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Abstract 

We seek to isolate in the laboratory factors that encourage and discourage the sunk cost fallacy. 

Subjects play a computer game in which they decide whether to keep digging for treasure on an 

island or to sink a cost (which will turn out to be either high or low) to move to another island. 

The research hypothesis is that subjects will stay longer on islands that were more costly to find. 

Nine treatment variables are considered, e.g. alternative visual displays, whether the treasure 

value of an island is shown on arrival or discovered by trial and error, and alternative parameters 

for sunk costs. The data reveal a surprisingly small and erratic sunk cost effect that is generally 

insensitive to the proposed psychological drivers.  
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1. Introduction 

A cost is sunk when it cannot be recovered. Once a cost is sunk, it has no effect on the 

incremental payoffs of future decisions, and therefore plays no role in rational choice. Indeed, 

sunk costs play no role in any outcome-oriented process, rational or otherwise. 

Economists generally assume that people are rational, and pride themselves on internal 

consistency. It is therefore remarkable that they devote so much class time and so many textbook 

pages to teaching undergraduate and MBA students to ignore sunk costs. A favorite anecdote is a 

concertgoer who realizes after the first five minutes that the show is horrible, but sticks around 

just to “get his money's worth” from his purchase of admission ticket. The textbooks explain that 

expenditures on the ticket are sunk and thus irrelevant. The student is warned never in her career 

to commit the sunk cost fallacy of taking some otherwise undesirable action simply because of a 

sunk cost, e.g., investing another million dollars on an unprofitable product line just because ten 

million has already been invested. 

So who is right, the economist model builders who assume rationality, or the economist 

teachers and textbook writers who think that hard work is needed to stamp out the fallacy? How 

widespread really is the sunk cost fallacy? Our own interest in these questions began with a 

practical issue in e-commerce: is it true, as claimed by several observers, that people stay at a 

website longer when it takes longer to download? 

Our investigation encountered many surprises. The first is the slenderness of published 

evidence for the fallacy. We will show in the next section that it is easy to rationalize the 

supposedly fallacious choices featured in most studies and anecdotes. 

We therefore devised a direct laboratory test inspired by the e-commerce issue. We put 

subjects in front of a computer screen, present them sequentially with “islands” that contain 

various amounts of "buried treasure", and grant them a limited number of mouse clicks for 

uncovering the treasure. To get to a new island the subject must sink a cost that will turn out to 

be either high or low. The sunk cost fallacy is present if subjects expend more of their click 

budget in high cost islands than in low cost islands. 

The next surprise was the difficulty in demonstrating the fallacy. Our initial treatments 

produced essentially the same distribution of clicks on low and high cost islands. Following 

advice of colleagues, we tried many new treatments and created a design capable of detecting 

very small effects. The most recent data confirm a sunk cost effect, but it is much smaller and 
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more erratic than we had expected. Variables representing rational choice are much more 

powerful in explaining the data than any of the psychological variables we have investigated. 

The next section summarizes existing empirical evidence on sunk costs, emphasizing 

gaps in the literature. We then describe our experiment, sketch optimal choice, obtain testable 

hypotheses, and present the results. Appendix A derives optimal search for our task, and 

Appendix B reproduces the instructions to subjects. 

 

2. Existing Evidence 

Recent news stories suggest that the sunk cost fallacy exists on a grand scale, but at the same 

time they underscore ambiguities. Was the US government’s final decision to invade Iraq in 

March 2003 a sunk cost fallacy? Iraq’s dictator seemed ready to agree to very intrusive weapons 

inspections and to the placement of tens of thousands of NATO troops, meeting the stated goals 

of the US. On the other hand, in readying the attack, the US had already spent tens of billions of 

dollars and disrupted the lives of more than one hundred thousand soldiers. Some commentators 

argued that these sunk costs precluded calling off the invasion. Several other interpretations are 

equally plausible, however. For instance, US policymakers may have believed that a last minute 

cancellation of the invasion would hurt their credibility. 

The loss of space shuttle Columbia in February 2003 brought to mind numerous previous 

decisions to continue the NASA’s shuttle program. From its inception in the 1970s, the shuttle 

was criticized as extremely cost ineffective and dangerous. Yet each time its supporters pointed 

to the lives and dollars already spent as a reason for continuing the program, and so far Congress 

has always agreed (Economist, 2003). Again there are other interpretations. For example, the 

incentives facing NASA managers (and Congress) may not push them towards safe and cost 

effective space programs; the interests of contractors and other clienteles may be more urgent. 

And admitting a huge mistake might not be good for their future careers or for their mentors’ 

place in history. 

Psychologists have studied the fallacy for several decades (e.g., Staw, 1976; Bazerman, 

1986, chapter 4; see also Thaler, 1980), often referring to it as “irrational escalation of 

commitment.” The underlying mechanism mentioned in older papers is cognitive dissonance 

(Festinger, 1957) or self-justification (Aronson, 1968), but more recent discussions often tie it to 
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prospect theory (Kahneman and Tversky, 1979), specifically to a fixed reference point and loss 

aversion. 

Most of the evidence consists of responses to hypothetical survey questions. For example, 

subjects are asked to imagine that they have spent $50 on a ticket for event A and $100 on a 

ticket for event B (e.g., A and B are ski weekends in Wisconsin and Michigan). They are also to 

imagine that they really prefer A to B, that they have just discovered that the events are mutually 

exclusive, and that the tickets have no salvage value. When asked which event they would then 

choose, about half the subjects select the more expensive but less preferred alternative B. The 

psychologist authors urge the interpretation that their subjects respond more strongly to the $50 

difference in sunk costs than to the “true” preferences. Other interpretations of such evidence are 

that subjects attend more to their actual homegrown preferences between A and B, or to the 

impression they make on the person asking the question. 

Psychologists report that the sunk cost effect increases in the size of the hypothetical sunk 

cost, especially in proportional terms (e.g., Garland and Newport, 1991). The effect is very 

sensitive to framing, and seems reduced by emphasizing the salience of the additional costs (e.g., 

Northcraft and Neale, 1986; Tan and Yates, 1995). Posing hypothetical questions as whether to 

grant an additional bank loan for continuing a project, Garland and Conlan (1998) find that sunk 

costs are less important than whether the additional loan will allow project completion. Their 

interpretation is that the goal of project completion psychologically displaces the profit goal. 

Taking the survey responses at face value, however, an alternative explanation is that the 

subjects have a better intuition for the value of real options than the experimenters. Refusing the 

additional loan to complete a project would extinguish the wait option for the project, and might 

hurt the bank’s reputation. 

Eyster (2002) expresses a consensus view that “the most convincing single experiment 

comes from Arkes and Blumer (1985),” experiment 2. In this field experiment, 20 randomly 

selected buyers were given a small ($2) discount, 20 others a large discount ($7, almost half the 

price), and 20 others no discount, on season tickets to the campus theatre. After excluding 10% 

of the subjects who bought tickets as couples, the authors report that the no-discount group used 

more tickets than either discount group in the first half of the theater season (p<.05). This is 

consistent with the sunk cost fallacy, but the evidence is not as strong as one might hope. The 

reported significance levels apparently assume that (apart from the excluded couples) all 
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attendance choices are independent. The authors do not explain why they divided the season in 

half, nor do they report the significance levels for the entire season (or first quarter, etc.). The 

data show no significant difference between the small and large discount groups in the first half 

season nor among any of the groups in the second half season. We are not aware of any 

replication of this field experiment. 

The animal behavior literature reports a controversy dating back to Trivers (1972) on the 

“Concorde effect,” an allusion to continuing government subsidies of the uneconomic supersonic 

passenger plane. Arkes and Ayton (1999) conclude that “there are no unambiguous instances” of 

the sunk cost fallacy among animals, or even human children. They argue that adult humans 

commit the fallacy by misapplying the “don’t waste” rule. 

 There are only a few relevant laboratory experiments using salient payments. Phillips, 

Battalio, and Kogut (1991) found that increases in the sunk price of a lottery ticket led to 

increased valuations by one quarter of the subjects, but to decreased valuations by another 

quarter and no response by half. With opportunities to learn in a market setting, very few 

subjects responded to the sunk price. Meyer (1993) reported that about half of his subjects bid 

more relative to a benchmark when an auction entry fee became larger. However, questions 

remain about his theoretical benchmark, the symmetric equilibrium bidding function for a 

different kind of auction than used in the experiment. We are also aware of an unpublished study 

by Offerman and Potters (2001) that shows sunk costs can facilitate coordination, and an 

inconclusive study by Elliott and Curme (1998). 

