will try to acquire node 7, then she/he will be following 

again a vertical strategy. On the other hand, if she/he will ask one of the other possible 

nodes {8, 9, 10, 11, 12, 13}, then it will be argued that she/he is adopting a horizontal 

strategy.  

Finally, we shall note that if our subject ’s strategy shows some kind of ‘time 

inconsistency’ (i.e. it changes over time), then we will classify her/him as a random 

strategy follower. 

It is interesting to compare the results obtained studying the learning strategy 

actually adopted by experimental players with the results obtained through a 

questionnaire where players were asked to declare the learning strategy they adopted. 
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Table 1. Different node selection strategies   

share percentage share percentage

5 11.9%

13 31.0%

Questionnaires CM investigation

24 57.1%

random strategy

width-first strategy 10

2

25

27.0%

5.4%

67.6%

depth-first strategy

 
Source: Experiment results 

 

Interestingly enough, the figures obtained through direct investigation of 

players’ CMs seem to support rather strongly the hypothesis that subjects try to learn 

in a vertical way: 57% of the subjects have always adopted a vertical strategy whereas 

only 12% of the players have consistently adopted a horizontal one. Confronting these 

results with those obtained through our questionnaire shows that most of the players 

who adopted a width-first strategy were unable to categorise their behaviours as such. 

Hence, we can conclude that they were unconsciously following a particular strategy. 

In part based on this analysis we designed the artificial learning strategies for 

both node and acquaintance selection. These are summarised in table 2. Comparing 

the results of the questionnaires and the analytic study of CMs we have defined three 

strategies for acquaintance selection: “random” or zero-intelligence (ZI), intelligent 

“sequential” and one based on the adaptation of the relative “strength” of connections, 

which was shown to be efficient in previous works (Morone and Taylor, 2004a,b). 

 

Table 2. Possible Learning Strategies 

Node selection strategy Acquaintance selection strategy 

random strategy random strategy 

width first strategy sequential strategy 

depth first strategy preferential model strategy 
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The sequential strategy requires some further clarification. Following this 

strategy, in the first cycle the agent would select an acquaintance to contact at 

random. Depending on the outcome of this interaction, the agent would select the 

same acquaintance in the following cycle if the interaction was successful. If the 

previous interaction was unsuccessful however, the agent would revert to random 

selection from among acquaintances.  

We therefore have three possible strategies for each option, making a total of 

nine possible combined strategies. The following step was to set up a simulation that 

would provide results that could satisfactorily7 replicate the experimental dynamics. 

In testing the various combinations we started first with a population of zero-

intelligence agents behaving randomly in respect of both action selections. This 

produced a very poor result in terms of efficiency of learning. Our second trial was to 

specify a strategy based on the heuristic of adaptive ‘sequential’ selection combined 

with width first node selection.  As it emerges from figures 5 and 6 we were able to 

replicate the experimental results in a satisfactory way adopting a width-first 

sequential strategy. Both the mean and variance simulation series were statistically 

not different from the respective series obtained in the laboratory. 

Clearly it was not a difficult task to design artificial learning strategies resulting 

in a very similar overall system performance in terms of knowledge flows. Whereas 

the width first strategy might be regarded as close to optimal (in the sense of a Nash 

equilibrium) the sequential strategy almost certainly is not (because it is based only on 

a memory of one cycle, and because behaviour is ZI after unsuccessful interactions). 

However, in order to answer this question definitively we need to explore a larger 

range of available strategies. A first step towards this would involve tabling the 

outcomes of the above 9 combined strategies, under different network configurations, 

in order to compare them in terms of knowledge flows and make comparisons with 

the experimental case. 

 

 

 

 

 

                                                           
7 By ‘satisfactorily’ we mean that the difference of the mean of the two series (i.e. experimental data 
and simulation data) is not statistically significant. This was tested by mince of a t-test.  
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Figure 5. Small world network, learning dynamic comparison  

(experimental results vs. simulation results) 

                    Source: Experiment and simulation results  
 

Figure 6. Small world network, variance in learning dynamic comparison 

(experimental results vs. simulation results) 

                      Source: Experiment and simulation results 
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4.2 Studying network structure and geographical distribution 

We can now start looking at the role played by network structure in the learning 

process. In order to do so we replicate the experiment using the same agents (endowed 

with the same cognitive maps) but allocating them on different network architectures. 

Tuning the p value as described in section 3.2 we constructed a random network 

(p=1) and a regular network (p=0). We then compared these results with those 

obtained in the first experiment. Looking at the learning pace (in figure 7) we could 

immediately observe that overall the three models performed quite similarly: in each 

case the system converged to a steady state within the first 90 cycles. Moreover, the 

small world network over-performed when compared with the other two networks. 

