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Abstract 
 

 
 

The uncertainty of predicting stock prices emanates pre-eminent 
concerns around the functionality of the stock market. The 
possibility of utilising Genetic Algorithms to forecast the momentum 
of stock price has been previously explored by many optimisation 
models that have subsequently addressed much of the scepticism. In 
this paper the author proposes a methodology based on Genetic 
Algorithms and individual data maximum likelihood estimation 
using logit model arguing that forecasting discrepancy can be 
rationalised by combined approximation of both the approaches. 
Thus this paper offers a methodological overture to further 
investigate the anomalies surrounding stock market. In the main, this 
paper attempts to provide a temporal dimension of the methods 
transposed on recurrent series of data over a fixed window 
conjecture. 



Introduction 
 

Functional optimisation is the key underlying rationale of Genetic Logarithms. 

Irrespective of controlled variation Genetic algorithms eliminate uncertainty and 

imprecise momentum of any unfit system and derive representative degree of 

correctness. Genetic Algorithms were espoused by Holland (1975) during 70s 

envisaging the conceptual framework of Darwinian survival of fittest strategy. 

Genetic Algorithms from herein, referred as GAs throughout the text. The application 

of GAs in differentiating optimal value of multi-dimensional functions has been 

received high credence in evolutionary algorithms (Baricelli, 1962; Baker, 1985; 

Bramlette, 1991 and Altenberg, 1994).  

 

GAs, Probability Density Function and Individual Data Maximum Likelihood 
Estimation 
  

Essentially, complex multi-parameter functions exhibit threshold maxima and 

minima, which GAs represents in terms bit strings in real numbers. for example the 

value attributed at that point X( 0 �)  for a simple probability linear function f(y)= y+ 

X(0 �) can be evaluated either at the threshold minima or maxima. The fitness of a 

string is the function value at that point X (0 �) (Riolo, 1992). The process is very 

identical to distribution of a function of a random variable. 

If y is derived from x and the function represents linear probability 

distribution, the expression can be represented as the probability of that Y=y(x) equals 

the probability that X=x; i.e. when several values of y, then probability of Y is the 

sum of corresponding probabilities for x. 

Whereas, the random variable is a discreet transform of the variable y, all the mean 

value assumes respective interval, such as; 

 



Prob (Y=µ1) = P (-� <X� a), 

Prob (Y=µ2) = P (a� X� b), 

Prob (Y=µ3) = P (b� X� c)  

and the probability distribution continues up until n th  term. 

If x is a continuous random variable with probability density function fx(x) and y 

=g(x) is a continuous monotonic function of x, the density of y is obtained by using 

the change of variable to find combine density function of y. 

Here 
                         b 
Prob (y � b) = �   f (g-1(y)) �g-1’(y) �dy 
                        -� 
rearranging it we can write, 
 
                         b 
Prob (y � b) = �   f y(y) dy 
                        -� 
 
The term g-1’(y) is the Jacobian of the transformation of x to y. Customarily the 

Jacobian is non-zero to assume non-zero value for y. The probability density of f(y) 

within the interval of discreet random variable reflects that GAs can be used in a same 

manner to identify any sequence following selection, crossover and mutation process, 

starting with a randomly generated population of n l-bit chromosomes, calculating the 

fitness of f(y) of each chromosome y in population and repeating that until n offspring 

have been created. Here the probability of selection becoming the increasing functions 

of dimensional fitness used in probability density function of f(y).  Now with 

crossover probability or crossover rate, i.e., Pc we can continue crossover to generate 

two forms of offsprings, whereas as crossovers do not produce identical patterns of 

their respective parents. At this point mutating the offsprings at each locus with subset 

probability of Pm and reiterating the process with the new chromosomes in the new 



population an optimal fitness value can be obtained. This process at the end results a 

highly fit chromosome giving the best expected value of the y. 

GAs are highly effective to identify signals and eliminate noisy data set, 

particularly over a long period and lagged time series where unstructured nature and 

hidden relationship in variables are not correctly identified. Furthermore, least square 

approximation and probability density function do not always provide a robust 

calculation to establish the maxima threshold of parameters. GAs have unique 

attributes to address such anomalies. Packard (1990) utilising GAs established a 

predictive methodology to examine dynamic models. He envisaged that when a series 

of observation are generated from a dynamic system or process they usually form a 

set of pairs. The binary observation of such series can be represented as,  

{(x�1, y1),……..(x�1, yN)}, 
 
where x�1 = (xi

1, xi
2,….xi

N) are nth number of independent variables and yi is a 

dependent variable having probability of (1� i �N). 

