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Abstract: In many research contextsit is necessary to group experimenta subjectsinto
behaviord “types” Usudly, thisis done by pre-specifying a set of candidate decison
making heuristics and then assigning each subject to the heurigtic that best describes
his’her behavior. Such approaches might not perform well when used to explain the
behavior of subjectswith prefronta cortex damage. The reason is that introgpection is
typically used to generate the candidate heuristic set, but this procedureis likely to fail
when applied to the decision-making strategies of subjects with brain damage. We
suggest that the Houser, Keane and McCabe (HKM) (2002) robust behaviora
classfication dgorithm can be auseful toal in these cases. An important advantage of
this classification approach is that it does not require one to specify ether the nature or
number of subjects heuristicsin advance. Rather, both the number and nature of the
heuristics are discerned directly from the data. To illustrate the HKM approach, we draw
inferences about heuristics used by subjectsin the well-known gambling experiment
(Bechara, Damasio, Damasio and Anderson, 1994).
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Introduction

The unhappy circumstances of Phineas Gage are by now well known. Briefly, asrelated
by Antonio Damso in hisDescartes Error (1995), Gage was working as the foreman for
arailroad condruction team in Vermont in 1848, when an explosion blew an iron bar
through his left cheek, skull and the front of hisbrain. The bar exited the top of his head
at high speed, and Gage managed to survive the blast.  Although his post-accident 1Q
remained high according to standard measures, he nevertheless underwent radical
persondity changes and, perhaps more interestingly, seemed to lose the ability to make
good decisons. In particular, he systematically made decisions that were, by any
objective measure, not in hislong-run best interest. He eventudly lost his job and family,
and spent much of the rest of hislife working as a Sdeshow attraction for a circus.

We now know that Gage suffered damage to the ventromedid (VM) areaof his
prefrontal cortex (see, e.g., Damasio, Grabowski, Frank, Glalburda and Damasio, 1994).
People with damage in this area typicaly maintain good memory and score well acrossa
wide range of persondity and intelligence tests. However, they tend to have difficulty in
making “good” decisons. That is, they often make decisons that seem clearly contrary
to their best interest, even when they claim that they know thisisthe case.

Investigating the natures of the differences between VM and norma decision
meaking has proved chalenging, because VM patients perform aswell as normd patients
on many standard diagnostic tests. However, Bechara et. a. (1994) describe one
laboratory experiment in which VM patients perform remarkably differently than control
subjects. This experiment has been dubbed the “gambling task,” because it involves

turning over cards sequentially and earning and losing money, according to the markings



on each card. Becharaet. a. (1994) report that VM patients choose cards from “ bad
decks’ systematicaly more often than people without such brain damage. In their
experiment, abad deck is one that yidds high immediate rewards but higher future
losses, so that on average a person playing abad deck will lose money. A good deck, on
the other hand, provides lower immediate rewards but even lower future costs, so that on
average a person drawing from the good deck will earn money. The main result reported
by Becharaet. a. (1994) is that about 60% of VM patients draws are from bad decks,
while thisis true for only about one-third of their control subjects.

Bechara, Trand and Damasio (2000) investigate three reasons, not mutualy
exclusive, for differencesin behavior in the gambling task. These are that VM petients
might be relatively (i) hypersengtive to reward; (ii) insengtive to punishment; or (iii)
insengtive to future consequences. To discriminate these hypotheses they designed anew
experiment, avariant of the gambling task, such that the bad decks yidd low immediate
punishment and even lower future earnings, while the good decks yidd high immediate
punishment and even higher future reward. Analysis of this experiment’ s data dlows
them to conclude that neither (i) nor (ii) is supported by the experimental data, and that
(iii) isagmple hypothes's cong stent with the evidence.

In this paper we provide an dternative procedure for drawing inferences about the
heurigtics used by VM and contral patients when playing the origina gambling task. Our
approach is to analyze data from the original environment using the Statistical
classification dgorithm suggested by Houser, Keane and McCabe (2002). The goal of
our analysisis not to provide new results about the behavior of people with VM damage.