We also carried out simulations for the regular and random networks and then 

compared the three cases. 

 

 

 

Figure 7. Different networks, learning dynamic comparison 

(experimental results) 

                Source: Experiment results 
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Figure 8. Different networks, variance in learning dynamic comparison 

(experimental results) 

                            Source: Experiment results 
 

Interestingly enough the worst-performing system was the random network. 

This result appeared to be counterintuitive since the random network was also the 

system with the shortest average path length and therefore was expected to perform 

better then the regular network in terms of speed of knowledge diffusion. Looking 

more closely into the experimental results we observed that the random network was 

also the system performing better in terms of knowledge dispersion, displaying a short 

term converging pattern as opposed to small world and regular system (figure 8).  

The answer to this apparently odd result lies in the different geographical 

distribution of agents obtained in the random network when with re-wiring probability 

p=1 each original connection was interrupted to be reconnected randomly with 

another node in the graph. In fact, looking at the three network’s structures we could 

clearly see how the most knowledgeable agents tend to be clustered together in the 

small world and in the regular network, whereas the same agents are quite 

disconnected in the random network. In light of these observations we could expect to 

see knowledgeable agents learning faster in the first two networks as opposed to the 

random one. This observation was corroborated when looking at individual learning 

patterns: the learning ability of the most knowledgeable agents in the random network 

was far less efficient than that of the same agents in the other two network structures. 
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This gap in the performance was due to the fewer learning opportunities available to 

knowledgeable agents in the random network.  

 

Figure 9. Experiment network structures 

Regular network, Small world network and Random network 
    

            
           

            Source: Experiment and simulation results 
 

This result leads us to conclude that learning dynamics are not just affected by 

the network structure and the learning strategy, but also (and perhaps mainly) by the 

learning opportunities provided to different agents in the network.   

In order to test independently the effect upon learning dynamics of the network 

structure and of the geographical distribution of agents we run batches of 100 

simulations for each network’s structure always reallocating the agents in different 

ways. Then, we compute the average performance of each network hence clearing out 

the geographical effect.  

The results obtained in this way show, in fact, a different picture: the random 

network structure performs no longer the worst in terms of speed of learning, but 

actually appears to be the most efficient network. On the other hand, the relative 

performance of small world and regular network is very similar in terms of speed of 

convergence toward the long-run steady state. 
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Figure 10. Different networks, learning dynamic comparison 

(average over batches of simulation results) 

                   Source: Simulation results 
 

 

Figure 11. Different networks, variance in learning dynamic comparison 

 (average over batches of simulation results) 
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From a distributional point of view the random structure shows almost a 

constant decrease in the knowledge variance in the short-term transition towards the 

natural equilibrium of the model. This contrasts with small world and regular 

architectures, which display a general inequality increase over the short run.  

What emerges from this analysis is that small world is not the most efficient nor 

the most unequal network as previously observed in the literature on knowledge 

diffusion (Cowan and Jonard, 1999). In our laboratory experiments, as well as in our 

simulations, the small world network was not the most unequal, and when we 

corrected for the particularities of the geographical distribution used in the laboratory 

experiments, we obtained the result, through simulations, that the random network 

was the most efficient.  

A possible explanation for these contrasting results could be the different 

network size used in different simulations. In fact, our experiment, and subsequently 

our simulations, were based on a rather small network (i.e. 14 agents) compared to 

that of Cowan and Jonard (500 agents). According to Watts (1999) small world 

phenomena can only be observed in large and sparse systems. We can certainly say 

that in such small networks, the regular and the random would tend to look more 

similar in terms of sharing small L and high C values, but on the basis of this fact they 

should not be precluded, in our view, from the study of knowledge diffusion patterns 

within the small worlds framework. In fact we have found it useful to study small 

networks in the laboratory, since it has allowed us to easily trace the paths of agents’ 

decision making and learning processes. Furthermore, these experiments, as well as 

the subsequent simulations, have shown that significant differences in outcomes can 

be attributed to changes in the network configuration, investigated here by 

consideration of the theory of small world networks. 

However, we wanted to investigate the impact of system scale upon this result. 

