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I.  Introduction 

How do people actually behave in contexts where optimal decision-making requires the 

solution of complex optimization problems?  This question is of fundamental importance to 

economic analysis.  Predictions of individual and market behavior can differ dramatically 

between models where: (1) people are able to solve complex optimization problems, (2) people 

are “boundedly rational” and adopt “rule-of-thumb” behaviors, or (3) people are “confused” or 

“irrational” and adopt blatantly sub-optimal decision rules.1 Recognizing the importance of this 

issue, there have been a large number of experimental studies that analyze the behavior of people 

confronted with complex decision problems in laboratory settings.  Most of this literature adopts 

an “either/or” approach, asking whether subjects make optimal decisions or not, or asking what 

fraction of subjects behave optimally.2 

Recently, a new literature has emerged in which investigators adopt a more exploratory 

approach.  The goal is to discover what types of decision rules people actually use, rather than 

simply asking whether or not they adopt the optimal rule.  Thus, behavioral heterogeneity 

becomes a key issue.  The experimental literature has long recognized that different people may 

use different strategies, or decision rules, when playing games or dealing with other complex 

decision problems.  Nevertheless, statistical procedures to determine the number and nature of 

strategies operative in a population have only recently emerged.  The important paper by El-

Gamal and Grether (1995) was a very early contribution to this literature.  

Our work represents both a substantive and a methodological contribution to this 

emerging literature on “typing” experimental subjects.  Methodologically, we provide a new 

Bayesian procedure for drawing inferences about both the nature and number of decision rules 

that are present in a population of subjects, where each subject is confronted with a dynamic 

decision problem.  Since our approach is (largely) agnostic regarding the number and form of the 

rules that may exist in the population, it takes the exploratory nature of the analysis a step further 

than do earlier approaches to decision rule classification.   

                                                 
1 There is an extensive theory literature that examines the effects of various “heuristic” decision rules on equilibrium 
outcomes (see, e.g., Cyert and Degroot (1974), Radner (1975), Akerlof and Yellen (1985), Haltiwanger and 
Waldman (1985), Ellison and Fudenberg (1993), Krusell and Smith (1995) and Lettau and Uhlig (1999)). 
2 For example, there is an extensive experimental literature that examines stopping behavior in search models (e.g., 
Braunstein and Schotter (1982), Cox and Oaxaca (1989, 1992), Harrison and Morgan (1990) and Hey (1987)). 
Although the design specifics differ, the basic idea is to compare observed and optimal search durations in order to 
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In contrast to our procedure, the El-Gamal and Grether (1995) approach requires the 

investigator to specify a priori both the maximum number of decision rules that may be present 

in the population, and the exact form of each rule.  They present a statistical procedure that 

chooses a “best” subset of rules from the superset of all candidate rules.3  In the particular 

experiment they analyze, the set of plausible rules is fairly obvious.  But in many contexts the 

requirement that the investigator be able to intuit the exact form of all potential rules a priori is 

obviously quite strong, and limits the exploratory nature of the analysis.  Our approach allows 

the data to determine both the number of rules that are present and their form.4 

Aside from our work and that of El-Gamal and Grether (1995), a number of other authors 

have also proposed methods for analysis of behavioral heterogeneity.  These include McKelvey 

and Palfrey (1992), Stahl and Wilson (1995), El-Gamal and Palfrey (1995) and Camerer and Ho 

(1999).  Like El-Gamal and Grether (1995), these approaches have in common that the set of 

possible subject behaviors must be pre-specified by researcher. Again, our contribution is to 

develop an approach that is much less restrictive regarding the possible nature of subject 

heterogeneity.5    

An attractive feature of our type classification algorithm is that it generates the posterior 

probability that each subject is following each decision rule, conditional on his/her observed 

behavior.  Thus, one can classify individual subjects into types a posteriori.  This allows one to 

study the characteristics of people assigned to each type.  We provide Monte-Carlo evidence that 

our procedure performs well at assessing the number of types present in a population, and that 

the individual type assignments are reasonably accurate.   

                                                                                                                                                             
determine whether subjects make “optimal” stopping decisions.  A typical finding is that only a proper subset of 
subjects behaves optimally, and little effort is made to describe the rules followed by subjects who play otherwise.    
3  See Schachat and Walker (1997) and Houser and Winter (2002) for recent applications of this approach.  
4  Of course, the added flexibility our procedure comes at a cost.  This is the loss of efficiency that comes from 
having to estimate the rule parameters rather than fixing them a priori.  Thus, in many contexts it may be particularly 
efficacious to use our procedure and the El-Gamal and Grether procedure in concert.  For instance, a preliminary 
application of our approach could determine the number and form of the candidate rules, and subsequent application 
of the El-Gamal and Grether approach might then provide a more efficient assignment among these candidate rules.  
Also, merging of the two approaches may be useful in contexts where certain rules are of particular interest (e.g., the 
optimal rule) and the investigator wants to test these against alternatives that are not specified a priori.   
5  Recently, Duffy and Engle-Warnick (2001) and Engle-Warnick (forthcoming), proposed a procedure which 
models decision rules as sequences of nested if-then conditions.  This procedure is more flexible in principle than 
the approaches detailed in the papers above. But this approach suffers from a curse of dimensionality that, as a 
practical matter, places severe restrictions on the number of decision rules that can be investigated.  Engle-Warnick 
and Ruffle (2002) show that, after suitably constraining the space of possible decision rules, a statistical method 
patterned after El-Gamal and Grether (1995) can be adopted to draw inferences in this environment. 
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In addition to the literature on subject “typing,” another recent literature also attempts to 

advance beyond the “either/or” quality of earlier experimental work by specifying and estimating 

econometric models that may provide a better positive description of subjects’ behavior.  Much 

of this work is based on the McKelvey and Palfrey (1995) “quantal response equilibrium” model, 

in which subjects’ best response functions or decision rules are subject to noise that can be 

interpreted as optimization error. Once subjects’ choice behavior is assumed to be subject to 

noise, a natural next step is to estimate subjects’ decision rules econometrically, including in the 

specification parameters that can capture various types of departure from “optimal” behavior (as      

defined by a particular normative model of play).6  This work is similar in spirit to ours. But our 

approach is different in its emphasis on subject heterogeneity (i.e., to our knowledge the work 

based on McKelvey and Palfrey (1995) has assumed homogenous subjects) and in that we place 

less a priori structure on the potential departures from “optimality.”   

Our substantive contribution is to apply our new type classification procedure to study 

the actual behavior of a sample of subjects who we confront with a particular complex dynamic 

optimization problem.  We consider a sequential decision problem, in which subjects chose 

between two discrete alternatives in each of 15 time periods.  In each period, a computer 

generates stochastic payoffs for each alternative according to rules that are explained to the 

subjects prior to the experiment.  The problem is inherently dynamic, because current choices 

affect the distributions of future payoffs (i.e., the payoffs are a controlled stochastic process), and 

the optimal choice between the two options changes over time in a complex way as new 

information is revealed.  By design, the problem is very difficult to solve optimally.  Analytic 

solution is not possible, and we must solve for the optimal decision rule numerically.  In our 

experimental design, subjects are allowed to practice playing the game as many times as they 

like before they play for money. 

  Our prior was that few if any participants could determine the optimal decision rule in 

this problem, even given ample time for practice.  Our interest was in characterizing the rules-of-

thumb that subjects would adopt when confronted with a problem that was too difficult to solve 

optimally.  We expected to see a great deal of heterogeneity in the rules-of-thumb that people 

                                                 
6 For instance, Goeree, Holt and Palfrey (2000a) adopt this framework to analyze “overbidding” in private value 
auctions relative to Nash predictions, while Goeree, Holt and Palfrey (2000b) analyze departures from Nash 
equilibrium behavior in matching pennies games. 
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adopted, and we were concerned that the classification procedure might perform poorly when 

confronted with a large number of potential types. 

We ran the experiment on 139 subjects, and we find the results to be surprising.  Our 

classification procedure produces a very clear assignment of the population into only three 

distinct types.  Statistical tests overwhelmingly reject the hypothesis that there are more, or that 

there are fewer.  Visual inspection of the choice sequences of the subjects, as well as 

examination of exit interviews in which subjects were asked about their strategies, provide 

external validation that there clearly are three distinct types.  And the subjects’ posterior type 

probabilities usually assign a high probability to just one type. That is, conditional on his/her 

behavior, there is rarely much ambiguity about which of the three types a subject is. 

The nature of the three types is also interesting.  More than one-third of the subjects 

adopted a decision rule that is very close to optimal.  Payoff losses for subjects following this 

“near rational” rule (relative to what they could have earned by following the exactly optimal 

rule) averaged only about 2%.  Another 40% of the subjects adopted a rule-of-thumb that is 

fairly simple to characterize.  In fact, we will call these subjects “fatalists” because they play as 

if they don’t appreciate the extent to which payoffs are a controlled stochastic process.  The 

payoff losses for these subjects were about 12% on average.  Finally, about a quarter of the 

subjects followed a more clearly sub-optimal decision rule, indicating they had a more severe 

misunderstanding of the nature of the game.  Payoff losses of these “confused” subjects averaged 

about 19%.  To give a baseline, completely myopic play, in which a subject ignores the dynamic 

aspect of the game and simply chooses the options with the highest current payoff in each period, 

would lead to payoff losses of 25% on average. 

A criticism of such type assignments that we have often heard is that, while some 

subjects may have played sub-optimally within the context of the game, their behavior may have 

been optimal in some broader context.  For example, perhaps the subjects we label as “confused” 

were just busier than other participants, and their optimal decision rule was to finish the game as 

soon as possible.  But our data on practice rounds contradicts this view.  Recall that our 

algorithm allows us to study the characteristics of people assigned to each type, and so, for 

instance, we can compare the different types in terms of the intensity with which they practiced 

the game.  Surprisingly, we find that the confused types practiced more on average than any 

other type, and the near-rational types practiced the least.  Thus, those subjects who played the 
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game best also tended to learn it the quickest.  On average our subjects played 66 practice rounds 

before playing the game for money, so it seems clear that the large majority of subjects put 

substantial effort into the experimental task.  

In summary, we find that our type classification procedure performed very well at 

identifying types in the population of experimental subjects.  It grouped subjects into types with 

a high degree of confidence, and the nature of each type was simple to characterize.  We were 

surprised to find that, in a very difficult dynamic decision problem, more than a third of people 

were able to closely approximate the optimal decision rule.   

The success of many participants in our experiment was particularly surprising given that 

the monetary rewards for optimal performance were small.  A person who used the optimal 

decision rule could only expect to earn a few dollars more than one who behaved completely 

myopically.7  In future work, we plan to examine how various experimental design features, such 

as (1) size of payoffs, (2) complexity of the decision problem, (3) amount of time for practice, 

and (3) amount of information given to the participants, effect the types of decision rules people 

use.  Our (very) long-term goal is to be able to provide some characterization of the types of 

situations in which people do and do not behave close to optimally, and to characterize the types 

of decision rules people use in the latter cases (e.g., do certain sub-optimal behavioral patterns 

like “fatalism” recur in many different contexts?). 

The outline of this paper is as follows:  In section II we describe the Bayesian algorithm 

for classifying decision rules in general terms.  In section III we present our experimental design.  

In section IV we show how decision rules in this particular experiment can be modeled using the  

general approach outlined in section II.  Section V presents results and section VI concludes. 

 
II.  The Bayesian Classification Procedure 

Our Bayesian approach to type classification enables us to draw inferences about the 

number and nature of decision rules present in a population of subjects, as well as the probability 

with which each subject uses each rule.  Each decision rule is modeled flexibly, with the form of 

each rule inferred from the experimental data.  The number of decision rules in the population is 

                                                 
7 Experimental work that finds rejections of rational or optimal behavior is often criticized on the grounds that 
subjects had little incentive to behave optimally.  We don’t find this a compelling criticism of our findings here, 
since the interesting outcome was that so many people indeed behaved close to optimally, and because the practice 
round data shows that the large majority of subjects put substantial effort into the task.     
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determined using Bayesian decision theory, which requires calculation of the marginal 

likelihood.  For ease of exposition we will restrict attention to the class of discrete choice 

Markov decision processes (in discrete time), although in principle the approach we describe has 

more general application.8  Rust (1994) provides an excellent survey on structural approaches to 

inference for Markov decision processes.   