Indeed, experimentation over the last decade by Bechara and others has expanded the



knowledge of VM behavior far beyond what one can expect to gain by adatigtical
andyss of ardaivey old dataset. Rather, in this paper we demongtrate that the Houser,
Keane and McCabe (HKM) classification procedure can be used to discern behaviora
patterns that were not originally teased out of this data set, and that those patterns line-up
well with what subsequent experimentation has already discovered.

A important goa of this paper, therefore, is to use the well-known gambling task
data as a vehicle to highlight the potential advantages of an HKM analysis. There are
severd reasonsthat behaviord researchersin dl fidds, including economics, psychology
and neuroscience, should be interested in the HKM satistica approach. Oneis that HKM
does not require the researcher to pre-specify the nature or number of the heuristics used
by subjects. Thisisin marked contrast to many approaches to type-classfication that
require the investigator to pre-specify the universe of possible decison rules (eg., the
popular strategy suggested by El-Gamd and Grether, 1995). Especidly when andyzing
the behavior of people with brain damage, it seems likely that the usud introspective
process that generates this universe may fare quite badly.* In addition, HKM does not
require that al subjects with a particular brain condition (in the present case, VM and
control subjects) use the same heuristic. As discussed below, the idea behind the
procedure is to group subjects according to Smilaritiesin their decison-making behavior,
regardless of any known physical abnormdlities they might possess?

The data set andyzed in this paper is rdatively smal and unbaanced. It conssts

of 17 VM patients, and eight lesion control subjects who have brain damage in an area

1 While very common, introspection is certainly not the only procedure available to determine a universe of
possible heuristics. For example, objective evidence from neuroeconomic studies of decision making might
provide useful insightsinto the cognitive strategies used by both brain damaged and normal subjects. See,
e.g., McCabe, Houser, Truard, Ryan and Smith (2001).

2 Of course, the researcher may incorporate this information into the HKM classification procedure.



outside of the ventromedid prefronta cortex (in particular, to the left-somatosensory
cortex.) Nevertheless, we show that an analysis can be conducted that groups subjects
according to smilaritiesin thar heuristics, and that alows inference with respect to
whether these heuridics differ in terms of their sengtivity to punishment (losses).

We dlow for two types of heuristicsin our population. Our results indicate that
15 VM patients and two controls use one type of heurigtic, while two VM patients and six
controls use the other. The two heuristics do not differ with regard to the way they
respond to losses, which lines up well with the results of subsequent experimentation

reported by Becharaet. a. (2000).

2. Statistical M ethodology
The datistical procedure used in this paper is developed in detail in Houser, Keane and
McCabe (2002), and will not be repeated here. Papers that discuss closdly related
procedures for inference in multinomia choice frameworks include Geweke and Keane
(1999a), Geweke, Houser and Keane (2001) and Houser (2003). The HKM approach is
useful whenever an investigator isinterested in drawing inferences about the nature of
behaviord heterogeneity in a population, but does not want to take a strong stand with
respect to the nature of that heterogeneity. In particular, under relaively wesk
assumptions, the HKM agorithm draws inferences about both the nature and number of
heurigtics (or, equivaently, decision rules) used by subjects in a given population.
Loosely spesking, a decison rule is amap from information to action. For
example, if people gtting in athegtre are given the information that the theetre is burning,

many will likely decide to act by leaving the building. Behaviora heterogeneity might



exig even here: afew might decide to stay. Intuitively, the HKM approach alows oneto
draw inferences about both the nature and number of relationships that exist between the
information people have and the actions they take, a least within a given context.

While many interesting types of decisions are easily observed, it isusudly the
case that the information that resulted in aparticular actionisnot. Thisislessthecasein
laboratory experiments. There, much (often most) of the information that is relevant to
subjects laboratory decisonsis under the control of, and therefore known to, the
researcher. We explait this control to specify the form of the heuristics that we

investigate below.

3. The Gambling Task
Bechara s gambling task (Bechara et. d, 1994) is a sequence of static decision problems
under ambiguity. The experimenter begins by giving a subject $2,000 in play money.
The experimenter places four decks of cardsin front of the subject, and tells him/her that
they can earn more play money by turning over cards, and that hisher god isto earn as
much play money as possible. The subject istold that every card they choose will result
in them earning some amount of money, and that there will be occasiond cards thet
impose codts on them. The subject istold nothing else. The subject then begins turning
over cards, one-by-one, until they are told to stop by the experimenter. The stopping
point is after 100 cards have been selected, although the subject does not know thisin
advance.