In order to test our new hypothesis, that small world networks are neither the most 

efficient nor the most unequal, we ran new batches of simulations, with subsequent 

increases in the size of the network. Nonetheless, much bigger networks (i.e. 100 and 

500 agents) displayed similar results to those obtained with 14 agents: random 

networks being consistently the best performing in terms of speed of knowledge 

diffusion as well as in terms of knowledge distribution, followed by small world 

networks and finally by regular networks.   
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Figure 12. Different networks, learning dynamic comparison 

(100 agents’ network, average over batches of simulation results) 
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          Source: Simulation results 

 

Figure 13. Different networks, variance in learning dynamic comparison 

(100 agents’ network, average over batches of simulation results) 
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                  Source: Simulation results 
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Figure 14. Different networks, learning dynamic comparison 

(500 agents’ network, average over batches of simulation results) 
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           Source: Simulation results 

 

Figure 15. Different networks, variance in learning dynamic comparison 

(500 agents’ network, average over batches of simulation results) 
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                            Source: Simulation results 
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Figure 16. Comparing size of networks and speed of convergence 

(500, 100 and 50 agents’ networks, average over batches of simulation results) 
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Looking at figures 12 through 15 an interesting observation can be drawn: the 

larger the network the faster the converging process (i.e. the faster are knowledge 

flows). This result is quite interesting since it shows that, other things being equal, the 

system scale is a key determinant of relative speed of knowledge diffusion, larger 

networks being more efficient. This result is confirmed for each network architecture 

as figure 16 below shows.  

As far as the variance of convergence is concerned there is no generic rule 

which can be drawn since small world simulations show a rather similar fluctuating 

pattern, whereas random and regular networks show fairly fuzzy fluctuating patters 

which make any attempt of comparison not really informative. 

 

 

5. CONCLUDING REMARKS 

In this paper we investigated the dynamics of knowledge diffusion in a small 

population of agents by means of a laboratory experiment as well as by a simulation 

model. As stated in the introduction, the aim of the paper was to present an original 

contribution to the debate on informal learning, combining a laboratory experiment 

designed to reproduce complex learning dynamics with a simulation model able to 

reproduce the core dynamics of the experiment in terms of the global behaviour of the 

system. Departing from this analysis, we further explored the behaviour of the model 

by simulating over a much larger range of parameter settings than would be possible 

with laboratory methods, thereby extending the analysis of the influence of network 

factors upon knowledge diffusion patterns. While conducting this investigation, 

several elements arose as key determinants of flows dynamic within a closed network. 

Namely these factors were: (1) the learning strategies adopted by heterogeneous 

agents; (2) the network architecture within which the interaction took place; (3) the 

geographical distribution of agents and their relative initial levels of knowledge; (4) 

the network size. 

Concerning the learning strategy, we were able to identify a set of nine possible 

combined strategies which would allow us to investigate the two actions that each 

player had to undertake while attempting to acquire knowledge. Any time an agent 

was trying to learn a new bit of knowledge she/he had to make two choices:  first, 

decide what to learn (this decision was constrained to the set of possible nodes which 

could be articulated with previous knowledge); second, decide with whom to interact 
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(also this decision was bounded in the set of acquaintances in the agent’s social 

network). The following step was to identify, through simulation, the combined 

learning strategy that would be sufficient to replicate the experimental dynamics. 

Carrying out this exercise, we were able to define a combined strategy which closely 

replicated experimental global behaviour of the system. Moreover, the best combined 

learning strategy was then showed to be the closest thing to an optimal strategy (i.e. 

one which leads to a Nash equilibrium).   

As already mentioned, a second step in our investigation was examining those 

factors which affect knowledge flows. A preliminary result of our investigation 

showed that learning dynamics is heavily affected by the learning opportunities 

provided to each agent in the network. By learning opportunities we mean the 

chances each agent has got to interact with more knowledgeable agents. In other 

words, a particular geographical distribution of agents (endowed with different 

knowledge) could substantially affect learning dynamics. In order to test 

independently the effect upon learning dynamics of the network structure and of the 

geographical distribution of agents, we run batches of simulations for each network’s 

structure, while keeping reallocating the agents in different ways. Then, we computed 

the average performance of each network hence clearing out the geographical effect. 

Once corrected for any possible geographical bias we could conclude that small world 

networks do perform better than regular networks, but consistently underperformed 

when compared with random networks. This finding contrasts with previous literature 

(Cowan and Jonard, 1999), which maintained that small world network is the most 

efficient (as well as the most unequal) system. 

At this point in our research we do not know why these results differ so 

markedly. It suggests to us the need for further investigation into the effect of network 

configuration using the small world framework. A further result obtained in this 

investigation, which is to our knowledge an original finding, was that the bigger the 

network size, the faster the diffusion is. Interestingly enough this result was shown to 

be independent from the particular network architecture.   

In conclusion, investigating the relative effect of each and every of the four 

factors, we can maintain that studying the nexus between structure and flows is a 

rather complex task which involves a large number of aspects that concur to define 

flows dynamics.  



 27

As a suggestion for further research we would propose to make an attempt to 

produce a clear taxonomy of all the factors which might affect knowledge flows that 

occur in social networks. It could be then interesting to divide these factors into some 

broad categories. As a pure exercise we could suggest structural and individual, the 

first one including all those factors directly referring to the network architecture and 

size, and the second one referring to individual decisions such as strategy decisions.  
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