In the uncertain and dynamic stock market share prices fluctuate due to 

multiple associative parameters. In such instance the independent variable might be 

the value of particular stock at a given time, i.e., x� = (x(t1), x(t2),…..x(tn)) whereas 

the dependent variable y= x( t n+k) representing value of stock at some t+k time. This 

illustrates a single vector representative of each dependent variable to independent 

variable, but in a dynamic system each dependent variable has their associated 

independent variables. Observations obtained in a specific space assign sets of 

conditions for every independent variable. Herein the condition C would be 

C= {(£ 25� Stock Price of Firm A on day 1) 

� (£30 � Stock Price of Firm A on day 2� £ 32)  

� ( £ 27� Stock Price of Firm A on day 3� £30)}, 



where � is the logical operator equivalent of text ‘AND’. At this point condition C 

represents a subset when three observed conditions are met with a probability density 

function f(x, C) � (x�1, 25� Con� 32).  These three conditions can be arranged in a 

matrix form to observe the determinant value of each probability, suppose the stock 

price on day 1 is denoted by  s1 and s2 for day 2 and so on, then the matrix form of 

each stock price variance and covariance would be; 

Var( s1)  Cov(s1 s2)  Cov( s1, s3) 

Cov(s1 s2))  Var(s2) Cov(s2 s3) 

Cov(s1 s3)  Cov(s2 s3) Var(s3) 

Applying Gaussian elimination individual variance of stock price for a specific day 

can be calculated and each value can be used an approximation of stock price of that 

day to arrive at an optimal value specific to that date. In the above case searching the 

space condition that can return the subsets of data points whose dependent variable 

values would be close to uniform density distribution. Here GAs identify a condition 

set, where the set were followed by days on which the Firm A’s stock rises to 

approximate high of £ 30. This allows rationalising that if the conditions sustain, the 

prices will go up. The fitness of each individual condition C is calculated by running 

all the data points (x�,y) in the training set through C and for each x� that satisfies C, 

collecting corresponding y.  After that if the y values are close approximation of a 

certain value V, then condition C is a robust predictor of y. At this point x� also 

satisfies C.  Mayer and Packard (1992) proposed an alternate approach to identify 

regions of predictability in time series generated by Mackey-Glass equation (1977), 

i.e.,  

dx/dy={ax(t-�)/(1+[x(t-�)]c}-bx(t) 
 



Whereas, x (t) is the independent variable at time t and a, b, c, � are constants. If we 

are assuming different stock prices for different days we can have subsets of each 5 

days or subsets of each 10 days for each corresponding yi value say for example we 

investigating 24 days of price change, then i= 24. 

Furthermore, they fixed the function of the condition as,  

f (C)= -log2(�/ �0)- 	/ NC 
 
Where � is the standard deviation of the set yi  for data point satisfying condition C, 

�0 is the standard deviation of the distribution of  yi over entire data set, NC is the 

number of data points satisfying the condition C  and � is the constant. Previously we 

have discussed that a matrix form of variance values can be employed to identify the 

best predictor approximation by using Gaussian elimination.  Furthermore the first 

term of the above function measures the amount of information in the distribution of 

yi for all the data points satisfying conditions C, the second term represents the error 

variance in distribution. More the number of points satisfying the conditions C, more 

the reliability of predictor and C is supposed to have higher fitness values. Mayer and 

Packard followed a sequence to reach at the best predictor approximation, such as; 

initialised the sample with random set of conditions C, calculating fitness of each 

subset satisfying conditions C, ranked the measures in terms of higher value, and 

discarded the lower fitness individuals and replaced them with new conditions C* 

obtained by applying crossover and mutation to remaining conditions C. They 

continued the sequence to find the ideal offsprings. In the stock market example this 

sequence will help to manifest a higher fitness value of the observed price at a given 

future time t.  



Mayer and Packard’s best predictor approximation exhibits close similarities 

with individual data maximum likelihood estimation. In individual data maximum 

likelihood estimation*, probability distribution function has been represented as;  

Prob[ y*> 0] = Prob[
’x +�> 0] 

                      = Prob[�>- 
’x]  

where y* = 	’x + 
 for the conditions y= 1 if y*> 0 

                                                             y= 0 if y* � 0 

	’x is known as index function , here the assumption of unit variance is normalised 

and assumption of zero for threshold is likewise if model contains a constant term 

which we have in this case. Now if the distribution is systematic and normal as well 

as logistic, then  

Prob[ y*> 0] = Prob[�< 
’x]  

                      = F (
’x) 

The model with probability F (	’xi) and each observation is sampled as individual 

draw from a Bernoulli distribution, i.e., binomial with one draw leads to joint 

probability or a likelihood function such as; 