We start by considering the optimal decision rule in a dynamic stochastic discrete choice 

problem.  Appling Bellman’s (1957) principle, the value to subject n of choosing alternative j 

from the discrete set {1, �, J} in round t of a T period game can be written: 

 
(1) Vnjt(Int) = wnjt  +  EV(In,t+1 | Int , j)  t=1, �,T 
 
where: 
  

In, t+1 = H(Int , j), 
 
Here wnjt is the current period payoff, meaning the monetary reward won by the subject in round 

t of the game, given choice j.  Int is the state of the subject in round t (i.e., the subject’s 

information set).  This might include, for example, the subject’s choice and payoff history.  

EV(In,t+1 | Int , j) is the “future component” of the value function which captures the expected 

value of the subject’s state next round given his/her current state and choice,9 and H(�) is the 

(possibly stochastic) Markovian law of motion for the state variables. 

 If subjects form expectations rationally, and know H(�), then E in equation (1) is the 

mathematical expectation operator, and the EV(In,t+1 | Int , j) at all state points can be solved for 

(possibly numerically) via dynamic programming.  The optimal decision rule is: 

 
Chose alternative j iff Vnjt(Int) � Vnkt(Int) for all k � j. 
 

We assume payoffs are drawn from an absolutely continuous distribution to rule out ties. 

                                                 
8 For instance, Houser (2002) applies this approach to a model with mixed discrete/continuous choice variables.  
9 If payoffs are received over time, the future component would be pre-multiplied by a discount factor, but in most 
experimental settings all payoffs are received at the same time (at the end of the game), so there is no discounting, or 
the time between rounds is trivial, so discounting is irrelevant. 
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We wish to generalize this framework by allowing for the possibility that subjects do not 

use the optimal decision rule,10 and for the possibility that there is heterogeneity in the decision 

rules that exist in a population of subjects.     

Thus, rather than assume E is the mathematical expectation operator, we model the future 

component of each alternative’s value as a flexible parametric function (i.e., polynomial) in the 

elements of the subject’s information set Int and choice j.  This follows the suggestion of Geweke 

and Keane (1999a, 2001).  We also allow for the parameters of this function to differ across 

subjects of different type, denoted by k.  And finally, we allow for the possibility of optimization 

errors.  Then, we can write the future component for type k as: 

 
(2)  EV(In,t+1 | Int , j) = F(Int, j | �k) + �njt   k=1, �, K. 
 
Here F(�) represents the future component polynomial.  It is characterized by a finite vector of 

parameters �k.  Note that the type k specific future component parameters �k capture differences 

in the way subjects assign values to alternatives. 

The random variable �njt accounts for idiosyncratic errors made when attempting to 

implement decision rule k.  We allow the distribution of the idiosyncratic errors to vary with the 

decision rule, so that stochastic optimization error may be more important for some types than 

others.11  Let �k denote the standard deviation of the optimization error for type k.  

The assumption that optimization may be present when implementing decision rules 

underlies much of the recent work in experimental economics that attempts to develop positive 

models of subject behavior (as opposed to more traditional work that simply checked whether or 

not subjects behavior was optimal according to particular normative models).  Goeree and Holt 

(1999) provide an overview of this line of research.     

                                                 
10 Sub-optimality in this sense could occur for a number of reasons.  Examples include: 1) subjects do not have 
rational expectations, so that E is not the mathematical expectation operator, 2) subjects are unable to do the 
calculations necessary to solve the DP problem and compute the optimal decision rule so they use some simple 
approximation, 3) subjects do not understand the structure of H(�), 4) subjects could in principle solve the problem, 
but instead they solve a simpler problem to save on thinking costs, 5) subjects fundamentally misunderstand the 
problem, and 6) subjects are not expected wealth maximizers (e.g., they exhibit altruism), or, more generally, the 
problem they are solving is somehow different from the one we have posed to them. 
11  One must allow for optimization errors in a model where K is less than the number of subjects, and payoffs are 
fully observed. Otherwise, the likelihood will equal zero for any subject whose behavior is not exactly explained by 
one of the K rules, leading to a degenerate model.  El-Gamal and Grether (1995) dealt with this problem by 
introducing a fixed probability that a subject makes the “wrong” choice, given his/her decision rule.  An appealing 
feature of our alternative approach (i.e., introducing optimization error directly into the value function equation) is 
that “wrong” choices will be much more likely if the “true” values of alternatives are “close.”  This seems intuitive.           
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Given (1) and (2), the value that subject n, who is type k, assigns to alternative j in round 

, is then: t

 
(3) Vnjt(Int | k) = wnjt  +  F(Int, j | �k) + �njt. 
 

Denoting the deterministic part of the valuation function by ( | ) ( , |njt nt njt nt kk w F I j �� � )V I , we 

have that the probability that option j is chosen is increasing in njtV . The assumption that 

optimization error takes the form of noise appended to the njtV function is attractive, because it 

implies that the probability of an error in implementing the decision rule is greater in situations 

where the several best alternatives have similar njtV values, whereas the probability of an error is 

small when one alternative is clearly dominant in terms of its njtV . 

It is important to note that specification (3) is extremely flexible and can nest or 

approximately nest (i.e., via the Weierstrass approximation theorem) many special cases of 

interest.  For example, if the function F is sufficiently flexible, and the �k are chosen so that F(Int, 

j | �k) � EV(In,t+1 | Int , j), and the variance of the optimization error �njt is set close to zero, we 

can obtain a good approximation to the “optimal” value function given by (1).  In fact, many 

authors have found that value functions in problems of interest to economists can be 

approximated extremely accurately using low order polynomials (see, e.g., Krusell and Smith 

(1995), Geweke and Keane (1999a, 2001), Keane and Wolpin (1994)).  This observation is a key 

motivation for our approach.  

Some other leading cases are also worth noting: Equation (3) nests myopic behavior if the 

�k are set equal to zero and the variance of the optimization error is set equal to zero.  And 

equation (3) generates purely random behavior, in which each option is chosen with equal 

probability, if the �k are set equal to zero and �k is sent to infinity. 

It is important to note what elements of the specification (3) are and are not restrictive. 

First, note that this specification does not require that subjects understand what state variables 

are relevant in forecasting the value of future states.  We have not made this explicit to conserve 

on notation, but we could easily allow for the possibility that the subjects consider superfluous 

information when making decisions, and denote the expanded information set by I+
nt.  Second, 

our specification may appear to impose additive separability, but this can be relaxed, since 
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current and past payoffs and choices, and interactions between them and other state variables, 

may be included as elements of Int or I+
nt.  Finally, observe that non-stationarity arises as long as 

the index for round (or time) t is an element of Int. We comment on the restrictive aspects of our 

approach below. 

Now we consider the problem of statistical inference in this general framework. Let dnt � 

{1, �, J} denote the choice made by subject n in round t.  The data observed by the investigator 

will consist of the set of choices and payoffs for each of the N subjects: 

{{{ dnt , {wnjt}j=1, �, J}t=1, �, T}n=1, �, N} 

The goal of the empirical analysis is to draw inferences about: (1) the order of the F polynomial 

and the set of state variables that enter the polynomial, (2) the number of decision rule types K 

that are present in the population of subjects, (3) the vector of parameters �k, �k for each type 

k=1,�, K, and (4) the population proportions of each type, which we denote by 	k.  Furthermore, 

we also want to construct the posterior probability ( )np k  that each subject is each type, 

conditional on his/her observed history of decisions and payoffs. 

 Consider first the simpler problem of drawing inferences about the parameters {�k, �k, 	k} 

for k=1,�, K, given a particular choice for K, the order of F, and the set of state variables that 

determine F, as well as a distributional assumption on the optimization errors �njt. Even this 

represents a fairly difficult inferential problem because we have a discrete choice model in which 

the type of each subject is a latent variable. However, recently developed simulation methods 

have made such models quite tractable (see, e.g., Geweke and Keane (2001) for a discussion).  In 

section IV.D we describe a Gibbs sampling algorithm for Bayesian inference in this model. 

 Now consider the problem of drawing inferences about the number of types K and the 

order of the F polynomial, which we denote P.  Given that we can implement a model with given 

(K, P), the standard approach of Bayesian decision theory is to estimate a range of models with 

different K and P, and use the marginal likelihood to choose among competing models.  

Intuitively, a marginal likelihood is a likelihood-based measure of model fit that penalizes 

models for proliferation of parameters.12 In any discrete choice problem, calculation of the 

marginal likelihood represents a very high dimensional integration problem, and this problem is 

                                                 
12 The marginal likelihood is the integral of the likelihood with respect to the prior.  If we increase K and/or P then 
the prior is specified over more parameters.  Thus, the prior mass in the vicinity of any particular parameter vector, 
such as the posterior mode, will fall.  This induces an implicit penalty on added parameters.  
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compounded by the presence of latent types.  Again, recently developed simulation methods 

make this problem tractable.  We describe our algorithm for calculating marginal likelihoods for 

our models in Appendix A.13, 14 

 At this point, some limitations of our approach can be made clear. Note that it is 

straightforward to use marginal likelihood comparisons to choose the number of types K and the 

order P of the F polynomial.  Simply increase K and/or P until the marginal likelihood begins to 

deteriorate, and stop there.  But the use of the marginal likelihood to determine the set of state 

variables that agents consider when making decisions is not so mechanical.  We can, of course, 

construct marginal likelihoods for models with and without certain extraneous state variables that 

agents might consider.  But, ultimately, we can never know if we have failed to try some 

extraneous state variable that agents do in fact use.  

This relates to our earlier discussion of the El-Gamal and Grether (1995) approach, which 

requires the investigator to specify a priori the complete set (or super set) of decision rules that 

will be entertained as possibilities.  Our approach requires us to specify the complete set of state 

variables that will be entertained as possible arguments in subjects’ decision rules.  In our view, 

our approach imposes lesser demands on the analyst’s intuition, but clearly it still imposes some 

demands.  Ultimately, it is impossible to learn anything without some identifying assumptions. 

 Another limitation is the requirement that the investigator make a distributional 

assumption on the optimization errors �njt.  However, in principle it would be straightforward to 

generalize normality by considering mixture-of-normals probit models, as in Geweke and Keane 

(1999b, 2001).  Then, marginal likelihood comparisons could be used to choose the order of the 

mixture.  This approach can parsimoniously capture a wide range of departures from normality. 

 In the empirical application described below we have assumed that agents only use the 

relevant state variables (i.e., the elements of Int) when forming F, and we have assumed 

normality for the optimization errors.  Given these assumptions, our model provides a good fit to 

subjects’ choice behavior, and an easily interpretable classification of subjects into types.  Thus, 

we did not see any compelling reason to generalize our model along these dimensions. 

                                                 
13 Alternative numerical procedures for calculating the marginal likelihood are discussed in Gelfand and Dey (1994), 
Geweke (1997), Geweke and Keane (2001), Chib (2001), Allenby, Kim and Rossi (2002), and Lewis and Raferty 
(1997) among others. 
14 In contrast to our approach of using the marginal likelihood to choose among competing models, El-Gamal and 
Grether put a proper prior on the number of types, and then choose the number of types to maximize the posterior 
density of the model.  Their prior explicitly favors models with fewer types.      
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 In the next section we describe the design of the specific experiment that we analyze, and 

in section IV we detail how the general framework described here can be applied to model 

subject’s decision rules in this specific problem.  

 
III.  Experimental Design 

 We wished to design a dynamic decision problem with the following features:   

1) We wanted a problem that was very difficult to solve.  The entire point of our experiment 

is to examine how people behave when confronted with a decision problem that is too 

difficult for anyone to solve exactly.15   

2) We nevertheless needed a problem whose structure was easy to explain to participants in 

the experiment. 

3) We felt it was desirable to have a problem whose structure was in fundamental ways 

similar to dynamic decision problems that people actually confront in real world 

situations, particularly situations that economists are actually interested in.    

4) We wanted to design a problem where there was some noticeable advantage to playing 

near-optimally, so that sub-optimal behavior would be easy to detect statistically. 

5) We needed a game that could be played quickly, so that subjects would be willing to 

participate, so that we could collect a reasonably large amount of data, and so that 

subjects would be able to practice.  This also prevents subjects from getting bored.  