Some non-experimental field evidence suggests the sunk cost fallacy. Camerer and 

Weber (1999) confirm Staw and Hoang’s (1995) observation that first year professional 

basketball players who are drafted earlier (and thus, by the nature of the draft system, represent 

larger sunk costs) get more playing time, conditional on measured performance. Of course, it is 

hard to completely rule out other explanations based on unobserved components of performance 

or the coaches’ Bayesian priors. Barron et al. (2001) find that US firms are significantly more 

likely to terminate projects following the departure of top managers. This might reflect the new 

managers’ insensitivity to costs sunk by their predecessors, or it might simply reflect two aspects 

of the same broad realignment decision. 

Do Internet users respond to sunk time costs? Manley and Seltzer (1997) report that after 

a particular website imposed an access charge, the remaining users stayed longer. A rival 
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explanation to the sunk cost fallacy is selection bias: the users with shortest stays when the site 

was free are those who stopped coming when they had to pay. Klein et al (1999) report that users 

stick around longer on their site after encountering delays while playing a game, but again 

selection bias is a possible alternative explanation. The issue is important in e-commerce because 

“stickier” sites earn more advertising revenue. Schwartz (1999) reports that managers of the free 

Wall Street Journal site deliberately slowed the login process in the belief that users would then 

stay longer. One of us (Lukose) took a sample of 2000 user logs from a website and found a 

significant positive correlation between residence time at the site and download latency. One 

alternative explanation is unobserved congestion on the web, and users may have been 

responding more to expected future time costs than to time costs already sunk. Also, good sites 

may be more popular because they are good, leading to a) congestion and b) more time spent on 

the site. 

To summarize, there are at least two distinct psychological mechanisms that might create 

an irrational regard for sunk costs. Self-justification (or cognitive dissonance) induces people 

who have sunk resources into an unprofitable activity to irrationally revise their beliefs about the 

profitability of an additional investment, in order to avoid the unpleasant acknowledgment that 

they made a mistake and wasted the sunk resources. Loss aversion (with respect to a reference 

point fixed before the costs were sunk) might induce people to choose an additional investment 

whose incremental return has negative expected value but still has some chance of allowing a 

positive return on the overall investment. 

There are also several possible rational explanations for an apparent concern with sunk 

costs. Maintaining a reputation for finishing what you start may have sufficient value to 

compensate for the expected loss on an additional investment. The “real option” value (e.g., 

Dixit and Pindyck, 1994) of continuing a project also may offset an expected loss. Agency 

problems in organizations may make it personally better for a manager to continue an 

unprofitable project than to cancel it and take the heat from its supporters (e.g., Milgrom and 

Roberts, 1992). 

The available evidence is remarkably ambiguous. Besides confounding the various 

rational and irrational explanations, the studies often are unable to control for unobserved 

Bayesian priors, selection biases, etc. Clearly there is room for a new laboratory experiment that 
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eliminates the rational explanations and the unobservable factors, and that allows alternative 

psychological explanations to demonstrate their explanatory power. 

 

3. Experiment Design 

Subjects play a computerized treasure hunt game in which they visit a sequence of islands. In the 

baseline treatment, each island has 20 sites the subject can “dig up” by clicking the mouse and 

she gets 5 points each time she clicks a site with buried treasure. The “voyage” ends when the 

subject exhausts a fixed click budget, e.g. 200 clicks. Budget permitting, she can click as many 

of the 20 sites as she wants before “sailing North or South” to the next island. 

Leaving for a new island involves a sunk cost. The subject is told that because of 

unpredictable weather at sea, “your cost (in points) of reaching the next island is either high or 

low [e.g., is either cH = 12 points or cL = 0 points with equal probability, and the] … amount of 

buried treasure on an island is not affected by the cost of getting there.” Figure 1 shows the user 

interface. 

 

Figure 1 
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The number of treasures buried on each island is determined by an i.i.d. uniform random 

draw from consecutive integers {L,…,U} with 0 ≤ L < U ≤ 20, e.g., L=2 and U=18. Subjects are 

told all relevant parameters, e.g., cL, cH , L and H. The pay rate, e.g., two cents per point, is 

posted on the board. Subjects are paid for one voyage, selected at the end of the experiment by a 

public random device. 

We report results for nine variants on the baseline treatment:1  

1. Displaying upon arrival the number of treasures on the island (Show Island Value, SIV=y). 

2. Requiring subjects to click all sites or none (Require Complete Uncovering, RCU=y), used 

only in conjunction with SIV=y. 

3. A click budget different from 200, e.g. Nclicks=100. 

4. In the baseline, subjects choose whether to sail North or South, but these choices have no 

effect on the distribution of sunk costs and island values. In the treatment 'Choose Next 

Island' (CNI) = a, the distributions differ in ways known to the subjects, e.g. high sunk costs 

and more buried treasure are more likely when sailing North. At the other extreme, in the 

treatment CNI = no, the subject chooses only when to leave, not whether to go North or 

South. 

5. In the baseline, after choosing North or South, the subject sees the cost of her own choice and 

also the cost of the direction not chosen. In the alternative treatment (Show Other Island 

Cost, SOIC=n), she sees only her own cost. Treatments 4 and 5 are intended to manipulate 

the saliency of self-justification. 

6. When traveling to the next island, subjects experience a time delay proportional to the cost in 

points. In the baseline, the proportion is 'Cost Pause' (CP) = 0.8 seconds per point; 

alternatives include CP = 0, 0.4 and 1.6. 

7. In the baseline, the screen displays a thermometer-like graph of net cumulative points earned 

on the island. It starts out in the red (as the negative of cL or cH, as the case may be) and turns 

green when it reaches positive territory as treasures are found. In the alternative treatment 

(Thermometer Displayed, TD = no), this part of the graphical display is suppressed. 

Treatments 6 and 7 are intended to manipulate the saliency of loss aversion.  

                                                 
1 Pilot experiments not reported here explored two additional treatments: more formal instructions, and sunk costs 

incurred as clicks rather than as points. Neither treatment had a discernable effect on responsiveness to sunk costs.  
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8. Alternative choices to the baseline parameters cL = 2 points, cH = 18 points, L= 2 sites and 

U=18 sites are often used. Some colleagues have suggested that the sunk cost effect will be 

stronger when cL = 0. 

9. The baseline treatment draws the probability of hitting a treasure with no replacement 

(Replace=n) from the discrete uniform distribution with endpoints 0 ≤ L < U ≤ 20. The 

alternative treatment (Replace=y) draws a probability p for each island independently from a 

continuous uniform distribution on [l, u] ⊂ [0, 1], and each click on that island has 

independent probability p of hitting treasure. Sometimes p is displayed on arrival to the 

island (Show Hit Probability, SHP=y). We shall soon see that the replacement treatment has 

important consequences for rational choice. 

 

One other design feature should be mentioned. Except in treatment CNI=a, subjects are 

paired so that for each subject who reaches a given island at high cost, there is another subject 

who reaches the same island at low cost. This pairing reduces experimental error, and it is 

feasible (except in CNI=a) because the random sequences of travel costs and of hits and misses 

on each island are drawn in advance. 

Table A1 in the Appendix A summarizes the design of the 36 sessions analyzed below. 

 

4. Search Theory and Testable Hypotheses. 

The benchmark of optimal behavior will strengthen the data analysis. It turns out that treasure 

hunt game is not easily solved; indeed it took us several tries over a period of months to get it 

right. There are several cases, depending on whether the island value is displayed (SIV), whether 

subjects may click sites one at a time (RCU), and whether replacement is used in probabilities of 

hitting treasure (Replace). Appendix A collects the analytical results, which can be summarized 

as follows. 

Case 1: SIV=y, RCU=y, i.e., the island value v (or hit probability p) is shown on arrival 

and the click choice is all-or-none, as in approximately 8% of the voyages listed in Table A1. 

This case requires only a minor extension of classic search theory, and the optimal search is 

characterized by a reservation value R. Budget permitting, the optimal strategy is to click out the 

island (expend 20 clicks) if v ≥ R, and immediately to sink the cost and move on if v ≤ R. 