Prob[ Y1=y1, Y2=y2,………….Yn=yn] = �y=0{1- F (
’xi)} �y=1{ F (
’xi)}………..(1) 

Representing the probability function of RHS with L, 

we can rewrite, 

L= �i[ F (
’xi)]yi [1- F (
’xi)]1- yi …………………………………………………. .(2) 

This is the likelihood for sample of n observations. In GAs such joint probability 

function can be compared with conditions C subsets with different offsprings after 

crossover and repeated mutation. GAs identify sample of n observations that consists 

of a finite pool of individual data. Thus GAs and estimation with individual data treat 
                                                
* Analytical discussion on individual data maximum likelihood estimation in this section has been cited 
from Green (1990). 
 



each observation as a single parameter with binomial with one draw. In this instance 

Eq. (2) is denoted as the likelihood for a sample of n observations. Further extending 

it by obtaining logs; we get 

ln L = 
 [yi ln F (
’xi)+(1-yi)ln (1- F (
’xi))]……………………………………….(3) 
            i 
By converting it into first order condition for maximisation the model became 
 
� ln L/� 
 = 
 [ yi fi/ Fi   + (1-yi)  -fi/(1-Fi) ]xi= 0…………………………………(4) 
                     i 
The model with probabilities F (	’xi) where subscript i denotes the density of 

distribution.  

As far as a logistic model is concerned we know,  

Prob[ Y=1] = e 
’x/ 1+ 
’x =�(
’x)…………………………………………………(5) 

which represents logistic distribution, where � represents logistic cumulative 

distribution function. The density function of a cumulative distribution is represented 

by 

d�[
’x]/ d(
’x) = e
’x/(1+e
’x)2 

The above model equals to �(
’x) (1- �(
’x))……………………………………...(6) 

In the instance of linear probability model the Eq.(4) would become highly nonlinear 

and requires further linearization as we are concerned about the individual estimation. 

A simpler approach to address this issue for a logit model is to insert both Eq.(5) and 

Eq.(6) into Eq.(4). After collapsing all three equations it gives, 

� ln L/� 
 = 
 (yi- �i)xi……………………………………………………………..(7) 
                     i 
whereas, xi contains a constant term. Also in the terms of least square normal 

equations the term yi- �i can be seen as a residual. However for normal distribution, 

the log likelihood is denoted by 

ln L = 
 ln(1-�i)+ 
 ln �i………………………………………………………….(8) 
           y=0              y=1 
 



here �i stands for standard normal density of i th term. 

Hence the first order conditions for maximisation of L are, 

� ln L/� 
 = 
 (-�i/ 1- �i)xi + 
 (�i / �i)xi …………………………………………(9) 
                    y=0                       y=1 
Therefore converting individual variables into first order log likelihood we can obtain 

effect of changes in these variables on the predicted probability. 

The author proposes that each individual variable would be converted by 

utilising Eq.(9) and would be used in GAs as chromosome syntax for any n variables 

to obtain an optimal solution. Each variable would have bitstrings length N, whereas a 

1 at a position a means that variable is used in the network denoted by the bitstrings 

taken as chromosome syntax. The fitness value of for each bitstring B is weighted by 

training a neural network defining B for a number of times, i.e., mutation and 

crossover.  

During each training time, generated minimal error would be logged on test 

set. After N times of training the cumulative average of those minimal errors would 

be used to determine another fitness value. This process obtains higher fitness value 

for the lower error predictors. Once fitness values have been determined, those fitness 

values would be assigned and this would create a new sample having best survived 

offsprings replacing weaker offsprings of the previous sample.    

If at least two crossover operators would be used, any finite sample N would 

yield higher fitness value for each bitstrings. In this case we can select two bitstrings 

B1 and B2 and any two crossover sites at random. The first offspring B1*essentially 

inherits the part between the cross sites from B1 and the other parts from B2. Similarly 

the second offspring B2* inherits the part between cross sites from B2 and B1. 

Similarly the second crossover operator would also select two parents B1 and B2 

randomly.  



Further, a random number x [0, (x/2)] is generated form the crossover site. 

Now x times a string position p would be selected on a probabilistic assumption 

where every time the values of B1 and B2 at position p would be swapped. In this 

context only one mutation operator is suffice to generate optimal solution to N sample 

population. A parent is selected randomly assigning a sting position p so that value at 

position p is inverted for subsequent mutation operator if any is selected for further 

extension.  

This process can be repeated to achieve accuracy up to 99.9% interval 

confidence over n finite sample population. To examine the proposed method the 

author has selected 24 days stock price of a firm A*. Each variable were input into 

GAs crossover site as bitstrings, following a network training representing each one 

as formal neurons. Mainly a formal neuron is the basic element in the training 

network, represented by n-dimensional vector [x1,….x24]T  with a constant component 

x0=1. The weighted sum of neurons is,  

wTx=w0+S1� i �n wixi,  

where x=[1,x1,…x24] and w=[w0,….w24]T .  