We settled on a stochastic sequential discrete choice problem, that has features similar to a 

human capital investment or occupational choice problem.  Each subject in our experiment 

makes 15 decisions sequentially.  The problem has a nontrivial intertemporal component in the 

sense that early decisions influence the distributions of payoffs for later decisions.  In addition, 

there are stochastic components to payoffs that make solving the problem optimally very 

difficult (because the optimal decision rule is a function of the realization of the stochastic 

variables).  We set up the problem so that alternative “1” can be thought of similar to “school” or 

“white collar” work, in that this option tends to have low initial payoffs that increase later if the 

subject builds up sufficient experience in “1.”  Option “2” has a higher mean payoff, but does not 

have any such “investment” component.  It is importance to stress however, that no such 

                                                 
15 We are particularly interested in examining heterogeneity in decision-making behavior, and individual differences 
in behavior can be masked when the optimal solution is transparent. 
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interpretation was provided to the subjects, who were simply told the mathematical form of the 

payoff function in each alternative. 

  An exact transcript of the instructions that were given to subjects is provided in 

Appendix B.  A precise description of the game is as follows:  At the start of each of the 15 

rounds, the subjects receive a draw for the payoffs in alternatives “1” and “2.”  The stochastic 

payoff to “2” is 4000 points plus the realization of a random variable that is uniformly distributed 

over the interval [-5000, 5000], subject to the restriction that the payoff be non-negative.  For 

example, if the realization of the random variable was 5000, then the immediate payoff to “2” 

would be 9000 points, while if the realization was negative 4000 (or less) then the payoff would 

be zero.16  Note that the realization of the random variables in round t occurs before the decision 

at t is made, but the realization of period t+1’s random variables occurs after the decision at t.  

 The payoff to alternative “1” was 3000 points plus the realization of an independently 

distributed random variable distributed uniformly over the interval [-5000, 5000], plus a “bonus” 

and a “cost” whose values depended on the history of the subject’s choices.  The bonus was 7500 

points, and was available whenever alternative “1” had been chosen six, seven, eight or nine 

previous times (not necessarily in succession).  A “switching” cost of 5000 points was incurred 

whenever the subject chose “1” after choosing “2” in the previous round.  The subject’s total 

payoff for the decision problem was the sum of the rewards they earned over the 15 rounds. 

 We chose this design to study dynamic decision-making behavior because it has, at least 

to some degree, all five desirable features that we listed above.  First, this is a sophisticated 

dynamic investment problem that is nevertheless straightforward to describe.  It also turns out 

that the problem is quite difficult in the sense that it is hard to solve for the expected wealth 

maximizing strategy.  In fact, the dynamic optimization problem cannot be solved analytically – 

it must be solved numerically on a computer.  The design also generates a non-negligible 

incentive for forward-looking behavior.  The optimal solution earns about 25% more, on 

average, than the myopic strategy that simply chooses the highest payoff each period.  Finally, 

we found that if the game lasted only 15 periods then subjects could play the game quite quickly 

(i.e., in 45 seconds to a minute) allowing ample opportunity for practice.17    

                                                 
16 Thus, there is a .10 probability of a zero payoff in option 2. 
17 We originally attempted to pattern the game quite closely on a white-collar vs. blue-collar occupational choice 
problem, using estimates of returns to experience and transition costs calibrated from Keane and Wolpin (1997).  
This meant that returns to experience were about 5% per period higher in Alternative “1” than in alternative “2.”  
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This decision problem was coded in Visual Basic and subjects made decisions 

independently at a private computer terminal.18  Figure B1 provides a screen shot of the interface 

seen by the subjects as they made decisions.  The screen provides information on the current 

payoffs to both alternatives, the current round, the history of the subjects choices and payoffs, 

their current aggregate earnings and a summary of the decision problem’s payoff structure.   

We report here on results obtained from 139 subjects who completed our experiment.  All 

experiments were conducted at the Economic Science Laboratory (ESL) at the University of 

Arizona.  Subjects were recruited from the general student population using the ESL’s standard 

recruiting procedures.  In an effort to ensure subjects were familiar with the task when they 

played it for money, subjects were recruited for two laboratory sessions.  On arrival for the first 

session they were provided with the written instructions in Appendix B and seated privately at a 

computer terminal.  They were allowed to practice the decision problem as long as they liked (up 

to about 90 minutes) but did not play the decision problem for money.  A typical subject 

practiced for about 30 minutes. The median number of practice rounds played was 38.   

The second laboratory session was held two days after the first (for example, if the first 

was on Wednesday the second would be on Friday).  Upon arrival, subjects were again provided 

with the written instructions and told that they could practice for as long as they liked (up to 

about 90 minutes).  Practice was generally shorter during the second session (i.e., the median 

number of practice rounds was 14).  When they were ready, subjects solved the decision problem 

one time for money.  During money play, there was a 15 second forced delay between moves, 

which we imposed to discourage thoughtless play.  In hindsight, given the large amount of time 

the typical subject voluntarily devoted to practice, this concern seems to have been largely 

unwarranted.  Subjects earned $8.23 on average.  Subjects also received two five-dollar show-up 

fees, and spent about 75 minutes on average in the laboratory (in total). 

 

                                                                                                                                                             
We found, however, that percentage payoff loses from following sub-optimal decision rules (like myopia) were 
quite small in this context.  This led us to the more “dramatic” form of experience return that we actually specified 
for alternative “1,” in which the mean payoff jumps drastically after 6 periods of experience are accumulated.  We 
speculate that with only 15 periods, there is not enough time for experience to accumulate, so the loss from myopic 
behavior is not large unless the return to experience is very large.  Note that in Keane and Wolpin (1997) there were 
40 periods.  This issue illustrates the tradeoff among goals 3, 4 and 5 for design of the game: If the game had been 
longer, we could have made it more “realistic,” but then subjects would probably have gotten bored.  Observation of 
the subjects suggested that the large majority found the game rather fun to play.  Further evidence of this is that most 
spent a lot of time practicing, even though the monetary gain from optimal play was just a few dollars.   
18 The visual basic software used to implement this experiment is available from the authors on request. 
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IV.  Empirical Specification 

In this section we first describe how we apply the general procedure outlined in section II to 

model the decision rules used by the subjects in our experiment. We describe the likelihood 

function, priors, and posterior distribution of the model parameters on which our inferences are 

based, and describe the Gibbs sampling algorithm that we use to sample from the posterior. 

 
IV.A.  The Functional Forms for the Decision Rules   

In the experiment in section III, the current payoffs wnjt are simply the known immediate rewards 

for alternatives j 
 {1, 2} in round t.  For instance, the payoff in option “1,” wn1t, is the (possibly 

censored) sum of the base reward of 3000 and round t’s realization of the uniformly distributed 

random variable, along with any transition cost that is incurred or bonus that is available.  

In our experiment, the relevant state variables for forecasting values of future states are 

the number of times a person has chosen each alternative, which we denote by  and  for 

alternatives “1” and “2,” respectively, the time remaining until the last period (since it is a finite 

horizon problem), and an indicator for whether the current choice is “1” or “2.”  The current 

choice matters for future payoffs because of the cost of a transition from “2” to “1.”  The prior 

“experience” in “1” and “2,” as well as the time left in the game, matter because of that fact that 

the mean payoff in “1” jumps substantially when one reaches 6 periods of experience in “1.”  

This “bonus phase” only lasts until the person chooses “1” four additional times, and rational 

subjects should try to get through this bonus phase before the end of the game. 

1n tX 2n tX

Note that current payoffs, while they are elements of the information set Int, are not useful 

for forecasting future payoffs, because the stochastic components of payoffs are iid over time in 

our experiment.  Thus, the “rational expectations” (RE) future component EV(In,t+1 | Int , j) does 

not vary over state points (Int , j) that only differ in terms of the realizations of the wnjt.  

Therefore, a polynomial approximation to RE future component would not depend on the current 

and/or lagged wnjt.  As we noted at the end of section II, so far we have only estimated 

specifications in which the future component is a polynomial in state variables that are actually 

relevant for forecasting future payoffs, because such specifications fit the data quite well.  In 

future work we plan to allow the future component to include superfluous state variables (like 

the payoffs) to investigate whether some subjects might use this information erroneously. 
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To anticipate our results, our Bayesian model selection procedure selects a third order 

polynomial in the state variables as the preferred specification for the future component. Then, 

since the law of motion for the state variables is H(X1, X2, j) = (X1 + 1(j=1), X2 +1(j=2),  j), the 

future component F for subjects of type k takes the following form (where we have suppressed 

the type subscript k on the �k parameters): 
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Note that the round t is linearly dependent on Xn1t and Xn2t, so we omit it from the polynomial.   

Since choices depend only on the relative values of “1” and “2,” the future component is not 

identified in levels.  We achieve identification by differencing the future component. Let: 
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Not all of the parameters that enter the differenced future component are identified.  For 

example, �1,  �2,  �10 and �12, are not separately identified, since they all form a composite  

constant term.  Thus, our analysis is based on the following identified relative future component: 
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where the �  are derived from the �  in the obvious way. *

i i

 Note that the decision rule for subject n of type k in round t is: 

 
 Choose “1” iff   Znt(Int|k) � Vn1t(Int|k) - Vn2t(Int|k) 
 

               = wn1t – wn2t + f (Xn1t , Xn2t | �k
* ) + �nt � 0 

 
It is therefore intuitive to think of  f(Xn1t , Xn2t | �k

* ) as a reservation payoff differential.  This is 

the amount by which  must exceed  in order for the subject to chose “2” over “1” 

(subject to the added noise induced by the mean zero optimization error �

2n tw 1n tw

nt � �n1t - �n2t). 

In our game, the optimal value of the reservation payoff differential varies in a complex 

way with the state variables Xn1t and Xn2t.  This is what makes it very difficult to play the game 

optimally.  Our algorithm will allow us to infer the actual reservation payoff differential function 

f(Xn1t , Xn2t | �k ) used by each type k.  We can then compare these to the optimal f in order to 

characterize the manner in which play of each type of subject deviates from optimality.  

 
IV.B.  The Likelihood Function, Priors, and Joint Posterior Distribution of Parameters 

We denote the round t choice of subject n by  Let 
.ntd n 
 {1, �, K} be an indicator of 

subject n’s type. If the subject uses decision rule  (i.e., 
k n = k) and has information ntI , then 

 satisfies:  ntd

"1" if ( | ) 0
"2" otherwise

nt nt
nt

Z I k
d

��
� �
�

  

The data observed by the investigator will be a sequence of current payoff realizations wnjt for 

j=1, �, 2, t=1, �, T and choices dnt for t=1, �, T for each subject n.  Note that choices only 

depend on the value function differences Znt.  The inferential problem is complicated by the fact 

that these, as well as the subject types 
n, are unobserved. 
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We assume �  for type k.  Thus, our model is formally a mixture of probit 

models, in which an additive part of the latent index, w

2~ (0,nt kIIDN )�

k

k

1nt – w2nt is observed.  This sets the scale 

for the �k and �k parameters, so both are identified.   

The probability that subject n of type k  chooses alternative one in round t is:   

 
*

1 2 1 2 1 2( 1| ) ( ( | ) ( | )) ( ( , | ) 0)nt n t nt n t nt n t n t n t n t k ntd k V I k V I k w w f X X � �� � � � � � � �P P P  
 
We define P  (dnt|k) = 1(dnt=1|k)� P  (dnt=1|k) + 1(dnt=2|k)� [1-P  (dnt=1|k)].  Then, if all 

subjects’ types were known, the likelihood function for the observed data would be simply: 

 
1( = )* 2

1, 1,[{{ } } | ( , ) ] ( | ) .n k
nt t T n N k k k K nt

n k t

d d �

� �
�

� � �
����L P  

 
and maximization of this likelihood with respect to {�k, �k

-2}k=1,K would be straightforward. 

However, since we do not know subjects’ types, we must form a likelihood function based on 

unconditional choice probabilities P  (dnt) = �k 	k P  (dnt|k), where�  is the probability that a 

person chosen at random from the population follows decision rule  This gives: 

k

.k

 
* 2

1, 1,[{{ } } | ( , , ) ] ( | )nt t T n N k k k k K k nt
kn t

d d� � � �
�

� � �

� �� �
� � �� 	


 �� 

�� �L P  

 
We do not pursue maximum likelihood (ML) estimation of this model for two reasons. First, ML 

estimation of mixture models for discrete data is notoriously difficult due to problems with local 

maxima of the likelihood function. Second, the ML approach would not provide us with a 

rigorous and practical method of testing for the number of types. 