Appendix A shows that for the uniform distributions on [L, U] used in the experiment, the 
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reservation value is closely approximated by R = bU - )(2 LUcb − . For example, with the 

default parameters (expected sunk cost c = (cL + cH)/2 = (2 + 18)/2 = 10, treasure value b=5, and 

the number of treasures per island between L=2 and U=18) we get R =50. Then a rational player 

would click out the islands showing values v=50 and above and would pass on the islands 

showing values 45 and below. For Replace=y, set v= 20bp=100p; e.g., in the example, click out 

islands showing p = 0.50 = 50% and above. 

Case 2: SIV=y, RCU=n, approximately 42% of the voyages. This case is identical to case 

1, except that the player has the option to leave the island after clicking some but not all sites. 

With the number of clicks divisible by 20 and with replacement (Replace=y), the option has no 

value: if it is optimal to click once on a given island, then it is optimal to click 20 times, so the 

rule is the same as in Case 1. For Replace=n, however, the option is valuable. For a player who 

gets sufficiently lucky on the first several clicks, the remaining sites are not worth clicking 

because his luck must “catch up” to the displayed island value. Hence optimal behavior is more 

complicated and is computed using techniques similar to those discussed for case 4b below. 

Case 3. SIV=n, RCU=y. The player must decide all-or-none whether to click out an 

island about which he can obtain no information. This case is uninteresting and is not used in the 

experiment. 

Case 4. SIV=n, RCU=n, approximately 50% of the voyages. Even when it does not hit 

treasure, each click has an information value because the player can update his estimate of the 

number of remaining treasures. This would seem to give more scope for self-justification and 

perhaps strengthen the sunk cost effect. There are two subcases. (a) When Replace=y, we obtain 

essentially a click-by-click reservation value h*(n) for the minimum number of hits in the first n 

clicks required to justify staying on an island. This value also depends on the size of the 

remaining click budget. (b) When Replace=n, the optimal policy is even more complicated 

because the catch-up effect (mentioned in case 2 above) opposes the effect of information 

updating.2 Usually the optimal choice (for a given number of clicks on an island and given 

                                                 
2 The authors were confused on this point for quite a while. An example may provide intuition. Suppose that you 

know initially that between 2 and 18 of the 20 sites contain treasure, and the first 4 clicks do not hit anything. The 16 

remaining sites must therefore contain between 2 and 16 treasures, increasing the probability of hitting treasure on 

the next click. This catch-up effect sometimes dominates the Bayesian updating effect that negatively skews the 

posterior distribution. The treatment Replace=y eliminates the catch-up effect and simplifies the analysis. 
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number of clicks remaining) is to leave if the number of hits falls into a middle range and 

otherwise to click once more, but in a few cases the optimal strategy is still more complicated.  

Using the optimality computations, we can determine for each decision on each voyage 

whether it was optimal and, if not, the loss in expected value. The data analysis uses the 

following classification for each decision. 

• Impatient: the subject left the island when it was optimal to stay, thus incurring a loss x > 0 in 

expected earnings; or 

• Stubborn: the subject clicked another site on the island when it was optimal to leave, thus 

incurring a loss y > 0 in expected earnings; or 

• Optimal: no alternative action would generate higher expected earnings, and x = y = 0. 

Needless to say, subjects will not always choose optimally. Their task is computationally 

very challenging, and even highly intelligent subjects unaffected by biases will occasionally 

make impatient or stubborn choices. The purpose of the classification is to better characterize 

behavior. For example, suppose that on average subjects stay longer on high cost islands. The 

sunk cost fallacy is confirmed if this arises from stubbornness on high cost islands and 

approximate optimality on low cost islands. However, if we find optimality on high cost islands 

but impatience on low cost islands, then the data reflect other departures from rationality.  

The following testable hypotheses will guide our examination of the data. 

H1.0 The average number of clicks on each island is the same for players who reached it with a 

low sunk cost as for players who reached it with a high sunk cost. 

H1.R The research hypothesis, a one-sided alternative to this null hypothesis, is that the average 

number of clicks is higher for high sunk cost players. 

In the cases (1 and 2) where the island value is displayed on arrival, we expect a stronger 

sunk cost effect for “close-calls,” the islands whose value is in the vicinity of the optimal 

reservation value R. The sunk cost fallacy should have less impact when islands are obviously 

worth clicking out or obviously better to skip. 

The three-way classification of choices permits a more refined test:  

H2.0 Impatient choices and stubborn choices have the same distribution on islands reached with 

high sunk cost as on islands reached with low sunk cost. 
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H2.R Impatient choices are less frequent and stubborn choices are more frequent on islands 

reached with high sunk cost than on islands reached with low sunk cost. 

 It is reasonable to say that costly mistakes are more meaningful than mistakes that incur 

negligible losses. Hence we make the same comparison in the payoff domain: 

H3.0 The loss of expected earnings due to impatient choices (IL=∑x) and the loss of expected 

earnings due to stubborn choices (SL=∑y) have the same distribution on islands reached with 

high sunk cost as on islands reached with low sunk cost. 

H3.R Average IL is smaller and average SL is larger on islands reached with high sunk cost than 

on islands reached with low sunk cost. 

 Hypotheses H1-H3 focus on the sunk cost effect, but the experiment design encourages a 

more detailed dissection of treatment effects and individual choice. Each click by each subject 

gives us a value of the indicator variable for staying: Z = 0 if the player sinks a cost to go to the 

next island, and Z = 1 if the player clicks another site on the current island. This dependent 

variable is explained in a logit regression by variables representing rational and psychological 

motives, other treatment variables, and their interactions. The null hypothesis is:  

H4.0 Estimated coefficients in the logit regressions will be large and significantly positive for 

variables representing rational motives for staying, and will be insignificant for the dummy 

(indicator variable) for high sunk cost and for its interactions with other variables. 

H4.R The dummy variable for high sunk cost and its interactions with several of the treatment 

variables will be significant. In particular, self-justification theory suggests positive interactions 

with treatments 4 and 5, especially in case 4, and loss aversion suggests positive interactions 

with treatments 6 and 7.  

 

5. Results 

First consider H1, the most direct test of the sunk cost fallacy. For each island we 

calculate the average number of clicks under high cost cH minus average clicks under low cost 

cL, so positive differences represent a sunk cost effect. Differences are averaged across islands 

using weights proportional to the number of players reaching the island. The overall click 

difference is -.17, indicating a slight reverse sunk cost effect. The value is, however, not 

significantly different from zero (by a paired t-test value of –1.63). Table 1 below splits the data 

by case (recall that case 3 is uninteresting and not used) and reports a significant sunk cost effect 
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only in case 4, again a reverse effect. Panel B of the table separates out the non-obvious islands, 

defined as those within displayed value within 15 of the reservation value R. Contrary to our 

conjecture, the sunk cost effect is not stronger for such islands; indeed, Panel B shows a stronger 

(but still not significant) reverse sunk cost effect for Medium island values in case 1. Thus direct 

tests of H1 fail to establish a sunk cost effect.  

 

 

Table 1: Weighted Average Click Difference 

Panel A: By case 

Case W. avg. click 
difference 

t-value nobs 

1: SIV=y, RCU=y -0.25 -0.75 966 
2: SIV=y, RCU=n 0.07 0.47 4449 
4: SIV=n, RCU=n -0.45 -2.56 3609 

Panel B: By case and island value 

Case Island value W. avg. click 
difference 

t-value nobs 

1: SIV=y, RCU=y Low -0.01 -0.02 437 
1: SIV=y, RCU=y Medium -0.63 -0.78 317 
1: SIV=y, RCU=y High -0.21 -1.05 212 
2: SIV=y, RCU=n Low 0.16 0.65 2014 
2: SIV=y, RCU=n Medium 0 -0.01 1684 
2: SIV=y, RCU=n High -0.03 -0.19 751 

Note: Weighted average click difference is the difference between the mean number of clicks in 
the high cost group and the low cost group on each island, with islands weighted by the number 
of subjects in the smaller group. Reported t-values compare the weighted average click 
difference to zero. Low (resp. high) island values in Panel B are those less than R-15 (resp. 
greater than R+15), where R is the reservation value defined in section 4. Panel B excludes Case 
4 observations since the High/Medium/Low classification is not well defined when the island 
value is not displayed. 
 