The subject istold nothing about the payoff or cost distributions within any of the

decks of cards. In fact, the decks have been constructed in avery particular way. The



first two decks, cdl them A and B, provide a positive payment of $100 for each card.
However, they also have occasond very high costs. On average, turning over 10 cards
inthe A or B deckswill have anet cost of $250. The C and D decks have lower rewards
per card, $50, but also have lower occasiond cogts. On average, turning over 10 cardsin
the C or D decks yields a positive return of $250. For this reason, we will refer to decks
A and B asthe “bad” decks, and C and D asthe “good” decks.

The main result reported by Bechara et. d. (1994) isthat VM patients choose
from the bad decks statisticdly significantly more often than norma subjects. On
average, around 60% of al VM patients draws are from the bad decks, while thisistrue
of only about one-third of the norma patients draws. Thisled to much speculation about
the source of the behaviord difference. One question was whether VM patients were
relatively insengtive to losses, and if thisinsengtivity could explain the difference.
Subsequent research by Bechara et. a. (2000), which used a new experiment designed to
address this question, suggested that differences in loss aversionbehavior were not likely
the source of the different choices. The results we report below provide convergent

evidence for this conclusion.

4. The Model

The Houser, Keane and McCabe approach to type classfication (2002) requires that
subjects rdevant information sets, and the link between information and action, be
gpecified. We assume that each subject has a subjective “vaue’ associated with draws
from each deck of cards, and that they draw a card from the deck on which they place the

highest value. The way that values are formed can be modded in any way thet the



researcher chooses, subject only to usua identification issues. In this chapter, because our
intent is primaxily illudtrative, we use a very smple model that nevertheless captures
important features of subjects actud play. Denote the deck by j (with tota number of
decks J), the subject by n and the current draw by t. Assume that subjects assgn vaues
to drawsin H different ways (that is, there are H vauation heuritics used in the
population.) With this notation, we model the subjective value that subject n assgnsto

drawing a card from deck j a round t, assuming they use heuritic h, as.

Vn(j,th) = byn
+ byjnl(Last Draw was from deck j & t>50)* Los(t-1)
+ bgjnl (Last draw was from deck j & t>50)* Reward(t-1)

+en(j,th),

where eis an identicaly and independently distributed Gaussian random variable that
represents idiosyncratic noise, which might be reated to fallures to implement the
heurigtic perfectly. Because thisis a Stuation of ambiguity, the modd assumes that the
subject uses the first 50 draws to gain experience in each deck. Inferences with respect to
loss and reward effects are based on the fina 50 draws experienced by each subject.
Findly, the function “1()” represents an indicator function that takes value one if the
condition ingde the bracketsis true, and is otherwise zero. This modd smply posits that
the value a subject places on drawing from deck j depends on a constant, noise, and

his’her most immediate previous experience with that deck.



It is possible to use the HKM dgorithm to draw inferences about the number H of
heurigticsin the population, the nature of each heurigic hin H (that is, the coefficient
vaues), and to determine the probability with which each subject uses each heurigtic. A
specific way to do thisis detailed in Houser, Keane and M cCabe (2002), and involves a
Bayesan andyss of amixture of probits modd (for more on mixtures of probits see,
e.g., Geweke and Keane, 1999b).

For this paper’s purposes, however, we take a dogmatic stand that there are
exactly two heurigtics a use in the population. There are two reasons for this decision.
Fird, the results of substantia previous research with this population suggest thet there
arein fact two types of behaviord heurigicsin this population, and using these previous
results to inform our current mode is reasonable. At the same time, note that thereisno
necessary reason to expect that all VM patients will follow the same heuridtic, or thet dl
norma controls will follow the same heurigtic. For example, some VM patients might
follow a dtrategy that looks very smilar to the control subjects. The HKM procedure
dlowsfor this and other posshilities

A second reason to assume that there are two types of decison rulesin this
population isthet, as a practica métter, it would be difficult to interpret the finding that
there are three or more heurigtics in the population. The reason is that our sample Szeis
rather small (8 controlsand 17 VM patients), and evidence of more than two heuristics
might not be robust to alarger sample, or the nature of the heuristics that we estimate
might be a quite biasad reflection of the true heurigtics a use in the population, given the

relatively small number of subjects that would be assigned to each.