Thus, we use a Bayesian Markov Chain–Monte Carlo (MCMC) algorithm to generate 

inferences about the number of types K, the order P of the F polynomials, and the model 

parameters {	k, �k
*, �k

-2}k=1,K.  The particular MCMC algorithm we employer is the Gibbs 

sampler.  This provides draws from the joint posterior distribution of the model parameters 

conditional on the data.  A key feature of the algorithm is that there is no separate maximization 

step.  That is, the draws from the posterior are obtained without the need to maximize the 

 17



likelihood function.  Thus, the Gibbs sampler is much less sensitive to problems created by ill 

behaved likelihood surfaces (i.e., local maxima) than is ML.19      

Inference via the Gibbs sampler starts with the specification of the complete data 

likelihood function, which is the hypothetical likelihood one could form if the latent indices Znt 

and the latent types 
n were observed.  In our model, given a particular K and P, this is: 
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whereY denotes the vector of state variables conformable with � , given P.  The indicator 

function 

'
nt

*
k

( , )nt ntI Z d =1 if ntZ >0 and d  or if  but is zero otherwise. 1,nt � 0 and nt ntZ � 2,d �

The model is closed by specification of prior distributions for the model’s parameters. 

We assume proper priors of a standard conjugate form for all parameters.  These are as follows: 

 

(5) 

2
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|| ||

~ (0, ), where  is a 6 x 6 diagonal matrix with entries (1,1) 20,000 ,

(2,2) (3,3) 1,000 , (4,4) (5,5) 100  and (6,6) 100,000.
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{ } ~ ({2.0} ).

k

k K

k k K K

N

Di

�

� � � � �

�

�

�

� � � �

� � � � � � � � � �

� � ��� �

 

 
where Di is the Dirichlet distribution, or multivariate Beta.  

By Bayes theorem, the joint posterior of the model parameters, the latent indices Znt and 

the latent indicators 
n is simply proportional to the complete data likelihood times the prior 

densities p(�k
*

 ), p(�k
-2), and p(	k).20 Since we have proper priors and a bounded likelihood 

function, the joint posterior exists. This is a necessary condition for convergence in distribution 

of the Gibbs sampler draw sequence to the appropriate joint posterior.    

 A number of aspects of the prior specification are worth commenting upon.  First, note 

that setting the prior mean for the �k
* vector at zero means that our prior is centered on myopia.  

                                                 
19 For instance, in a Monte-Carlo experiment, Geweke, Houser and Keane (2001) reported no success whatsoever in 
attempting to estimate by ML a model rather similar to that described here.  In contrast, their Gibbs sampling 
algorithm produced reliable inferences about the model parameters in the simulated data.  
20  Note that in the Bayesian approach there is no distinction between the parameters of interest and the latent 
variables, at least from the point of view of computation of the posterior.   
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When all element of the �k
* vector are zero, the future component F is zero, and subjects only 

consider current payoffs.  The issues involved in choosing �  illustrate why it is not possible to 

have “uninformative” priors.  If we made the priors on the �k
* very flat (i.e., set the elements of 

�  to be very large), this would imply that there is little prior mass in the vicinity of �k
* = 0.  

Thus, although the prior would be centered on myopia, it would say there is little prior mass on 

the myopic decision rule.  Thus, the choice of �  must be considered rather carefully. 

Regarding the choice of � (1,1), note that �k0
* is the f(Xn1t , Xn2t | �k ) function intercept, 

and can therefore be interpreted as the reservation payoff differential in round 1, prior to the 

accumulation of any experience in either option.  According to the optimal decision rule, this is 

3733 points (i.e., 37 cents).  We decided to specify a prior mean of 0 and a prior standard 

deviation of 20,000 for this parameter. Thus, our prior is rather diffuse, while still leaving non-

negligible mass in the vicinity of the interesting special cases of myopic and optimal play.  

 Second, we have a strong prior that higher order polynomial coefficients should be 

relatively smaller in magnitude, simply due to scale (i.e., they multiply variables that tend to be 

larger in magnitude).  A prior with equal diagonal elements for �  would place most prior mass 

on models where the higher order terms in the state variables dominate decisions, which is not 

plausible.  For this reason, we put successively tighter priors on the higher order terms (e.g., 

prior standard deviations of 1000 on the linear X terms, 100 on the X2 terms, etc.). 

In our empirical results below, we find that the posterior mean for each of the �k
* 

parameters is within one prior standard deviation of our prior mean. We also find that in every 

instance the posterior standard deviation is about 8 to 200 times smaller than our prior standard 

deviation.  Together, these results suggest that the data is very informative about all the �k
* 

parameters, and that in no instance was the prior “too tight” to “let the data speak.”  We also 

report below on the sensitivity of our inferences to both reducing and increasing the prior 

standard deviations on all the �k
* parameters by 50%, and find little effect. 

Third, consider the prior specification for the optimization error variance, �k
2.  Note that 

the ordering restriction on the type specific variances is simply an identifying restriction that 

prevents interchanging the components of the mixture.  There are several such restrictions that 

can work for this purpose (see Geweke and Keane (2001) for a discussion).   
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Also note that the prior mean and standard deviation for �k
2 are not defined under the 

1/�2(1) prior.  We can, however, consider quantiles of the �k
2 distribution.  Our prior puts 95% of 

the mass on models where the optimization error standard deviation is less than roughly 16 

experimental points, which is quite small relative to the magnitudes of payoffs.  We did this in 

order to favor models where the state variables largely explain behavior, as opposed to models 

where behavior is largely random.  However, the prior density also has a very fat right tail 

(which accounts for the nonexistence of the mean), so that models with very large optimization 

errors are still given non-negligible prior mass.  The prior is also quite weak. As we’ll see in the 

next section, it has an impact on inference equivalent to adding a single observation with a 

squared error term equal to one. 

We also report below on the sensitivity of our inferences to scaling up the �k
2 prior to 

20,000/�2(1), which increases the 95th percentile point to roughly 2250 experimental points.  

This corresponds to roughly the highest level of optimization error we found in any of the type 

specific decision rules.  We find little effect of this change in prior on our inferences.     

 Fourth, the Dirichlet prior is centered on equal type proportions (i.e., 1/K each) but it is 

sufficiently diffuse that situations with very unequal proportions will have substantial prior mass. 

For example, in the model with three types, the prior standard deviation on each of the type 

proportions is 18 percent. 

 
IV.C.  The Gibbs Sampling Algorithm  

We now describe the Gibbs sampling algorithm that we use to approximate the marginal 

posteriors of the model’s parameters. 21  The product of the complete data likelihood (4) and the 

set of prior densities implied by the prior structure in (5) define the joint posterior used to 

construct the Gibbs sampler.  The sampler includes the following five steps: 

1) Draw latent utility values .ntZ  

2) Draw decision rule coefficients �  for all  *
k 1, .k K�

3) Draw variance of optimization error �  2 , 1,k k K� .

                                                

4) Draw population type probabilities �  , 1, .k k K�

5) Draw individual types �  , 1, .n n N�

 
21 Our FORTRAN 77 code, which makes extensive use of IMSL subroutines, is available on request. 
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These draws are implemented as follows: 

1)  Znt Step: Conditional on everything else being known, it is clear from equation (3) that a 

given ntZ  follows a truncated normal distribution, with mean ( )  and 

variance �  The truncation is from below at zero if  and is from above at zero 

otherwise.  It is trivial to draw from this distribution using an inverse CDF procedure. 

' *
1 2n t n t nt kw w Y �� �

2.k 1,ntd �

2) �k
* Step: Conditional on everything else being known, each vector �  can be drawn 

using simple rejection methods.  From equation (4), the source distribution can be chosen 

to be normal with a mean of ( ) , and variance �  Here, Y  denotes the 

stacked array of Y

*
k

1.' 1 '
k k k kY Y Y W�

*
k

2 '( )k kY Y �

.

k

nt vectors for those subjects who are type k  The vector Wk is created by 

stacking the numbers Znt – wn1t + wn2t conformably, again for subjects who are type  

The kernel of the normal prior for �  is evaluated at each candidate draw from the source 

distribution, and that evaluation compared against a random number drawn from a 

uniform [0,1] distribution.  If the uniform random variable is less than the value of the 

kernel evaluated at the candidate draw, the draw is accepted.  Otherwise it is rejected. 

.k

3) �k
2 Step: Conditional on everything else being known, equations (4) and (5) imply that: 

' * 2
1, 1 2
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where kN is the number subjects who are type  We draw from this distribution using 

standard software, and reject any draw that does not satisfy the ordering� �  

.k

2 2
1 ... .K� �

4) �k Step: Because we assume the prior  it is trivial to verify that the posterior 

conditional on everything else being known is   We draw from this 

distribution using the procedure suggested by Anderson (1984, p. 284). 

({2} ),KDi

Di 1,({2 } ).k k KN
�

�

5) �n Step: Let  denote the value of the likelihood (4) when evaluated only for 

individual  and under the assumption that he/she uses decision rule  and that 

everything else is known. Then, the conditional posterior distribution of �  is 
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It is easy to draw from this distribution using standard software. 
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Finally, we consider the choice of the number of types K and the polynomial order P.  

We consider models with several different values of K and P, and then use Bayesian decision 

theory to choose among the models. This requires construction of the marginal likelihood for 

each model.  The procedure for constructing marginal likelihoods is described in Appendix A.      

 
V.  Empirical Results 

V.A.  A Basic Description of the Data  

We begin with a simple comparison between the average behavior of the 139 

experimental subjects and “optimal” behavior in the experiment.  That is, we construct choice 

histories for 139 hypothetical agents who face the exact same realizations for the random 

components of payoffs as did the human subjects in the experiment.22  But our hypothetical 

agents play the exactly optimal decision rule - which we call the “rational expectations” (RE) 

decision rule.23  We will refer to these as “RE subjects.”  

  Figure 1 compares the fraction of actual and RE subjects who choose alternative “1” in 

each round of the game.  In round 1, the median payoff for “2” is 1000 points higher than for 

“1.”  Yet, quite interestingly, over 75% of actual subjects chose “1.”  This strongly indicates that 

most subjects understand the investment component of option “1,” and realize that they should 

choose “1” unless “2” offers a substantial payoff premium.  This reservation payoff differential 

happens to be 3733 points (i.e., 37 cents) in round 1 according to the optimal rule.  Also 

interesting is that the fraction of RE subjects who choose “1” is 79%, which is very close to the 

fraction of experimental subjects who chose “1.”  Of course, the fact that the aggregate 

percentage who chose “1” is about right does not necessarily imply near-optimal behavior at the 

individual level, since some types of subjects may be choosing “1” too often, while others 

choose it too rarely.     

                                                 
22 While running the experiment, we recorded both the choices made by subjects and the idiosyncratic random 
variable realizations that they faced.  Payoffs depend on both the random draws and the past history of choices.  So, 
of course, the alternative specific payoffs in a particular round may differ between actual subjects and their RE 
counterparts who face the same random draws (but who may have different choice histories).   
23 To be precise, we used standard numerical procedures to solve the appropriate dynamic programming problem 
and construct the decision rule that would be used by rational, expected wealth maximizing agents.  We ignore the 
possibility of risk aversion when constructing the optimal decision rule, because the payoffs at stake in the game are 
rather small.  Note, however, that our inferential procedure does not impose risk neutrality on the estimated decision 
rules of the experimental subjects.  Departures from risk neutrality would be captured by the �’s. 
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Figure 1 also reveals an interesting non-stationarity in choice behavior in this game that is 

implied by the optimal rule.  The fraction choosing “1” if subjects play optimally should drop 

after round one, fall to a trough in round 3, rise (non-monotonically) to a peak in round 11, and 

then drop off rather sharply at the end.24  The aggregate choice frequencies of subjects in the 

experiment match this complex pattern implied by the optimal rule quite closely over the first six 

rounds.  But from rounds seven to nine, actual subjects chose alternative “1” slightly more 

frequently than their RE counterparts.  And from round 11 onward, the choice frequencies 

diverge substantially.  The actual subjects chose option “1” much less frequently than the RE 

subjects during the later rounds of the game.   

On average, RE subjects choose “1” 10.7 times during the game, compared to only 10.0 

times for actual subjects.  While 94% of RE subjects complete the “bonus phase,” only 64% of 

actual subjects do so. The actual subjects earn 10.0% less than the RE subjects on average.       