We turn now to a finer grained examination of hypotheses H2 to H4. Table 2 shows that, 

despite the complexity of the calculation, from 65 percent (in Case 2) to 80 percent (in Case 4) of 

all choices are optimal. Stubborn choices account for most of the departures. This choice 

asymmetry is not surprising: on a given island one can be stubborn many times but impatient at 

most once.  
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Table 2: Choices by Case and Cost 

Panel A: By case (all islands)  
Choices (% of total) 

Case Cost Optimal Stubborn Impatient 

Chi-
square 
(nobs) p-value 

1: SIV=y, RCU=y Low 78.5 21.4 0.2 
1: SIV=y, RCU=y High 77.4 21.9 0.8 

2.35 
(1193) 0.31 

2: SIV=y, RCU=n Low 64.8 34.6 0.6 
2: SIV=y, RCU=n High 65.1 34.3 0.6 

0.72 
(81,292) 0.70 

4: SIV=n, RCU=n Low 80.0 19.0 1.0 
4: SIV=n, RCU=n High 79.4 19.6 1.0 

5.01 
(82,843) 0.08 

   
Panel B: By case for medium island values 

Case Cost Optimal Stubborn Impatient 

Chi-
square 
(nobs) p-value 

1: SIV=y, RCU=y Low 63.4 36.1 0.5 
1: SIV=y, RCU=y High 59.1 39.1 1.9 

2.06 
(409) 0.36 

2: SIV=y, RCU=n Low 68.7 30.3 0.9 
2: SIV=y, RCU=n High 69.9 29.2 0.9 

6.34 
(39,790) 0.04 

 

Table 2 also shows that in cases 1 and 4 stubborn choices are more frequent and optimal 

choices are less frequent on high cost islands than on low cost islands, consistent with H2.R. 

However, the shift is small and is reversed in case 2, and no consistent picture emerges for 

impatient choices. A chi-square test indicates the shifts are insignificant except perhaps in case 4 

(significant at a marginal 8% level). Panel B restricts the analysis to medium island values (R-15 

≤ island value ≤ R+15), and here the choice shift becomes significant for Case 2 at the 4% level, 

but in a direction inconsistent with the sunk cost hypothesis H2.R. 

Now consider the payoff domain. Cases 2 and 4 allow the calculation of value gained or 

lost on each click. Define total potential value (TPV) as the sum of the absolute difference in 

expected profit between immediately leaving the island and staying for another click. Otherwise 

put (see Appendix A for details), TPV= actual value gained + SL + IL. Table 3 shows that 

subjects overall lose less than 7% of TPV. There really is an asymmetry in that 3-6% of TPV is 

lost due to stubbornness but less than 1% due to impatience. The data support H3.R for case 2. 

The difference in value lost due to stubbornness between the low and high cost groups is small 

(0.3%) but highly significant (t=-4.1, p<0.0001). In case 4, however, stubborn losses and 

impatient losses are the same on high and low cost islands, so we can’t reject the null hypothesis. 
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Table 3: Value Gained or Lost by Cost  

  Value as % of TPV  
Case Cost Gain Stubborn loss Impatient loss Nobs 

2: SIV=y, RCU=n Low 93.6 6.0 0.4 38,090 
2: SIV=y, RCU=n High 93.4 6.3 0.4 43,292 
4: SIV=n, RCU=n Low 96.3 3.0 0.7 39,889 
4: SIV=n, RCU=n High 96.3 3.0 0.7 42,954 
 

Case 2 (SIV=y, RCU=n) without replacement (replace=n) permits sharp tests of two 

well-known heuristics. According to the “win-stay, lose-shift” heuristic (e.g., Eyster, 2003), 

subjects who just experienced success are more likely to stay on an island. Optimality predicts 

exactly the opposite because in Case 2 the catch-up effect (described in the previous section) is 

not offset by an update effect. To test these opposing predictions, and to refine the estimates of 

the sunk cost effect, we ran the logit regressions reported in Table 4. 

 

Table 4: Logistic Regression for Win-Stay, Lose-Switch Heuristic  

Case 2 data. Number of Observations = 74,952 

Parameter Estimate Standard 
Error 

Wald Chi-
Square 

Pr>ChiSq 

Intercept 3.48 0.05 6303 <.0001 
Cost 0.09 0.04 3.9 0.05 
Stay surplus 0.36 0.01 971 <.0001 
Last-click-successful dummy -0.70 0.05 227 <.0001 

Notes: Dependent variable Z=1 if subject clicks once more, Z=0 if subject leaves the island. 
The interaction term cost*Last-click-successful is insignificant when included in the regression. 
 

The second line indicates that higher sunk cost (cost=1 if c = cH and =0 otherwise) 

increases the log odds of staying by 0.09, significant at the 5% level, consistent with the sunk 

cost effect and hypothesis H4.R. The third line shows a strong impact of the difference between 

the value of clicking and the value of leaving the island (stay surplus), e.g., increasing stay 

surplus by 2 treasures or 10 points increases the log odds by 3.6, consistent with noisy rational 

search. The last line investigates the heuristic. The dummy variable Last-click-successful is set to 

one if the previous click hit treasure, and to zero otherwise. The line indicates that the rational 

catch-up effect dominates the win-stay, lose-switch heuristic.  
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A second heuristic is based on loss aversion. Eyster (private conversation) predicts that 

subjects whose cumulative earnings on a given island are still negative (i.e., have not yet covered 

the sunk cost) are more likely to stay. The variable Cumulative loss is the minimum of zero and 

the cumulative earnings on that island. The next to last line in panel A of Table 5 indicates that 

larger cumulative losses (more negative values) tend to decrease the probability of staying on an 

island in Case 2, contrary to loss aversion. On the other hand, the results are consistent with loss 

aversion in Case 4, where subjects do not have information about the value of an island. In either 

case, the sum of the last two coefficients indicates that the effect disappears when sunk costs are 

high. The Cumulative loss variable has range [-c, 0], so its absolute value remains small when 

c=cL. Hence the heuristic has little impact overall. Alternative specifications, e.g. a binary 

(dummy) version of the Cumulative loss variable, give roughly similar results.   

 

Table 5: Logistic Regression for Loss Aversion 

Panel A: Case 2. Number of Observations = 81,382 

Parameter Estimate Standard 
Error 

Wald Chi-
Square 

Pr>ChiSq 

Intercept  2.85 0.03 9581 <<.0001 
Cost  0.34 0.05 56.7 <.0001 
Stay surplus  0.35 0.01 1249 <<.0001 
Cumulative loss  0.79 0.06 166 <.0001 
Cost*Cum. loss -0.72 0.06 134 <.0001 
 

Panel B: Case 4. Number of Observations = 82,843 

Parameter Estimate Standard 
Error 

Wald Chi-
Square 

Pr>ChiSq 

Intercept  2.84 0.03 8092 <<.0001 
Cost -0.01 0.05 0.05 0.82 
Stay surplus  0.32 0.01 1096 <<.0001 
Cumulative loss -0.74 0.18 16.8 <.0001 
Cost*Cum. loss  0.73 0.18 16.3 <.0001 

Notes: Dependent variable Z=1 if subject clicks once more, Z=0 if subject leaves the island. 
 

Table 6 reports the most sensitive tests of Hypothesis 4. The Stay surplus coefficients in 

all panels confirm the huge impact of rational considerations. The second line of Panel A reports 

the best evidence we have found for the sunk cost effect: although relatively small, the Cost 

coefficient estimate has the predicted sign and is significant at the 1% level. The main effects for 
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the self-justification treatments are both significant at the 5% level (indeed SOIC at the 0.01% 

level). Allowing the subject to choose North or South, and including information on the cost of 

the route not taken, both seem to increase the tendency to stay on the current island.  

The treatment predictions in Hypothesis 4 concern interactions rather than main effects, 

and Panels B and C report the test results. Panel C covers case 4 and hence should give the 

hypotheses their best shot. Here the CNI interaction with Cost is significant at the 5% level but 

has the wrong sign. The other self-justification interaction, with SOIC, has the predicted sign but 

it is barely significant at the 10% level. The loss-aversion interactions both are highly significant 

and have the predicted sign. In Panel B (case 2), the CNI interaction coefficient flips to the 

predicted sign and the SOIC interaction coefficient keeps the predicted sign and becomes 

significant. The loss-aversion interactions both flip to sign, although only the TD (the 

thermometer display) retains significance. All these variables become insignificant when all 

main effects and interactions are included in the same logistic regression. 