Here w is the weighted vector which is stored in each neurons. Such neurons are 

calcified as n-dimensional neurons assuming two different vector values, i.e., y=1 for 

class 1 vector and y=-1 for class two vector. Interestingly GAs produced only 4.67% 

of type I error and 0.09% of type II error. However the significance level was decided 

at 5% level and the model indicated high statistical significance.  

 

 

 

                                                
* Stock prices were obtained from FT fact sheet. 



Following 1st, 2nd and 3rd mutation it was observed that the fluctuation of price 

is not too distributed rather parsimonious. The following graph represents three nodes 

of mutations. 

Graph I: Line Graph of Share Values over 24 days following 1st mutation, 2nd mutation and 3rd 
mutation   
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Furthermore, the chart indicates that following three subsequent mutations and 

taking each surviving best price over 24 days window the variance in 1st, 2nd and 3rd 

mutation does not differ significantly. This leaves enough reason to argue that the 

similarities might have stemmed from the effect of each survival price which must be 

best in their respective categories. This somehow underpins that in each sub-window 

the mutation prices serve best during that temporal period. A follow-up mutation 

would reveal the similar trend. Moreover the plausibility behind the causality is 

another concern of this approach. The volatility of stock market could be the reason to 

infer the causality. However many other variables, i.e., analyst coverage, market 

information and index adjustment equally affect the market in deciding the causal 

trend.  

 

 

 



To investigate the causality of variance consistency a Pareto graph was 

generated which is presented below. 

Graph II: Pareto graph of Share Prices over 24 days following 1st mutation, 2nd mutation and 3rd 
mutation 
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 Following a three tier mutation process and stacking each day share price over 

subsequent day taking the final day share price s24 as the maximum share on closing 

date the author noticed a very flat and similar cumulative variance over the 24 days 

window. Further, counting on day 12th share price assuming it as the hypothetical 

price of mean day of the share sequence the chat indicates that 23.05 % of reasoning 

behind the share price could be the cause of 76.95 % anomalies, though the count 

percentage maintains a consistency. 

However to understand the effect of the higher anomalies a time series cross 

correlation was computed which evidently indicates that prices on each nodes, i.e., s1, 

s12 and s24 do exist in a nonlinear fashion. Interestingly the mid node value is mostly 

negative identifying a periodic time lag over 24days.  



Time Series Cross Correlation between s1, s12 and s24 

Cross Correlations:   S1 
                      S12 
 
Transformations:  natural log 
 
     Cross   Stand. 
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1 
                   ����������������������������������������� 
 -1   .192   .707                      �**** 
  0  -.996   .577  ********************� 
  1   .088   .707                      �** 
 
Plot Symbols:      Autocorrelations *     Two Standard Error Limits. 
 
Total cases:  3    Computable 0-order correlations:  3 
_ 
 
 
Cross Correlations:   S1 
                      S24 
 
Transformations:  natural log 
 
     Cross   Stand. 
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1 
                   ����������������������������������������� 
 -1   .680   .707                      �************** 
  0  -.693   .577        **************� 
  1  -.152   .707                   ***� 
 
Plot Symbols:      Autocorrelations *     Two Standard Error Limits. 
 
Total cases:  3    Computable 0-order correlations:  3 
_ 
 
 
Cross Correlations:   S12 
                      S24 
 
Transformations:  natural log 
 
     Cross   Stand. 
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1 
                   ����������������������������������������� 
 -1  -.693   .707        **************� 
  0   .756   .577                      �*************** 
  1   .063   .707                      �* 
 
Plot Symbols:      Autocorrelations *     Two Standard Error Limits. 
 
Total cases:  3    Computable 0-order correlations:  3 

 

Furthermore a spectral frequency chart was generated to provide a straight 

forward view of the day 1 and day12 share values. This indeed explains a higher 



lower bound value than higher values. It is noteworthy that lower bounds are extended 

over longer periods.  

Spectral Frequency of Share price on Day one 

Periodogram of Share price day1
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Spectral Frequency of Share price on Day 12 

Periodogram of Share price day12
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Conclusion 
 

The certainty of prediction adopting GAs within economic and financial 

system has been resourcefully acknowledged, particularly in parallelisation, relaxed 

function evaluation and fuzzy sets. This article advances that it can be competently 

used along with individual data estimation to predict optimal solution of any finite set 

of population. However further empirical investigation is imperative to examine the 

effectiveness of this proposed method.  
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