But looking at the aggregate statistics reveals little about the play of individual subjects, 

because there is substantial variation in play around these averages.  For instance, while on 

average our subjects chose “1” less often than the RE subjects, 38 subjects chose “1” more often, 

and 44 chose “1” exactly as often.  This is consistent with the notion that different subjects are 

using different decision rules. 

   
V.B.  Model Selection and Evaluation of Fit 

Next, we use the Bayesian type classification procedure described in Section IV to learn 

about the nature and number of decision rules operative in the population.  We implemented the 

our Gibbs sampling algorithm on models where the number of decision rule types K ranged from 

one through four, and in which the order P of the future component polynomial F ranged from 3 

through 5.  Thus, the order of the differenced future component ranged from quadratic through 

quartic.  Table 1 contains marginal likelihood comparisons among the 12 candidate models.  The 

model with 3 types and a quadratic for the differenced future component is clearly preferred. 

In the bottom panel of Table 1 we check the sensitivity of our model selection to the 

choice of prior. We report marginal likelihood values under alternative priors in which: (1) the 

posterior standard deviations of the future component polynomial parameters �k
* are reduced or 

                                                 
24 The intuition for this pattern is as follows:  Early in the game, when there is plenty of time left to accumulate the 
six choices of “1” needed to reach the bonus phase, the “urgency” for choosing “1” is not that great.  But as the 
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increased by 50%, and (2) the scale of the optimization errors is increased by a factor of 141 = 

(20000)1/2.  As we would expect, since the marginal likelihood is the integral of the likelihood 

with respect to the prior, it changes somewhat when the prior is changed.  The important 

question is whether the model selection is affected.  In fact, the three-type model with a quadratic 

differenced future component is strongly preferred regardless of the prior specification. 

For the preferred model, our inferences were based on the final 5,000 cycles of an 8,000 

cycle Gibbs sampler run.  Inspection of the draw sequence, as well as the split-sequence 

diagnostic suggested by Gelman (1996), convinced us that the Markov chain had converged by 

the 3,000th cycle.  The draws from the last 5,000 cycles were used as simulation estimates of the 

posterior means and standard deviations of the model parameters.  These are reported in Table 2. 

Table 2 reports on the parameters of each of the three decision rules, as well as the 

population type proportions.  The table also reports our prior mean and standard deviation for 

each parameter.  Note that the posterior standard deviations are in all instances quite small 

relative to the prior standard deviations, indicating that the data is very informative about the 

parameters.  Also, in all instances the posterior mean is within a fraction of a prior standard 

deviation of the prior mean.  This suggests that the prior did not strongly influence the posterior 

for any parameter.25   

 Of course, as is usually the case, the polynomial coefficients for the three decision rules 

are difficult to interpret, and do not in themselves tell us much about the nature of the rules. 

Thus, we will leave the coefficients largely uncommented, and instead turn to simulations of 

behavior under the each of the three rules in order to understand their behavioral implications. 

But an exception is the intercept.  As we noted earlier, the intercept has a clear interpretation as 

the reservation payoff differential in round 1 (when all state variables equal zero), and it is 3733 

under the “optimal” rule.  A striking feature of the results in Table 2 is that �  is rather close to 

3733 for all three types.  Thus, it appears that all three types play nearly optimally in round 1. 

They all understand that there is an “investment” value to choosing “1” in the first round. 

*
0k

            

                                                                                                                                                             
game progresses, the urgency to choose option “1” tends to increase, and the reservation payoff differential between 
“1” and “2” should grow, holding the number of times one has chosen “1” constant.   
25 In contrast, in a case where the posterior mean departs from the prior mean by several prior standard deviations, it 
would typically be the case that the prior is exerting a substantial influence on the posterior. 
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In order to characterize the behavior of each type, and to better assess the fit of the three- 

type model to the data, we assigned each subject to a type based on his/her highest posterior type 

probability.  Recall that step 5 in the Gibbs sampling algorithm in Section IV.C is to draw a 

subject’s latent type.  The fraction of draws in which a subject is assigned to a particular type is a 

simulation consistent estimator of the posterior probability that the subject is that type  

(conditional on his/her observed choice history). 

Interestingly, it turned out the vast majority of subjects can be assigned to one type very 

clearly, because the highest posterior type probability was, for 86.3% of subjects, at least 90%.  

This means that a subject’s choice behavior in our experiment is usually highly informative 

about which type that subject is.  In hindsight, this is not surprising.  For example, if a subject 

consistently received good payoff draws for option “1,” then it would be easy for him/her to 

make optimal choices, and his/her history would not be very revealing.  But, since draws are iid 

and each subject must make 15 decisions, such a scenario is highly unlikely.  Most subjects have 

to make at least a few “tough” choices during the course of the game, so there is usually plenty 

of opportunity to reveal one’s type.26   

Figure 2 assesses the fit of the three estimated decision rules to the actual play of the 

subjects whom we classify as following each rule.  To do this, we simulated the hypothetical 

decisions that each subject would have made under his/her assigned decision rule, given the 

realizations of the payoff draws that he/she actually experienced in each round.  Figure 2 reports 

the fraction of actual and hypothetical subjects of each type who choose “1” in each round.  The 

main features of each type’s play are well matched by the simulated choices.  For example, type 

one subjects are extremely likely to choose option “1” in rounds 9 through 11 (over a 95% 

chance), while type 2 subjects only choose “1” about 80% of the time in those rounds.  Our fitted 

decision rules capture this difference in behavior rather well.  The type three subjects choose 

option “1” much less often during rounds 9 to 11 (i.e., about 70% in round 9 and only about 50% 

in rounds 10 to 11).  The model captures this basic pattern, although it somewhat understates the 

degree of the difference (i.e., it predicts that types 3s would choose “1” about 60% of the time in 

rounds 10-11).  In general, the fit for type three is not quite as good as that for types one and two.       

                                                 
26 Only 19 out of 139 subjects had an assignment probability that was less than 90% for their most likely type.  
Interestingly, 15 of these 19 had essentially all the posterior mass distributed between type 1 and type 2.  Thus, when 
there is ambiguity, it usually arises in attempting to distinguish these two types.       
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Figure 3 describes the fit of the three-type model to the aggregate choice frequencies.  It 

reports the fraction of actual and hypothetical subjects who choose alternative “1” in each round 

of the game.  The fit seems reasonably close in all rounds, with the broad features of actual 

decisions, such as the peak that occurs in the ninth round, well matched by decisions under the 

estimated rules.  Note that the model captures the departure of actual play from RE play that 

occurs beginning in round 11 quite well.     

 
V.C.  Characterization of the Decision Rules  

In this section, we attempt to characterize the nature of decision rule used by each of the 

three types.  Table 3 compares the play of the subjects we assign to each type along a number of 

dimensions.  There is a clear ranking of the types in terms of how well they play the game.  The 

subjects who we classify as type one do best.  On average, they earn 87983 experimental points, 

or about $8.80.  We simulate that hypothetical RE subjects, facing the exact same random draws, 

would earn about nine dollars on average.  Thus, on average, type one subjects only lose about 

21 cents, or 2.3%, of what they could have earned by playing exactly optimally. In contrast, type 

two subjects lose 11.7% and type three subjects lose 18.6%. 

 Next, to get a better sense of the behavior implied by each decision rule, we simulated the 

play of hypothetical subjects under each rule.  In the first simulation all subjects use the first 

decision rule, in the second simulation all subjects use the second decision rule, and so on.  In 

each simulation we construct 139 hypothetical choice histories, setting the realizations of the 

random variables to the values that the subjects in the experiment actually experienced.  In this 

way, each decision rule is confronted with a common set of draw sequences, so differences in 

choice behavior are due only to the differences in the rules.  For comparison purposes, we also 

conducted a fourth simulation in which the hypothetical subjects use the RE rule, and a fifth 

simulation in which the hypothetical subjects are myopic (they simply chose the alternative with 

the highest payoff in each period). 

  Figure 4 describes the results of this simulation exercise.  It reports the fraction of 

hypothetical subjects of each type who choose “1” in each round.  Note that rule one tracks the 

optimal RE rule quite closely.  These two rules imply nearly identical behavior through the first 

eight rounds.  In rounds 9 through 11 rule one generates a slightly higher probability of choosing 
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“1” than does the RE rule, and in rounds 13 through 15 it generates a slightly lower probability, 

but these differences are fairly minor. 

 Rule two also tracks the RE rule quite closely through the first several rounds.  But 

beginning at round nine it starts to generate a lower frequency of option “1.”  This divergence 

becomes greater as the game progresses, and becomes quite dramatic in rounds 12 to 15.  Over 

the last four rounds rule two generates a 20 to 35% lower frequency of option “1” than does the 

RE rule.  It is interesting that both rules one and two capture the complex non-stationary pattern 

in choice behavior that is implied by the optimal rule and that we noted earlier when commenting 

on Figure 1.  That is, both rules generate the drop in choice frequency for option “1” to a trough 

in round 3, and the gradual rise to a peak later in the game.  Rule one gets the timing of the peak 

exactly right (round 11), while rule two misses the peak slightly.      

 Rule three diverges in much more obvious ways from the RE rule.  Interestingly, it tracks 

the RE rule quite closely for the first three rounds.  It generates a similar high frequency for 

option “1” in round one, and the sharp drop off to a trough in round 3.  However, under rule 

three, the fraction choosing “1” does not recover later in the game.  By the sixth round rule three 

finds only half of the subjects in alternative “1,” while the other rules lead about 75% of the 

subjects to make this choice. 

A critical point is that myopic play differs substantially from all the other rules.  As we 

saw in Table 2, all three types set a reservation payoff differential close to the optimal level of 

3733 in round 1, and hence they all choose option “1” at close to the optimal frequency of 79% 

in the first round.  Under myopic play, only 40% of subjects would choose option “1” in the first 

round, since it has a lower median payoff.  Thus, all three types recognize that there is an 

investment component to the choice of option “1,” and hence they all set positive values for the 

reservation payoff differential between “1” and “2.” 

 The myopic rule does generate a drop in choice frequency for option “1” over the first 

three rounds, just like the RE rule.27  But, unlike the RE rule, the myopic rule does not generate 

the subsequent gradual rise in the fraction choosing “1” toward a peak in round 11.  It generates 

a fraction choosing “1” that stabilizes at about 20% from period 3 onward.  It is interesting that 

the type three rule also fails to generate the gradual increase in the frequency of “1” after round 
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three, just like the myopic rule.  Thus, it seems that type three subjects play close to optimally at 

the start of the game, but behave more myopically as the game progresses.28 

 A good way to gain greater insight into the behavioral implications of the different 

decision rules is to compare the features of the estimated future components graphically.  An 

important aspect of our procedure is that, by providing estimates of the future component for 

each type, it allows the investigator to perform such a graphical comparison. 

Figure 5A graphs the reservation payoff differentials for each type at selected state 

points.  Values are plotted for round one (when there is only one possible state point) and for 

round five (when there are four possible state points, since a subject could have chosen option 

“1” either 0, 1, 2, 3 or 4 times by the start of round five).  In each case the vertical axis denotes 

the value of the reservation payoff differential.  Larger values indicate that option “1” has a 

larger continuation value relative to option “2,” so a greater current payoff differential is needed 

to induce choice of “2.”  The horizontal axis indicates the number of times alternative one was 

previously chosen, which is the only state variable relevant for calculating the reservation payoff 

differential.   The figure also graphs the reservation payoff differential under the RE rule for 

comparison purposes.  