Additional tests, omitted here, find no evidence that offering an asymmetric choice 

between North and South (CNI=a) increases the sunk cost effect. Indeed, when such a choice is 

offered, the effect is slightly stronger for those who choose South, contrary to prediction; the 

difference however at best is marginally significant. Also, increasing the contrast between high 

and low sunk costs (with or without a corresponding change in time delay, CP) seems perversely 

to reduce the sunk cost effect, but again the impact is not significant at the 5% level. Reducing 

the lower sunk cost to cL = 0 has no detectable incremental impact. 

 

 

 

 

 

 

 

 

 

 

 



 18

 

Table 6: Logistic Regressions for Decision to Stay 

Panel A: Main Effects, Cases 2 and 4 combined. Number of Observations = 164,225 

Parameter Estimate Standard 
Error 

Wald Chi-
Square 

Pr>ChiSq 

Intercept 2.34 0.12 397. <.0001 
Cost 0.07 0.03  6.2 0.01 
Stay surplus 0.35 0.01 2785. <.0001 
Choose Next Island 0.16 0.08 4.2 0.04 
Show Other Island Cost 0.25 0.06 19.1 <.0001 
Cost Pause 0.00 0.00 0.13 0.72 
Thermometer Displayed 0.03 0.04 0.42 0.52 
 

Panel B: Interactions, Case 2. Number of Observations=81,382 

Parameter Estimate Standard 
Error 

Wald Chi-
Square 

Pr>ChiSq 

Intercept  2.74 0.03 10620. <.0001 
Cost -0.89 0.24       14.0 0.0002 
Stay surplus  0.37 0.01   1398. <.0001 
Cost*CNI  0.55 0.14       16.1 <.0001 
Cost*SOIC  0.79 0.20       14.9 0.0001 
Cost*CP -0.00013 0.00008         2.33 0.13 
Cost*TDn -0.24 0.10         5.71 0.02 
 

Panel C: Interactions, Case 4. Number of Observations=82,843 

Parameter Estimate Standard 
Error 

Wald Chi-
Square 

Pr>ChiSq 

Intercept  2.86 0.03 8369. <.0001 
Cost -0.37 0.29       1.65 0.20 
Stay surplus  0.32 0.01 1113. <.0001 
Cost*CNI -0.40 0.20       3.95 0.047 
Cost*SOIC  0.14 0.09       2.74 0.098 
Cost*CP  0.0006 0.0002     10.3 0.001 
Cost*TD  0.17 0.08       4.91 0.027 

Note: Dependent variable Z=1 if subject clicks once more, Z=0 if subject leaves the island. 
The dummy variables CNI, SOIC and TD are 1 for default value y of the corresponding 
treatments and are 0 when the treatments have value n. All interaction terms between cost and 
treatment variables are insignificant when jointly included in the Panel A regression. 
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6. Discussion 

The experiment seeks to isolate the famous but elusive sunk cost fallacy. The treasure hunt task 

is simple to understand but very difficult to master fully. The matched pair design can detect 

even very small effects, and numerous treatments enable us to explore, in a variety of contexts, 

the proposed psychological drivers of the fallacy.  

 

The results can be summarized as follows. 

1. Subjects’ choices are surprisingly consistent with optimal search behavior. A large majority 

of choices are optimal, and actual losses in expected payoff represent less than 7% of 

possible losses. Losses due to stubbornness are larger than losses due to impatience, probably 

because subjects can be stubborn many times on a given island, but impatient only once. 

2. There is evidence for the sunk cost fallacy. Stubborn errors are more frequent when sunk 

costs are high in Case 1 (all-or-none choice, island value displayed on arrival) and Case 4 

(click-by-click choice, island value not displayed), and on average stubborn losses are larger 

in the remaining case (2, click-by-click choice, value not displayed). The relevant logit 

regressions indicate that subjects are more likely to stay on islands with higher sunk cost.  

3. The effect is surprisingly small and inconsistent. The simple comparison (click difference) 

indicates a small reverse effect, and so do several variants of the stubborn error and logit 

specifications. Probably the strongest evidence for the fallacy is the main effect for Cost in 

Panel A of Table 6. The relevant coefficient is significant at the 1% level and has the right 

sign, but implies a rather small effect: even a player who would stay with probability 0.50 

low sunk cost would stay with probability 1/(1+exp(0.07)) ≈ 0.52 with high cost. 

4. The treatments intended to manipulate the psychological drivers of the fallacy also have 

rather small and inconsistent impact. Contrary to conjecture, the variables manipulating self-

justification work best in Case 2, while in Case 4 they either have the wrong sign or are 

hardly significant. On the other hand, the variables manipulating loss aversion have the 

wrong sign (and one is insignificant) in Case 2 but work better in Case 4.  

 

The results reported here arose from an extensive design search. We had expected to quickly 

find a substantial sunk cost effect, but did not. With helpful advice from many colleagues, we 
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tried a succession of treatments. The best we could come up with were the small and inconsistent 

results just described. In sum, we were unable to find sunk-cost tasks and treatments that reliably 

lead subjects to substantial departures from rational behavior. The challenge thus remains for 

future investigators. 
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Table A1: Sessions and Treatments 

Date 

# of 
complete 
voyages 

# periods 
w/ cost 

diffs 

Low 
cost 
(cL) 

High 
cost 
(cH) 

Island 
values, 

hit prob.
Click 

budget 

Stakes 
(cents/
point) CP 

SIV, 
SHP RCU TD SOIC CNI 

# of 
people

Exper-
ience

8/1/02 52 11 2 18 35-65 100 4 TMT No No Yes Yes yes 4 no 
8/7/02 60 16 2 18 5-95 100 4 TMT No No Yes Yes yes 4 no 

8/15/02 16 0 2 18 20-80 100 4 800 No No Yes Yes TMT 2 no 
8/20/02 57 11 2 18 20-80 100 4 800 TMT TMT Yes Yes yes 4 yes 
8/21/02 26 7 2 18 20-80 200 2 800 No No Yes Yes TMT 4 no 
8/22/02 14 4 2 18 20-80 200 2 800 Yes No Yes Yes TMT 4 no 
9/5/02 15 4 1 13 10-90 200 2 800 Yes No Yes Yes TMT 4 no 

9/11/02 30 5 1 13 10-90 200 2 800 Yes Yes Yes Yes TMT 6 yes 
9/12/02 13 4 1 13 10-90 200 2 800 No No Yes Yes TMT 3 yes 
1/24/03 46 9 1 13 20-80 200 2 800 TMT No Yes Yes Yes 6 no 
1/31/03 36 9 1 13 10-90 200 2 800 TMT No Yes Yes Yes 4 no 
2/4/03 29 0 1 13 10-90* 200 2 800 TMT No Yes Yes Yes 4 no 
2/5/03 46 8 1 13 10-90* 200 2 800 TMT No Yes Yes Yes 6 yes 

2/19/03 22 0 1 13 10-90* 200 2 800 TMT No Yes Yes Yes 4 yes 
5/19/03 38 5 1 13 10-90* 200 2 800 TMT No Yes Yes Yes 8 no 
5/23/03 21 4 1 13 10-90* 200 2 800 TMT No Yes Yes Yes 6 no 
6/2/03 18 6 1 13 10-90* 200 2 800 TMT No Yes Yes Yes 4 yes 

8/14/03 62 12 1 13 10-90* 200 4 800 No No Yes No Yes 6 no 
8/21/03 76 15 0 10 10-90* 200 4 TMT Yes TMT Yes Yes Yes 6 no 
10/2/03 23 7 1 13 .1-.9 200 2 800 Yes No Yes Yes Yes 4 no 
10/3/03 24 5 1 13 .1-.9 200 2 800 Yes No Yes Yes Yes 6 no 

10/10/03 34 5 1 13 .1-.9 200 2 800 TMT No Yes Yes Yes 6 yes 
10/23/03 54 9 0 12 .1-.9 200 2 800 TMT No Yes Yes Yes 8 both 
11/6/03 24 5 0 12 .1-.9 200 2 800 TMT No Yes Yes Yes 6 both 

11/14/03 31 6 0 12 .1-.9 200 2 800 TMT No Yes Yes Yes 6 no 
12/4/03 44 12 0 12 .1-.9 200 1 800 TMT No Yes Yes Yes 4 yes 
12/4/03 3 1 0 12 .1-.9 100 5 800 No No Yes Yes Yes 4 yes 
1/23/04 27 5 0 12 .1-.9 200 2 800 TMT No TMT Yes Yes 8 no 
1/23/04 8 1 0 12 .1-.9 100 4 800 No No Yes Yes Yes 8 no 
1/28/04 34 8 0 12 .1-.9 200 2 800 TMT No TMT Yes Yes 7 no 
2/4/04 34 9 0 12 .1-.9 200 1 800 TMT No TMT Yes Yes 4 no 
2/4/04 4 1 0 12 .1-.9 100 4 800 No No Yes Yes Yes 4 no 

2/11/04 58 7 0 12 .1-.9 200 1 800 TMT No TMT Yes Yes 12 no 
2/11/04 12 1 0 12 .1-.9 100 4 800 No No Yes Yes Yes 12 no 
2/25/04 17 4 0 12 .1-.9 200 1 800 Yes TMT TMT TMT Yes 7 no 
2/25/04 6 1 0 12 .1-.9 100 5 800 No No Yes Yes Yes 7 no 

 
Notes: The third column reports the cases where completed voyages had complementary cost structures. All sessions 
use treatments r = 5 points per treasure, AutoDig=yes, while other treatments vary as indicated; TMT (Treatment) 
indicates variation within session. Prob(c=cH|North)=prob(c=cH|South)=0.5, except for sessions with *, for which 
prob(c=cH|North)=0.7 and prob(c=cH|South)=0.4. Island values|North=Island values|South, except for *, for which 
the entry gives Island values|North, and Island values|South=10-70 (10-80 on 2/19/03). 
Pilot experiments conducted before 8/1/02 are not listed and were excluded from the data analysis because different 
instructions were used and the data format is incompatible with later formats. Similarly, three sessions, run on 
8/14/02, 2/12/03 and 2/14/03, were excluded because of technical problems with the software during the session. 
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Computation of Rational Decisions
June 6, 2004

The classic economic model of sequential job search (e.g., Lippman and
McCall, 1976) gives insight into our treasure search task. In the classic model,
a job seeker can always pay a cost c ≥ 0 to receive another job offer y ∈ [0,∞),
assumed an iid random variable with known distribution function F . The search
terminates as soon as an offer y = x is accepted, and the payoff is x−nc, where n
is the number of offers purchased. In the simplest version, the job seeker is risk-
neutral, there is no discounting (time lags are negligible, as in our experiment),
and there is no bound on the number of offers that can be purchased.

With a current offer x in hand, the job seeker maximizes expected value V
defined recursively by the Bellman equation

V (x) = max{x,−c + EV (y)}. (1)

It is well-known that this problem has a unique solution using a reservation
price R. That is, the solution of the form: accept the most recent offer x if
x ≥ R and otherwise pay c for another offer drawn from the distribution F .
The reservation price R is determined from (1) by equating the value of the
current offer x = R to the value of continuing an optimal search −c + EV (y) =
−c +

∫
(max{y, R})dF (y) = −c + R

∫ R

0
dF (y) +

∫∞
R

ydF (y) = −c + R +
∫∞

R
(y−

R)dF (y). Cancelling R from both sides of the equation and simplifying slightly
we get the marginal condition

c = H(R),where H(z) =
∫ ∞

z

(y − z)dF (y). (2)

That is, R equates the incremental cost of search c to its incremental expected
benefit H(R). If F has a positive density over its support [L,U ] ⊂ [0,∞), it is
easily checked that the function H is strictly decreasing from H(L) = Ey − L
to H(U) = 0. Then (2) has a unique solution R = H−1(c) > 0 for any search
cost c ∈ (0, Ey − L).

The classic problem can be adapted to a finite horizon. If only m more draws
are possible, then the value function depends on m as well as x and the solution
reservation price decreases as m decreases.

Case 1: Value Displayed, Uncover All or None
Our treasure search problem at first glance looks like the classic finite horizon
problem, but it turns out to be a bit different. Consider first the case where
each island value is known upon arrival and one must uncover all sites on the
island or none. Without further loss of generality, normalize so that one click
uncovers all the sites and the initial click budget is Y > 0. In the experiment
the standard click budget is Y = 200/20 = 10 with this normalization.

Since the click budget is separate from earnings, there is no limit on the
number of islands that can be visited and skipped. Hence the analogy is to
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Y classic job searchers, each with an infinite horizon. The solution is to click
islands whose displayed value W is at least R, and otherwise to skip to the next
island, until the click budget is exhausted. (This assumes that the travel cost is
not exorbitant. If c ≥ Ey = (U +L)/2, a situation never seen in the experiment,
then the player should quit playing rather than skip.)

To compute R, first recall that the (expected) travel cost is c = (cL+cH)/2 >
0, and that the number of treasures is uniformly distributed between L ≥ 0 and
U ≤ nmax = 20 with value b = 5 value per treasure. The continuous uniform
distribution function for value then is F (x) = (x−bL)/b(U−L) for x ∈ [bL, bU ],
with F (x) = 0 for x < bL and F (x) = 1 for x > bH. Then for z ∈ [bL, bU ] we
have

H(z) =
∫ bU

z

(y − z)dF (y) = (bU − bL)−1

∫ bU

z

(y − z)dy =
(bU − z)2

2b(U − L)
. (3)

This function H is continuous and is linear decreasing (slope=-1) for z < bL,
quadratic decreasing for z ∈ [bL, bU ] and is 0 for z > bU . Solving c = H(R) we
obtain

R = bU −
√

2bc(U − L). (4)

It follows that R decreases from R = bU when c = 0 to R = bL when c =
Ey − bL = b(U − L)/2. For c ∈ [b(U − L)/2, b(U + L)/2] every island should
be clicked, but for c ≥ b(U + L)/2 = Ey the search should be abandoned. For
0 ≤ c ≤ b(U −L)/2, the expected value of moving to the next island is R before
sinking the cost and is R + c after arrival.

The reservation value from (4) is not exact when, as in the experiment, the
number of treasures on an island must be an integer. The uniform distribution
then has discrete support {bL, b(L + 1), ..., bU} with equal mass 1/(U − L + 1)
at each point. For z ∈ [bL, bU ], write z = b(L + iz + rz), where iz is the
unique integer between 0 and U − L such that the residue rz is in [0, 1). The
H-function for this discrete uniform distribution is HD(z) =

∫∞
z

(y− z)dF (y) =
b

U−L+1 [(1− rz) + (2− rz) + ... + (U − L− iz − rz)]. Sum the series to get

HD(z) =
b(U − L− iz)(U − L− iz + 1− 2rz)

2(U − L + 1)
. (5)

Comparing (3) and (5), or just noting that the distributions have the same sup-
port, one can see that HD(z) = H(z) = 0 for z ≥ bU and that HD(z) = H(z)
for z ≤ bL; in particular HD(bL) = H(bL) = b(U −L)/2. Moreover, the slope of
HD increases in U − L + 1 equal steps from -1 at z = bL to 0 at z = bU , while
the slope of H increases linearly from -1 to 0 over the same interval. Thus HD is
a continuous, piecewise linear approximation of the quadratic function H, and
(4) closely approximates the exact reservation value when U − L is reasonably
large, as in the experiment.

Case 2: Value Displayed, Uncovering Discretionary
Now consider the decision problem when the player can choose click by click
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whether to skip to the next island. Recall that there are two ways of specify-
ing island value. With replacement, each click hits treasure with independent
constant probability p. When p is displayed on arrival and the number of re-
maining clicks is evenly divisible by the number of nmax of sites per island, then
the decision problem is equivalent to the problem in the non-discretionary case
(under the maintained hypothesis of risk neutrality). The expected island value
is W = bnmaxp = 100p and the optimal strategy is to click all nmax = 20 sites
on the present island if p is at least r = R/100, and otherwise to click none.
The logic and computation of R are exactly as in the previous case.

The problem is considerably more complicated in the other subcase, no re-
placement. In this case the island value W = bw is displayed on arrival. For the
first click, the hit probability is po = w/nmax, but it changes after that. The
hit probability p given h hits out of n < nmax clicks so far on the current island
is the number of remaining treasures divided by the number of remaining sites,

p =
w − h

nmax − n
. (6)

Hence the hit probability p typically rises after a miss and declines after a hit.
This catch-up effect can cause an initially attractive value of p = po to become
quite unattractive after a hot streak. Thus the player may rationally click some
but not all sites on an island. Likewise, if the click budget is not evenly divisible
by nmax = 20, then a detailed analysis is again necessary. The material below
on Bellman equations covers these subcases.