   Consider first the type one subjects, who are described in the top panel of Figure 5A.  We 

see that the reservation payoff differential for type ones is about right in round one.  In round 

five, note that the reservation payoff differential is declining in the stock of “experience” in 

option “1.” This pattern holds both for type one subjects and under the RE rule.  Also, note that, 

holding the number of prior choices of “1” fixed at zero, the reservation payoff differential grows 

from 3733 to about 6000 as we move from round one to round five.  Intuitively, this occurs 

because, as rounds go by, time is growing short to accumulate the six choices of “1” needed to 

                                                                                                                                                             
27 This occurs because the drop is driven by the current payoff structure.  Since there is a transition cost for moving 
into “1” from “2,” but not vice versa, the median payoff for option “1” drops in round two (because some people 
chose “2” in round one) and so on. 
28 The astute reader may notice an apparent contradiction between the behavior of the type three subjects in Figure 4, 
compared to the behavior of type threes described in Figure 2 and Table 3.  Figure 4 implies that type threes choose 
“1” much less often than other types.  But Table 3 indicates that type threes chose “1” more often than type twos. 
Figure 2 indicates that type threes chose “1” particularly often in rounds 5-7.  What is going on here is that actual 
type three subjects were “lucky” in that they got statistically significantly better than average draws for “1” in 
rounds 5-7.  This induced them to chose “1” very frequently in those rounds. But Figure 4 reveals that, if faced with 
the same draws as other types, type threes would choose “1” much less frequently.  This resolves the apparent 
contradiction.  We will have more to say about these lucky draws for type threes in section V.D, where we ask 
whether the draws subjects received may have influenced the type of decision rule they adopted. To anticipate that 
discussion, we find no evidence of this. 
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reach the bonus phase.  So the urgency to choose option “1” is growing.  The type one subjects 

appear to understand this very well.  They get the reservation payoff differential almost exactly 

right at state points X1=1, �, 4 in round 5. They appear to be a bit off at X1=0, but this estimate 

is noisy due to limited data at that point (i.e., type one subjects are very unlikely to get to round 

five without having chosen option “1” at least once). 

Figure 5B provides similar information for rounds 9 and 13.  Again consider the type one 

subjects, who are described in the top panel.  The close agreement between their fitted decision 

rule and the RE rule is again quite remarkable, with one important exception.  If a subject is in 

round 9 and has chosen option “1” either 6, 7 or 8 prior times, then that subject is in the bonus 

phase of the game, in which the option “1” base payoff is raised 7500 points.  Recall that the 

bonus phase lasts until the subject has chosen option “1” four more times – not necessarily 

consecutively.  Thus, there is an option value to choosing option “2,” because it prolongs the 

bonus phase.  As a result, the reservation payoff differential goes negative at this point according 

to the optimal (RE) rule.  That is, one should actually demand a premium to choose option “1.”  

As we see in Figure 5B, the type one subjects do not understand this.  They continue to set a 

small but positive reservation differential during the bonus phase.29   

One might suspect that the failure of the fitted decision rule to align well with the RE rule 

in period 9 at states X1=6, 7, 8 merely stems from a failure of our polynomial approximation to 

the future component in this range.  But an inspection of the individual level data suggests that 

this is not the case.  In fact, once the bonus phase is under way, no subject in our entire data set 

ever chooses option “2,” even when it is optimal to do so.  Thus, the failure to understand the 

option value of “2” during the bonus phase is clearly a feature of the data, and our polynomial 

approximation to the future component is accurately reflecting this feature.  [In fact, this finding 

illustrates well the power of our approach.  We certainly would not have thought to look for this 

pattern in the data unless Figure 5B had pointed us toward it.]    

 Based on the evidence presented so far, we decided to label the type one subjects as 

“Near-Rational.”  They use a decision rule that is nearly identical to that of hypothetical RE 

subjects, except during the bonus phase, when they fail to grasp the option value of “2.”  But this 

failure only costs them about a 2.3% loss in earnings, on average, relative to what they could 

                                                 
29  In figure 5B, in round 13, the option value argument also applies to the X1=8,9 observations, and type one 
subjects again fail to recognize this.  
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have earned by playing exactly optimally.  Understanding the investment value of “1,” and how 

this varies over states, is much more important for overall success in this game, and the type one 

subjects grasp this feature of the game very well.     

Now consider the type two subjects, whose behavior is described in the middle panels of 

Figures 5A and 5B.  Figure 5A indicates that these subjects value alternative “1” in about the 

same way as RE subjects in the first round of the game.  However, by round five it is apparent 

that their reservation payoff differentials differ from the RE values in both level and shape.  

While the RE future component assigns less value to option “1” as experience in “1” increases, 

type two subjects do exactly the opposite. 

    Based on this inversion in the shape of their future component, we decided to label the 

type two subjects “Fatalists.”  The reason is as follows:  If type two subjects don’t choose option 

“1” many times in the early part of the game (say, because they happen to get a set of good 

payoff draws for option “2”), they reduce their reservation payoff differential for choosing “2” 

rather than increasing it.  Thus, just when they should be increasing the urgency with which they 

attempt to choose “1,” they instead reduce it.  This means, in effect, that if they don’t happen to 

choose “1” a few times early in the game, they start to “give up” on reaching the bonus phase.   

In contrast, suppose a type two does happen to choose “1” a few times early in the game 

(say, because he/she happens to get some good payoff draws for option “1”).  The optimal rule 

says to reduce the reservation payoff differential, because, loosely speaking, you can now “relax” 

because you will almost surely get to the bonus phase before the end of the game even if you 

choose “2” the next few rounds.  But a type two acts differently.  He/she shows a greater urgency 

to chose “1” if he/she has already chosen it a few times in the first few rounds.  This means, in 

effect, that once the bonus phase appears to be easily “within reach,” type two subjects strive 

harder to reach it. 

 This behavioral pattern seems to be well described by “fatalism,” meaning that type two 

subjects assign too much significance to the luck of the draw in determining the outcome of the 

game.  They fail to appreciate that by properly modifying the reservation payoff differential as 

the state evolves, one can almost guarantee that one will reach the bonus phase and get through it 

completely before the end of the game.30     

                                                 
30 In fact, 94% of the hypothetical RE subjects complete the bonus round (as do 94% of the “Near-Rational” actual 
subjects), compared to only 69% of the “Fatalists.”   

 30



 Finally, we turn to the type three subjects, whose behavior is described in the bottom 

panels of Figures 5A and 5B.  As we have already noted, type three and RE subjects have about 

the same reservation payoff differential in first round.  What is interesting is the difference that 

emerges in round five.  The type threes let their reservation payoff differential for choosing “2” 

decline much too rapidly as they accumulate experience in “1.”  Then, in round nine, their 

reservation payoff differential is much too small all states in which X1<6 (i.e., before the bonus 

round has started).  It appears that type three’s very quickly become overconfident about 

reaching the bonus phase if they happen to choose “1” a few times early in the game.  And then 

they seem to largely forget about the investment value of option “1” by round nine.  In light of 

this pattern, we decided to label the type three subjects “Confused.” Also consistent with this 

characterization is that the optimization error standard deviation for type threes is much larger 

than for the other types (see Table 2). 

 

V.D.  Addressing Some Common Concerns 

 We have heard two common concerns expressed regarding latent type classification 

algorithms in general, and our type assignments in particular.  The first is a general concern that 

arises out of prior work by Heckman and Singer (1984).  In a Monte-Carlo study of duration 

models with latent discrete types, they found that the estimated type specific parameters were 

rather poorly estimated, even though the model fit behavior well at the aggregate level.  This has 

generated a folklore to the effect that one shouldn’t take the types one estimates in latent class 

models “too seriously.”  A related claim is that latent type models typically underestimate the 

true number of types that exist in a population. To help dispel these concerns, we present two 

Monte-Carlo experiments, which show that our algorithm does do a good job of accurately 

uncovering the latent types that exist in a population. 

In the first experiment, we generated a hypothetical sample of 139 subjects, using the 

estimated decision rules and type proportions from Table 2.  In the second experiment, we 

constructed an artificial sample of N=200 in which 5 decision rules are operative, and type 

proportions are 20% each.  The 5 rules include the three rules from Table 2, along with two new 

rules.  We added a myopic type, for whom the future component is exactly zero.  And we added 

a “future oriented” type.  They have double the intercept of the “Near-Rational” future 

component (and the remaining �  values set to zero). Given these parameter values, this type *
k

 31



strongly prefers to choose “1.”  The Gibbs sampler was run on each sample, using the same 

baseline prior as we described in section IV.B, and using P=3.  The results of this exercise are 

reported in Table 4 and Figure 6. 

In Table 4, note that the marginal likelihood correctly chooses the three type model on 

the three type data set, and the five type model on the five type data set.  The results in Figure 6 

indicate that the models assign subjects to the correct type with a reasonably high degree of 

accuracy.  For example, in the three-type model, the Near-Rational subjects are assigned to the 

Near-Rational decision rule with a posterior probability of 70% on average.  We also found that 

the estimated decision rules for each type closely resembled the actual decision rules used to 

generate the data, but we do not report the large number of type specific polynomial parameters 

to conserve on space.  What drives the difference between our results and those of Heckman and 

Singer is that our experiment is structured to be much more informative about a subject’s type 

(i.e., we observe 15 choices for each subject while they consider only search durations).     

Another concern that we have often encountered is more particular to our specific 

experiment.  The concern is that the draw sequence that a subject receives may somehow make 

him/her appear to be a particular type.  For example, a person who was lucky enough to get all 

good draws for option “1” would never face a “tough” decision where the RE rule says “1” is 

optimal even though “2” has a considerably higher payoff.  It would then be “easy” for this 

person to make optimal decisions.  But such an argument shows a misunderstanding of both our 

classification algorithm and the game.  First of all, our algorithm would not clearly classify such 

a person as “Near-Rational.”  Give such a history, the likelihood of this person’s draw sequence 

would be high under any type.  Thus, our classification algorithm would conclude that the data is 

uninformative, and the person’s type classification would be ambiguous.  Second, given the 

length of the game, such a scenario is highly unlikely.  Since the game is 15 rounds, and payoff 

draws are iid, almost every subject faces at least a few “tough decisions” where the RE rule 

implies the two alternatives have close to the same value, even though one may have a much 

better current payoff than the other.  This point will be emphasized by some example individual 

choice histories we present in the next section. 

We can also examine directly whether the type of draws that subjects received tended to 

differ by type.  In Table 5 we report the mean draws for option “1” and “2” among subjects who 

were classified as each of the three types.  If, for example, the “Near-Rational” types tended to 
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get relatively good draws for option “1” and poor draws for option “2,” making it “easy” for 

them to choose “1” frequently and hence reach the bonus phase, this would show up when we 

look at the mean draws.  In fact, the only significant departure from mean zero draws was among 

subjects classified as “Confused.”  These subjects actually got relatively good draws for option 

“1” and poor draws for “2,” although the latter is not significant.  We interpret this as simply a 

chance outcome.31  It is hard to develop a story in which getting good draws for option “1” 

would make the game harder and somehow induce poor play.  If anything, the fact that type three 

subjects were somewhat lucky and got better than average draws for “1” makes it even more 

mysterious they chose “2” far too often, adding to the impression that they were “Confused.” 

One might also wonder if draws in early rounds are particularly important. For example, 

perhaps a subject who gets good draws for “1” in the first few rounds will start down the path of 

investing, while a subject who gets good draws for “2” early will become myopic.  To address 

this concern we ran logits for whether a subject was one of the three types on the subject’s draws 

in the first few periods.  Early draws were not significant predictors of type.      

 

V.E.  Examination of the Individual Level Data    

Having classified subjects into types, we can now examine the individual behavior and 

individual characteristics of the subjects classified as each type.  This serves two purposes. First, 

it helps give face validity to the type assignments, and second, it enables us to learn more about 

each type.   

Appendix C provides some example subject choice histories that we felt were particularly 

illustrative of the nature of the game and of our conclusions.  Consider the data for subject 

number 8, who our algorithm classifies as type one (i.e., “Near-Rational”).  This person 

happened to get very good draws for option “2” in rounds 2 through 6, making it optimal to 

choose “2” in each of those rounds.  Note that the choice in round 6 was very difficult.  The 

optimal reservation payoff differential for choosing “2” was 5921 (i.e., about 60 cents).  The 

draw generated a payoff for option “1” of 1807 points.  Thus, “2” would have been the optimal 

choice only if the draw for “2” exceeded 7728 points.  The actual payoff draw for “2” was 7828, 

which barely exceeds the reservation level.  Subject 8 made the optimal choice.  This meant that 

                                                 
31 The fact that type three subjects got relatively good draws for “1” explains the fact that in Figure 4, when the 
estimated type three decision rule is confronted with typical draws, it implies choice of “1” at a lower frequency 
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he/she got to period 7 with only 1 unit of accumulated experience in “1.” Hence, the urgency for 

choosing “1” became substantial, and the optimal reservation payoff differential jumped to 

10070 (i.e., about a dollar).  Subject 8 then chose “1” in rounds 7 through 11, enabling him/her to 

reach round twelve with the requisite 6 units of accumulated experience in “1.” Thus he/she was 

just able to get in the four bonus periods in rounds 12 through 15.  This subject played exactly 

the RE choice sequence, which is quite impressive given the difficulty of the round 6 choice.  

We also show the data for subject number 104, who our algorithm also classifies as type 

one (i.e., “Near-Rational”).  This subject reaches the bonus phase in period 11.  Since the bonus 

phase lasts until “1” is chosen 4 more times, and since 5 rounds remain in the game, there is an 

option value to choosing “2” at that point.  Thus, note that the reservation payoff differential 

actually turns negative.  Subject 104 failed to make the optimal choice in round 14.  He/she 

chose “1” even though its payoff was only 5 cents higher than “2.”  Optimal play was to choose 

“2,” thus extending the bonus phase and hoping for a better draw for “1” in round 15.  Thus, 

subject 104 illustrates the failure of subjects to appreciate option values in this context.  

Nevertheless, subject 104’s behavior is reasonably described as “Near-Rational.”  His/her error 

in round 14 led to an expected loss of less than 5 cents, and this subject made some fairly 

difficult correct decisions earlier in the game (see especially rounds 6 and 7).32   

Of our 139 subjects, 11 played exactly the “optimal” choice sequence implied by the RE 

decision rule.  The fact that only 8% of subjects played exactly optimally illustrates the difficulty 

of the game.  All 11 of these subjects were classified as type one by our algorithm.  Another 11 

subjects who were classified as type one departed from the RE rule but actually earned more than 

a hypothetical RE subject.33  Subject 104, who we discussed above, is one of these.  Thus, of the 

51 total subjects classified as the “Near-Rational” type, 22 either followed the RE rule exactly or 

departed from the rule but actually beat the RE payoff.         

We also provided an exit interview to subjects after the experiment.  Participation was 

voluntary, and only about a third of our subjects responded.  The questionnaire is reproduced in 

                                                                                                                                                             
than the type threes actually exhibited (see Table 3 and Figure 2).  We commented on this in footnote 28.   
32 Ex post, subject 104 got lucky. The draw for option “1” was even worse in round 15.  Thus, by playing sub-
optimally, subject 15 beat the RE payoff. 
33 There were five other subjects in the experiment who departed from the “optimal” choice sequence and beat the 
RE payoff.  Three of these were classified as type two and two were classified as type three.  Of course, it is to be 
expected that, occasionally, some subjects will play clearly sub-optimally but nevertheless achieve better than 
optimal payoffs, simply due to luck.  It is worth noting that our algorithm recognizes the sub-optimality of such 
subject’s choices, even though they result in high payoffs. 
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Appendix D.  It is interesting to compare the answers that subjects of different types provided.  

In the survey, subjects were asked whether they followed a particular strategy and, if so, to 

describe it.  Not all subjects indicated they were following any particular strategy.  However, 

conditional on reporting a strategy, the classification often seems reasonable.  The type one 

subjects who reported a strategy typically gave sensible answers that indicated some awareness 

of the investment value of choosing alternative “1” early in the decision problem.  For example, 

one subject responded, “Choose 1 unless 2 is very high.”  Another said, “My strategy was to give 

myself the opportunity to have the bonus in the payoff period.” 

 In contrast, many subjects who were classified as type three gave responses that indicated 

confusion about the nature of the decision problem.  One explained that he/she attempted “to 

keep choosing 2, or amount of 5-7 dollars in average.  Keep choosing 1 for more profit, but 

maybe less profit too.”  Another indicated that he/she made an effort to “Push 1 several times in 

the first 10 periods, and then choose the bigger payoff after that.”  Yet another said that his/her 

goal was to, “choose 1 at least 9 times in a row.”  Answers indicative of confusion were much 

more apparent among type three subjects than either type one or type two subjects.  Thus, it does 

seem reasonable to label the type threes as “Confused.”  

 Finally, it is interesting to examine the data on practice rounds, which we present in 

Table 6.  A dogmatic defender of complete rationality might well argue that all subjects were, in 

principle, capable of solving such a decision problem, and that those who performed poorly in 

the game were simply not trying.  This might occur because the expected rewards to good 

performance were too small (i.e., just a few dollars) to elicit substantial effort.  In Table 6, we 

see that the mean number of practice rounds is 66 (the median is 58). This fact is in itself 

significant, because it suggests that the typical subject devotes a substantial amount of time to 

practice.  Given that it takes roughly 45 to 60 seconds to play the game, the typical subject is 

devoting roughly 45 to 60 minutes to practice.    

Even more interesting is the ordering of practice rounds by type.  “Near-Rational” 

subjects practiced 58 times on average, while “Fatalists” practice 69 times and “Confused” 

subjects practice 75 times.  The medians were 48, 59 and 69, respectively.  Thus, the subjects 

who perform worst in the experiment actually devoted the most effort to practice. It therefore 

appears difficult to rationalize their poor performance by lack of effort. 
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Figure 7 presents data on the entire cumulative distribution of practice rounds by type. 

Note that only a small fraction of “Confused” subjects devoted little time to practice.  For 

instance, only about 8% practiced less than 25 times, and only about 12% practiced less than 40 

times.  Among the “Near-Rational” subjects, a small number of practice rounds was much more 

common.  About 15% practiced less than 20 times, and about 30% practiced less than 40 times.  

This shows clearly that those subjects who put in the least effort, in terms of number of practice 

rounds, also tended to be the ones who did best in the experiment.  

 
VI. Conclusion 

 
We have described a new Bayesian procedure for classification of subjects into decision 

rule types in choice experiments.  We report two Monte-Carlo experiments in which the 

procedure does an excellent job of identifying both the number of nature of the decision rules 

that were operative in a hypothetical population of subjects.  And it produced quite accurate 

assignments of the hypothetical subjects into their respective types. 

We also applied the procedure to data from a particular experiment on choice behavior in 

a dynamic optimization setting.  The procedure produced a clear classification of the subjects 

into three behaviorally distinct types.  The three-type specification appeared to have considerable 

face validity, given inspection of the individual level data, and the characteristics of subjects 

classified into each type. 

More than a third of the subjects in our experiment followed a rule very close to the 

rational expectations (expected wealth maximizing) rule.  We label these subjects “Near-

Rational,” since their play resulted, on average, in only about a 2% payoff loss relative to 

optimal play. Another 40% of our subjects played according to a sub-optimal rule that resulted in 

a 12% payoff loss on average.  We labeled these subjects “Fatalists,” because their behavior 

implied too much reliance on the luck of the draw and a failure to appreciate the extent to which 

payoffs in the game were a controlled stochastic process.  About a quarter of our subjects 

performed substantially less well, following a rule that earned about 19% less than the optimal 

strategy on average.  We label this the “Confused” type.  Confusion in other experimental 

environments is well documented (see, e.g., Andreoni (1995) or Houser and Kurzban (2002)), 

and our results suggest that it exists in dynamic decision problems as well. 
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We were surprised that more than a third of our subjects were able to “learn” to play 

nearly optimally in a very difficult dynamic problem after about a half hour of practice (on 

average).  Even more surprising was the data on practice rounds.  This indicated that almost all 

subjects devoted considerable effort to learning to play the game, and that those subjects who 

practiced least tended to perform best. 

Our work raises two interesting questions that we will investigate in future work on 

dynamic choice behavior.  One is whether the “fatalistic” type behavior that we uncovered is 

common in other dynamic stochastic choice problems.  A second question is whether the notion 

of an option value is generally much harder to understand than that of an investment value.  All 

the subjects in our experiment understood, at least to some extent, the notion of an “investment 

value” of a choice.  That is, all subjects chose options that had low current payoffs, but that 

raised future expected payoffs, far more often than would myopic subjects.  But not even the best 

performing subjects showed any understanding of the notion of an “option value.”  That is, no 

subject ever declined a high payoff alternative in order to defer the option of choosing it to a 

future round.  In future work, we will examine whether the notion of an option value becomes 

more salient if the rewards to understanding the concept are increased.  

The Bayesian procedure for decision rule classification that we have described in this 

paper can be applied in many settings other than that illustrated by our particular dynamic choice 

experiment.  For instance it could be used to model decision rules in strategic games, in which 

case the polynomial approximation to the continuation value would typically include state 

variables characterizing the play of other subjects.  Our method could be used to study learning 

by analyzing data in which subjects play for money after varying amounts of practice. And, the 

method could be applied to field as well as experimental data.  In each of these cases, the 

investigator would learn in a flexible way about the number and nature of decision rules at work 

in a population.34   

Our finding that behavioral heterogeneity is important in experimental data is consistent 

with prior results.  For instance, El-Gamal and Grether (1995), in their experiment on Bayesian 

learning, found evidence that subjects fell into three types: Bayesians, conservative Bayesians, 

                                                 
34  Of course, in field data, differences in observed decision rules could stem from differences in preferences as well 
as differences in decision-making heuristics.  Moreover, there might also be heterogeneity in the nature of the 
problem people solve in the field (e.g., in terms of constraints or the information available).  In the experimental 
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and those who followed the representativeness heuristic.35  Given the accumulating evidence that 

decision rule heterogeneity is important in laboratory environments, we believe it is reasonable 

to suspect that such heterogeneity is also important in field data.  We believe that developing 

empirical strategies to investigate and determine the implications of such heterogeneity for 

policy and welfare analysis provides an important research agenda.36 

                                                                                                                                                             
laboratory the researcher is able to exercise control over both period return functions and the nature of the problem 
that subjects are supposed to solve, thus more clearly isolating the sources of any behavioral heterogeneity. 
35 Typing has also been attempted in other experimental environments, such as the public goods game (see, e.g., 
Gunthorsdottir, Houser, McCabe and Ameden (2000)) and extensive form “trust and reciprocity” games (see, e.g., 
McCabe, Houser, Ryan, Trouard and Smith (2001)). 
36  In applied work using field data it has become common to allow for heterogeneity in subject’s decision rules.  
But, if we examine work in structural econometrics, the heterogeneity always enters through agents’ preferences or 
constraints.  For instance, Keane and Wolpin (1997) allow for heterogeneity in skill endowments, tastes for leisure 
and tastes for school attendance.  Structural econometricians typically invoke strong expectational assumptions (e.g., 
all agents have rational expectations), so the possibility of heterogeneity in how agents solve the decision problems 
they face is not admitted.  One advantage to learning more about how people actually behave in games and decision 
problems in the laboratory is that this information might eventually be useful as a guide to theoretical and 
econometric specifications. 
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Appendix A: Numerical Procedure for Calculating Marginal Likelihood Values 
 

We estimate the marginal likelihood for each of our candidate models using the 
procedure developed by Lewis and Raftery (1997). Their algorithm combines posterior 
simulation with the Laplace-Metropolis estimator.  

The marginal likelihood value for a model, which we denote by g(� ), is the integral of the 
model’s likelihood function with respect to the model’s prior.  For the model we present in 
Section IV, the marginal likelihood is: 
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where KPM indicates a model that allows for K types of subjects, in which the order of the 
polynomial F is P, and in which the prior is p(� |MKP).  Dropping the notational dependence on 
the model, and letting �  denote the parameter vector and D  the vector of observed decisions, 
this can be written 
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The Laplace method generates the following approximation for the marginal likelihood: 
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where �  is the value of �  at which  attains its maximum (i.e., the 

posterior mode),

* �( ) log ( ) ( | )h p D� �� L
*H is minus the inverse Hessian of  evaluated at �  and  is the dimension 

of the parameter space.  Taking logarithms, this can be rewritten as 
h *, �

 

(A1) � � � � �* *1log{ ( )} log{2 } log | | log ( ) log ( | ) .
2 2
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Lewis and Raftery (1997) call this the Laplace-Metropolis estimator. This estimator is attractive 
because the quantities �  and * *H  can both be easily derived from Gibbs sampler output.  To 
determine� we evaluated  at each draw from the posterior simulation, and chose that 
parameter vector for which  was the largest.  The quantity 

* (h �

h
)

( )� *H  is asymptotically equivalent 
to the posterior variance matrix, so one may use the sample covariance matrix of the simulation 
output as an estimate of its value.  

The marginal likelihood tends to favor more parsimonious models for the following 
reason: If we increase K and/or P then the prior is specified over more parameters.  Thus, ceteris 
paribus, the prior mass in the vicinity of any particular parameter vector (such as the posterior 
mode, �*) will fall.  This tends to reduce the value of (A1), inducing an implicit penalty on added 
parameters. 
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Appendix B.  An exact transcript of the written instructions provided to subjects 
 

Instructions  
Thank you for coming today.  This is a study of individual decision making, for which you will 
earn cash.  The amount of money you earn depends on your decisions, so it is important to read 
and understand these instructions.  All the money that you earn will be awarded to you in cash 
and paid to you privately at the end of the experiment.  The funding for this experiment has come 
from a private research foundation. 