Case 3: Value Not Displayed, Uncover All or None
The player has no basis for distinguishing one island from another on arrival and
can’t sample. Thus there is never a reason to skip an island; that only increases
cost without increasing expected revenue. As in case 1, the player should quit
if cost exceeds average island value. Otherwise he should dig up every island in
order until the budget is exhausted. This case is trivial and we don’t use it in
the experiment.

Case 4: Value Not Displayed, Uncovering Discretionary
This case is intricate, due to the update effect : after each click, a player should
use Bayes theorem to update his estimate of the island value. As in case 2, there
are two subcases. With no replacement (Case 4b) the catchup effect opposes
the update effect and is stronger in the extreme cases (very few hits or very
few misses), but is weaker in other cases. Consequently the optimal strategy
here cannot be expressed in terms of a reservation price. Replacement (case
4a) eliminates the catchup effect. Here the optimal search is characterized by a
reservation price (in terms of hits and clicks so far on the island) that reflects
the information value of another click as well as the Bayes posterior expected
values.

In both subcases, a key computation is p(h, n), the posterior probability
that the next click on the current island will hit treasure, given h hits out
of n clicks so far on the current island. We are given the prior distribution
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f(p) with support contained in [0, 1]. Of course, p(0, 0) is simply the prior
mean

∫ 1

0
pf(p)dp ≡ p. In the experiment, subjects are told the maximum U

and minimum L numbers of treasures and that the distribution is uniform, so
p = (U + L)/(2nmax) = (U + L)/40.

By Bayes theorem, the posterior density f(p|h, n) of the hit probability given
(h, n) is the likelihood of (h, n) times the prior probability f(p) and normalized
so that the expression integrates to 1.0. The desired posterior probability p(h, n)
is the expectation

∫ 1

0
xf(x|h, n)dx.

With replacement as in case 4a, the likelihood is the binomial expression(
n
h

)
xh(1 − x)n−h. With a continuous uniform prior supported on [l, u] ⊂ [0, 1]

we therefore have

p(h, n) =

∫ u

l
xh+1(1− x)n−hdx∫ u

l
xh(1− x)n−hdx

. (7)

When u = 1 and l = 0, we can integrate by parts repeatedly and the surface
terms (i.e., xi(1− x)j evaluated at 0 and 1) vanish, yielding p(h, n) = h+1

n+2 .
In the experiment, the distributions are discrete uniform. Equation (7) gives

a close approximation for u = U/nmax and l = L/nmax. The exact expression
replaces the integrals by sums over t = L, ..., U and replaces x by xt = t/nmax,
viz.,

p(h, n) =
∑U

t=L xh+1
t (1− xt)n−h∑U

t=L xh
t (1− xt)n−h

. (8)

In the no-replacement case 4b, the likelihood is hypergeometric instead of
binomial. The likelihood that there are exactly t ≤ U ≤ 20 treasures on the
island, given that h were found on the first n ≤ nmax = 20 tries, is

p(h, n|t) =

(
n
h

)
t!

(t−h)!
(20−t)!

(20−t−(n−h))!

20!
(20−n)!

(9)

if h ≤ t ≤ u and otherwise is 0. In the expression for the Bayesian posterior
probability, both denominator (the normalizing constant) and numerator con-
tain the binomial coefficient

(
n
h

)
, the expression 20!

(20−n)! , and the constant prior
probability 1/(U − L + 1). Hence these expressions cancel and we obtain the
exact posterior distribution

f(t|h, n) =
G(t|h, n)∑U

s=L G(s|h, n)
,where G(t|h, n) =

t!
(t− h)!

(20− t)!
(20− t− (n− h))!

(10)
for h, L ≤ t ≤ U and h ≤ n. Finally, the desired exact probability is the
expectation of the remaining number of treasures (without replacement) divided
by the remaining number of sites,

p(h, n) =
U∑

t=max{L,h}

t− h

20− n
f(t|h, n). (11)
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Bellman Equations
We now are prepared to derive solutions for cases 2b, 4a and 4b. The approach
is the same in each case: we write out the Bellman equation for optimal deci-
sion, insert appropriate boundary values and state transitions, and compute the
values and contingent decisions by backward induction on the number of clicks
remaining.

The Bellman equations take the following form.

V (l, s) = max{C(l, s), S(l), 0}, (12)
C(l, s) = E(x|s) + EV (l − 1, s′), (13)

S(l) = −c + V (l, so). (14)

The first line says that the value, i.e., the expected payoff over the rest of the
voyage given l clicks remaining and state s, is the maximum obtainable from
three options: clicking on the present island (C), skipping to the next island (S),
or quitting immediately (0). The second line defines the click value recursively
as the expected payoff from the next click E(x|s), plus the expected value of
continuing the voyage with one less click, taking into account the transition
from the current state s to a new state s′. The third line defines the skip value
as the value of starting on a new island (state so) less expected travel cost; note
that it depends only on the number l of clicks remaining, and not on the current
state s.

General boundary conditions include

1. V (0, s) = 0, i.e., the game is over when zero clicks remain; and

2. E(x|sm) = −∞ ∀sm such that n = nmax, i.e., only n = nmax clicks are
permitted on each island.

In case 4a, relevant state s is (h, n), the number of hits and clicks so far on
the current island. Using p = p(h, n) from equation (8), the click value for l > 0
clicks remaining and n < nmax is

C(l, s) = E(x|s) + EV (l − 1, s′) (15)
= pb + pV (l − 1, h + 1, n + 1)) + (1− p)V (l − 1, h, n + 1). (16)

The skip value here is

S(l) = −c + V (l, so) = −c + max{0, C(l, 0, 0)} (17)

where so = (0, 0) refers to the state on arrival at a new island, 0 hits on 0 clicks.
The last term uses only the click value, because skipping at so = (0, 0) sinks
the travel cost without improving prospects and thus is dominated by clicking

5



or by quitting. Recall that the skip value is constant across states, while the
click value obviously is increasing in h for given n. Hence the optimal decision
typically is of the form: Click iff h ≥ h∗(n), for some reservation value function
h∗(n).

Case 4b, no replacement, is the same as case 4a except that the expectations
in the click value use the probability p = p(h, n) defined in equation (11). For
reasons noted earlier, the probability here is not monotone in h for given n, and
therefore the optimal decision cannot be characterized by a reservation value.

Recall that in Case 2a the island value bw ∈ {bL, ..., bU} is observed, so the
relevant state now is s = (w, h, n). Hence in this case the expression V (l, so)
in equation (14) expands to EwV (l, w, 0, 0). The click value is the same as in
Case 4a except that the hit probability now comes from equation (6). The skip
value is more complicated because new islands with low w should be skipped
immediately. The skip value satisfies

S(l) = −c + V (l, so) = −c + EwV (l, w, 0, 0), (18)

where the value of arriving at a new island of value bw satisfies

V (l, w, 0, 0) = max{C(l, w, 0, 0), S(l), 0}. (19)

The difficulty is that equations (18) and (19) do not tell us directly whether to
click or skip on a new island; the skip value S(l) in (18) also enters the right
hand side of (19).

To work it out, recall that the skip value to be determined is independent of
the new island value w, while the click value kw = C(l, w, 0, 0) is increasing in
w because it takes an expectation using probability p = w/20. Hence there is
some threshold w∗(l) such that optimally one clicks at least once on an island iff
the displayed w ≥ w∗(l). The tentative skip value T (wo) is the value obtained
using an arbitrary threshold wo ∈ {L, ..., U}. By definition, T (wo) = −c +

1
U−L+1

[∑wo−1
w=L T (wo) +

∑U
w=wo

kw

]
, so

T (wo) =

∑U
w=wo

kw − (U − L + 1)c
U − wo + 1

. (20)

The optimal threshold is the smallest number of treasures for which the tentative
click surplus Kw = kw − T (w) is positive, i.e., w∗(l) = min{w : Kw ≥ 0}, and
the true skip value is S(l) = T (w∗(l)).