The experiment lasts for 15 periods.  Each period you will choose between two 
alternatives, which will be called ‘1’ and ‘2’.  Each alternative has a payoff which is shown on 
the left-hand side of the screen.  If you choose ‘1’ you earn the payoff associated with ‘1’, and if 
you choose ‘2’ you earn the payoff associated with ‘2’.  The payoff for each alternative will be 
shown to you before you make your choice.  At the end of the experiment, you will be awarded 
an amount of cash equal to the sum of your 15 chosen payoffs.  Your choices are private:  do not 
discuss them with anyone else in the room. 

The future payoffs offered for alternative ‘1’ depend on the previous choices that you 
made.  The future payoffs offered for alternative ‘2’ do not depend on any of your previous 
choices.  No payoff will ever be less than zero.  The specific structure of payoffs is as follows: 
 
 Payoff per period for alternative ‘1’: 
 
 Base Pay:  3,000 
 
                     0 if you have chosen “1” 0, 1, 2, 3, 4, or 5 previous times 
 Bonus:              7500 if you have chosen “1” 6, 7, 8 or 9 previous times 

       0 if you have chosen “1” 10, 11, 12, 13 or 14 previous times  
 

Costs:  A cost of 5000 will be incurred if you chose ‘2’ the previous period,  
otherwise none. 

 
Lottery: Random draw that takes value between -5000 and 5000 with equal chance.  

 
Total payoff: (Base Pay + Bonus - Costs +/- Lottery), or 0, whichever is bigger. 

 
Payoff per period for alternative ‘2’: 

 
 Base Pay:  4,000 
  

Bonus:  None 
 

Costs: None 
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Lottery: Random draw that takes value between -5000 and 5000 with equal chance.  
 

Total payoff: (Base Pay + Bonus - Costs +/- Lottery), or 0, whichever is bigger. 
 
 The payoff structure will be shown to you on the screen for easy reference.  Your screen 
will also include a green window called ‘Summary’, which will show you the total number of 
periods in the experiment (15), the current period, your accumulated payoffs, the number of 
times you have chosen ‘1’, the number of times you have chosen ‘2’, and the choice you made 
the previous period.   

The right hand section of the screen details the history of the payoffs of each alternative, 
and the choice you made, by period.  Finally, you will see in the bottom left hand side of the 
screen a red window which describes the current period’s payoff choices. 

You will be paid $5 for attending the first day, another $5 for attending the second day, 
plus any earnings from the decisions you made on the second day.  You will receive all of your 
payments at the end of the second day. 

The first day you can practice as much as you like.  The second day, when you are ready, 
you may play one time for money by pressing the “Play for Money” button in the bottom left 
hand side of the screen (you will only see this button on the second day).  If you have a question 
raise your hand and an experimenter will come to answer.  We cannot tell you which decision is 
‘best’ for you.  Your decisions are entirely up to you. 
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Appendix C.   Example choice histories 

 
 

Period
Unconditional 

RE Choice
Conditional 

RE Choice
Actual 
Choice

Experience in 
Alternative 1

Reservation 
Payoff 

Differential

 Reservation 
Payoff for 

Alternative 2
Alternative 1 Alternative 2

1 1 1 1 2749 0 0 3733.05 6482.05
2 2 2 2 3173 7707 1 3601.55 6774.55
3 2 2 2 0 5577 1 3873.12 3873.12
4 2 2 2 1115 7804 1 4538.13 5653.13
5 2 2 2 0 6414 1 4927.4 4927.4
6 2 2 2 1807 7828 1 5921.1 7728.1
7 1 1 1 0 779 1 10070.09 10070.09
8 1 1 1 682 1786 2 10045.29 10727.29
9 1 1 1 1932 6167 3 10068.25 12000.25

10 1 1 1 1061 4134 4 10088.79 11149.79
11 1 1 1 0 4662 5 10106.35 10106.35
12 1 1 1 9730 1594 6 4875.82 14605.82
13 1 1 1 15062 2181 7 4819.64 19881.64
14 1 1 1 10824 8791 8 4026.49 14850.49
15 1 1 1 8339 115 9 0 8339

Subject 8, Type 1, "Near-Rational"

Payoff

Total payoff (points):  85709
RE payoff (points):     85709

 
 

Period
Unconditional 

RE Choice
Conditional 

RE Choice
Actual 
Choice

Experience in 
Alternative 1

Reservation 
Payoff 

Differential

 Reservation 
Payoff for 

Alternative 2
Alternative 1 Alternative 2

1 1 1 1 5025 7733 8758.05 0 3733.05
2 2 2 2 0 5328 3601.55 1 3601.55
3 1 1 1 0 2774 3873.12 1 3873.12
4 1 1 1 5705 394 9468.09 2 3763.09
5 2 2 2 707 8467 4266.79 3 3559.79
6 2 2 2 0 5076 4171.17 3 4171.17
7 2 2 2 0 5470 4608.14 3 4608.14
8 1 1 1 1794 291 7315.73 3 5521.73
9 1 1 1 5203 6386 10533.15 4 5330.15

10 1 1 1 0 0 5059.3 5 5059.3
11 1 1 1 12212 4594 12124.71 6 -87.29
12 1 1 1 6153 2780 6032.72 7 -120.28
13 1 1 1 9426 193 9109.75 8 -316.25
14 2 2 1 9873 8960 8499.18 9 -1373.82
15 2 2 2 3649 7323 3649 10 0

Subject 104, Type 1, "Near-Rational"

Payoff

Total payoff (points):  87055
RE payoff (points):     86142
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Appendix D.  Questions asked in the post-experiment questionnaire 

 

Answers to these questions were voluntary, and subjects were not paid to complete this 

questionnaire. The questions were as follows: 

 

1. How old are you? 

2. What is your academic classification (i.e., freshman, sophomore, junior, senior, grad 

student, special student, etc…)  

3. Are you male or female? 

4. What is your major? 

5. What is your grade point average? 

6. What is your ethnicity? 

7. Approximately how many minutes did you practice last time? 

8. Approximately how many minutes did you practice today? 

9. Did you use a particular strategy when playing for money? 

10. If you had a strategy, briefly describe it 
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. 
Table 1: Model Selection Based on Marginal Likelihood Values 

 
 
 
Marginal Likelihoods under Baseline Prior 
 
  Order of Future Component             

Number of Types P=3 P=4 P=5 
1 -1712 -1721 -1736 
2 -1451 -1364 -1442 
3  -1224  -1277 -1369 
4 -1312 -1342 -1449 
    

Prior Sensitivity 
A. Prior Std. Dev. Of �* Reduced 50% 
Types P=3 P=4 P=5 

1 -1708 -1704 -1728 
2 -1445 -1373 -1420 
3  -1213  -1271 -1347 
4 -1275 -1316 -1370 
    

B. Prior Std. Dev. Of �* Increased 50% 
Types P=3 P=4 P=5 

1 -1731 -1707 -1741 
2 -1459 -1366 -1502 
3  -1231  -1282 -1439 
4 -1297 -1286 -1437 
    

C. Prior on �2 Scaled Up 
Types P=3 P=4 P=5 

1 -1706 -1716 -1731 
2 -1442 -1363 -1432 
3  -1209  -1263 -1355 
4 -1285 -1319 -1429 

 
Note: The preferred model under each prior is highlighted in bold.  
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Table 2:  Prior and Posterior Means and Standard Deviations 
 of Future Component Parameters 

 
 Prior Distribution Type 1:  N=51 

“Near-Rational” 
Type 2:  N=55 

“Fatalist” 
Type 3:  N=33 

“Confused” 
 Mean SD Mean SD Mean SD Mean SD

*
0� : Intercept 0.0 2x104 4259.21 108.60 3478.47 209.06 3711.68 476.31
*
1� : X1 0.0 103 -4.42 22.51 411.33 38.00 -429.17 82.87
*
2� : X2 0.0 103 92.57 42.90 276.70 49.67 -447.22 120.54
*
3� : X1^2 0.0 102 -29.29 1.49 -32.47 2.85 -16.97 5.82
*
4� : X2^2 0.0 102 -73.35 5.39 -3.57 2.38 -2.89 6.98
*
5� : X1*X2 0.0 105/2 -86.00 2.47 -1.17 4.92 -103.36 11.61

�
� : Optimization      
      error 

Not 
Defined 

Not 
Defined

208.91 58.43 863.81 29.50 2270.96 78.73

:k� population            
     type probability 

0.33 0.18 0.36 0.06 0.40 0.06 0.25 0.05

 
Note: “X1” Denotes experience in alternative “1,” and “X2” denotes experience in alternative “2.”  
The round is not included as a state variable in the polynomial since it is perfectly collinear with X1 
and X2.  Lagged choice is not included because it drops out of the differenced future component 
(and is subsumed in the constant).
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Table 3:  Descriptive Statistics for the Play of Each Type 

Type 1: Type 2: Type 3:
"Near-Rational" "Fatalist" "Confused"

Number (percent) of subjects    51 (37%)  55 (40%)    33 (24%)
Mean earnings (points) 87983 80811 75966

Mean earnings under RE (points) 90047 91546 93316
Percent loss relative to RE 2.3% 11.7% 18.6%

SD of earnings 9620 13727 14189
Number who earn at least as much as RE 

subjects 22 3 2

Number who earn exactly as much as RE 
subjects 11 0 0

Mean number of times alternative "1" is 
chosen 11 9.2 9.6

Number who complete all bonus rounds
48 (94.1%) 38 (69.1%) 12 (36.3%)

 
  Note: “Mean earnings under RE” reports the mean earnings for hypothetical subjects who follow the optimal (expected wealth 

maximizing) decision rule, given that they face the same draws for the stochastic component of payoffs as did the actual subjects.    
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Table 4: Marginal Likelihoods of Various Models Using Simulated Data 
 

Number of 
Distributions in 

Mixture
3-Mixture 
Simulation

5-Mixture 
Simulation

1 -1388 -2651
2 -826 -2000
3 -604 -1359
4 -802 -1113
5 -NA- -1039
6 -NA- -1052

 
 
 
 

Table 5: Mean Value of Draw by Alternative and Type 
 

Posterior Type 
Classification

Draw for 
Alternative 1

Draw for 
Alternative 2 Difference (1-2)

Near-Rational 108 33 75
(0.29) (0.75) (0.59)

Fatalist 31 99 -69
(0.76) (0.34) (0.64)

Confused 269 -58 327
(0.05) (0.64) (0.08)

 
Note: p-values for two-sided t-test that mean is zero are in parentheses. 

 
 
 

Table 6: Practice Rounds by Day and Type 
 

Type N Day 1 Practice Rounds Day 2 Practice Rounds Total Practice Rounds
Mean Median Min Max Mean Median Min Max Mean Median Min Max

Near-Rational 49 43 29 0 166 15 14 2 44 58 48 6 180
Fatalist 50 52 42 0 195 17 12 2 95 69 59 4 201

Confused 25 54 46 1 131 21 18 2 50 75 69 3 154
All 124 49 38 0 195 17 14 2 95 66 58 3 201

 
Note:  The file containing practice round data for 15 of our 139 subjects was inadvertently 
deleted.  This table reports data for the remaining 124 subjects. 
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Figure 1:  Fraction of Alternative One Choices by Round for Actual 
Subjects and their Rational Expectations Counterparts 
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Figure 2: Fraction of Actual and Simulated Alternative One Choices 
by Round for Each Type 
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Figure 3:  Aggregate Fraction of Alternative One Choices by Round 

for Actual Subjects and their Simulated Counterparts 
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Figure 4:  Fraction of Alternative One Choices Under Simulations of 
Various Decision Rules 
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Figure 5A: Comparison of Fitted and Rational Expectations Future 
Component at Early State Vectors for Each Type 
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Component at Late State Vectors for Each Type 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
` 
 
 
 
 
 
 
 
 
 

 57



Figure 6:  Average Mass Assigned to Each Type by True Type 
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Figure 7:  Empirical Cumulative Distribution Function of Total 
Number of Practice Games for Each Type 
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Figure B1:  Example of a Subject’s Game Screen 
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