The solution is straightforward to compute and well behaved because Kw is
an increasing sequence in w that is positive for w = U . To see this, use (20)
to write Kw = kw − kw+ + bwc. The term kw − kw+ is increasing because kw

increases faster than its (upper) average kw+ =
∑U

v=w kv

U−w+1 . The cost coefficient
bw = U−L+1

U−w+1 is also increasing in w. Clearly KU = 0 + (U − L + 1)c > 0.
One last subcase remains. When the number of clicks remaining on arrival

at a new island is not divisible by nmax = 20, then Case 2b no longer reduces to
Case 1. For example, one should not skip to the next island when the value of a
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new island is slightly below R when only 10 clicks remain, because the marginal
benefit of skipping to a new island is depressed but the marginal cost is not. By
backward induction, this complication also affects choices when 30 clicks remain
on arrival to a new island, etc. Although every subject in the experiment begins
every voyage with a multiple of 20 clicks, most subjects depart from optimal
strategy at some point and find themselves in the situation just described.

We compute the (henceforth) optimal strategy in this subcase essentially the
same way as in Case 2a. Use the displayed hit probability p to compute the
click values kp. Note that the possible values of p are discrete multiples of 0.01
and, since b = 5, they can be indexed i = 100pi, where i = 5L, 5L + 1, ..., 5U .
Thus in this case, equations (18) and (19) reduce to

S(l) = −c + EpV (l, p, 0, 0) = −c +
5U∑

i=5L

max{kpi
, S(l), 0}. (21)

Now (21)can be solved to yield

S(l) =
∑5U

i=i∗ kpi − (5U − 5L + 1)c
5U − i∗ + 1

, (22)

where i∗ is the threshold index, for which kpi first exceeds S(l).

Matlab Code
The Matlab code below implements the Bellman equation approach just out-
lined. For each case, each l and each state s it computes the click value, the skip
value, and their difference z. Each choice i by each subject in the experiment
then is compared to the optimal choice. It is an error (i ∈ E) if it is not optimal.
The decision errors then are tabulated and their costs (SL = −

∑
i∈E min{zi, 0}

and IL =
∑

i∈E max{zi, 0}) are summed.
The code departs from the conventions above in a few minor respects. It uses

i instead of l as the index for clicks remaining, since the letter l and the number
1 are indistinguishable in Matlab. Also, since the index for a Matlab array has
to start at 1 and cannot start at 0, the actual number of clicks remaining is
i− 1, not i. Similarly, the actual number of hits on the island is h− 1, and the
number of clicks on the island is n− 1.
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Matlab Code 
% This script is for cases 2b, 4a and 4b; 
 
tic;                       % start the timer; 
 
% Experimental parameters 
clicks = 100;              % initial click budget; 
L = 2;                     % minimum number of treasures per island; 
U = 18;                    % maximum number of treasures per island; 
nmax = 20;                 % maximum number of clicks on each island; 
b = 5;                     % value in points of each treasure; 
cbar = 10;                  % expected travel cost; 
Case='2b';                 % 2b, 4a (replacement), 4b (no replacement); 
 
 
% Sizing and initializing the data structure (the set of V(.) tables) 
if Case=='2b' 
    IVs=U-L+1;             % number of different island values; 
    S=2;                   % used for sizing the staysurplus variable; 
else 
    IVs=1;                 % Cases 4a and 4b don't show island value; 
    S=1;                   % used for sizing the staysurplus variable; 
end 
 
V = cell(clicks+1,IVs);               % clicks+1 as V{1,w} is for 0 clicks; 
for w=1:IVs                           % w= # of treasures on the island; 
    V{1,w}=zeros(nmax+1, nmax+1);     % value=0 if no clicks remain 
end 
 
firstClickValue=zeros(IVs,1); 
staysurplus = cell(clicks*IVs,S); 
w_star=zeros(clicks); 
Not_satisfied=0;           % =max(# clicks) when condition was not met (2b); 
 
 
% Calculate the value function for each value of i (=clicks remaining +1); 
for i = 2:(clicks+1)                  % i=2 means 1 click remaining; 
    ['****************** clicks remaining= ' num2str(i-1) '******************'] 
 
    % Calculate the skip value; 
    if Case=='4a' | Case=='4b' 
        p0=(L+U)/(2*nmax); 
        skipValue = -cbar + b * p0 + p0 * V{i-1}(2,2) + (1-p0) * V{i-1}(1,2); 
    end 
    if Case=='2b' 
        % Calculate the initial click values for (n,h)=(0,0); 
        for j=1:IVs         % j is an index covering all island values, but starting at 1, not L; 
            w=j+L-1;        % Number of treasures on island; 
            p0=w/nmax;      % Initial probability of finding a treasure; 
            firstClickValue(j)=p0*b+p0*V{i-1,j}(2,2)+(1-p0)*V{i-1,j}(1,2); 
        end 
 
        % Calculate all possible skip values and identify the true one; 
        satisfied=0; 
        w0=L; 
        while satisfied==0 & w0<=U 



            skipValue = -(U-L+1)*cbar/(U-w0+1);     % assuming for now that w*=w0; 
            for w=w0:U 
                j=w-L+1; 
                skipValue = skipValue + firstClickValue(j)/(U-w0+1);     
            end 
            if firstClickValue(w0-L+1) >= skipValue % checking if assumption was justified; 
                satisfied=1; 
                w_star(i-1)=w0;                     % w*=w0 is correct; 
                ['w*=' num2str(w0) ', skip value: ' num2str(skipValue)] 
            end 
            %['w*=' num2str(w0)) ', k(w*-1)=' num2str(firstClickValue(w0-L)) ', skip value=' num2str(skipValue0) ', 
k(w*)=' num2str(firstClickValue(w0-L+1))] 
            w0=w0+1; % if assumption wasn't justified, try again with higher value for w0; 
        end 
        if satisfied==0 
            Not_satisfied=i-1; 
        end 
    end 
 
    % Calculate the value function; 
    for j=1:IVs                       % j=1 for cases 4a and 4b; 
        w=j+L-1;                      % Number of treasures on island; 
        staysurplus{(i-2)*IVs+j,S}=w; % last column shows island value (w); 
 
        % Boundary condition (all sites uncovered, n=20) 
        for h = 1:(nmax+1) 
            V{i,j}(h, nmax+1) = max(skipValue,0); 
        end 
 
        % Calculate the value function for n=0-19 
        p=-1; 
        staysurplus{(i-2)*IVs+j,1}=zeros(nmax,nmax); 
        for n = 1:nmax      % n=1 means 0 clicks spent on the island so far; 
            for h = 1:n 
 
                % Calculate the prob. of hitting a treasure on the next click; 
                if Case=='2b' 
                    p = prob2b(h-1,n-1,w);         % calls .m-file 'prob2b' 
                end 
                if Case=='4a' 
                    p = prob4a(h-1,n-1,L,U,nmax);  % calls .m-file 'prob4a' 
                end 
                if Case=='4b' 
                    p = prob4b(h-1,n-1,L,U);       % calls .m-file 'prob4b' 
                end 
 
                % Calculating the click value and the value function; 
                if p>=0     % p=-1 for impossible combinations of h,n,w,L,U; 
                    clickValue=b*p+p*V{i-1,j}(h+1,n+1)+(1-p)*V{i-1,j}(h, n+1); 
                    V{i,j}(h, n) = max(max(clickValue, skipValue), 0); 
                    staysurplus{(i-2)*IVs+j,1}(h, n) = clickValue - skipValue; 
                end 
            end 
        end 
    end 
end 



 
if Case=='2b' 
    plot(w_star) 
    xlabel('Clicks remaining'); 
    ylabel('w*'); 
end 
Not_satisfied 
toc             % stop the timer; 
 
% Saving the staysurplus (clickValue - skipValue); 
 
tic; 
% File name: island value range, cbar, Case; 
name=['staysurplus_',num2str(L*b),num2str(U*b),'_',num2str(cbar),'_',Case,'.txt']; 
output=zeros(clicks*IVs*nmax,nmax+S-1); 
for i = 1:clicks*IVs 
    output((i-1)*nmax+1:i*nmax,1:nmax)=staysurplus{i,1};      % n0-19; 
    if Case=='2b' 
        output((i-1)*nmax+1:i*nmax,nmax+1)=staysurplus{i,2};  % island value; 
    end 
end 
%dlmwrite(name, output, ' '); 
['Output saved to file'] 
toc 