This highlights an important feature of the HKM gpproach to type classfication.
Becauseit isarobust approach, in the sense that both the nature and number of heurigtics
are determined endogenoudly, it can be less efficient than procedures that take a stand on
the heurigtics that subjects use. Of course, if such astand iswrong, and the model
consequently misspecified, then the efficiency gain will come at the cost of specification

error bias.

4b. Implementation and I dentification

Although there are two “good” decks, and two “bad” decksin the actud experiment, in
this chapter we report results based on amode that tregts each pair as one. Equivaently,
we moded the individua as making a choice between choosing a deck with $100 payoffs
or $50 payoffs, and then randomizing across the two decks within that choice. Hence, we
set J=2, which turns out to mean that there are three identified coefficients, dong with

one variance term with a pegged value, that characterize each heuridtic.

To seethis, note that the vaue function described above requires both location
and scae normdization for identification. Location normdization is achieved by
differencing:

Vi(L,t;h) - Va(2,th) = bian - bizn

+ boanl(Last Draw was from deck 1 & t>50)* Loss(t-1)
- boonl(Last Draw was from deck 2 & t>50)* Loss(t-1)
+ bzsnl(Last draw was from deck 1 & t>50)* Reward(t-1)
- bsonl(Last draw was from deck 2 & t>50)* Reward(t- 1)

+ en(Lt;h) - en(2,t;h).
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Note that the differenced congtants are not separately identified, but are estimated as a
sngle congant. Similarly, the differenced error component istrested as asingle noise
term. Also, because the nature of the experimert induces little variation in rewards, the
coefficients on lagged rewards are only weakly identified. Consequently, we choose to
drop them for the remainder of our andysis. Findly, scale normaization is achieved by
pegging the variance of the error a afixed vaue.

Asatechnicd note, it turns out that to implement the Bayesian verson of HKM
as described in Houser, Keane and M cCabe (2002) one must specify priors on the
coefficients “b” that appear in the vaue expression above, ong with the fraction of each
type that existsin the population. We follow Houser, Keane and McCabe (2002) and use
Gaussan priors with means of zero and standard deviations of one for the intercepts, and
0.1 for the coefficients on losses. We use a diffuse Dirichlet prior centered at %2 for the
fraction of each type in the population. These priors are quite wesk relative to the

posterior didtribution. That is, the datais responsible for the results we report below.

5. Data and Results

Our data set consists of 25 subjects who played the gambling task onetime. 17 of our
subjects are VM patients, and 8 are lesion controls with damage to the left somatosensory
cortex. The data were collected by Antoine Bechara and colleagues at the University of
lowa, and represent a subset of data that has been previoudy published in various books
and journals. Figure 1 compares the frequency with which the two types of patients drew
from the “bad” decks (the $100 decks.) As has been previoudy reported, VM patients

draw from the bad decks datisticaly sgnificantly more often than the normd patients.
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Moreover, as seen in Figure 2, the rate at which VM patients draw from the bad deck
seems roughly congtant over the entire experiment. The rate a which LC' sdraw from
the bad deck is smilar to the VM rate over the first 10 or so draws, but then declines

substantialy, but stays roughly constant over the last 80 or so draws.

5.b. Results

Our results are derived through the use of a Gibbs sampling dgorithm. The Gibbs

sampler is arecently developed numerica procedure for drawing inferences about
gatistica models like ours. In the present case, and as atechnica detail, our inferences
are based on a Gibbs sampling agorithm that we coded in FORTRAN 77 and that makes
extensive use of IMSL subroutines® We ran the sampler for atotal of 500 cycles. The
results reported below are based on the last 250 cycles.* Specifics on theway inwhich a
Gibbs sampler can be implemented to draw inferences in this environment are available

in Houser, Keane and McCabe (2002).

Congder firgt the way in which we type-classify subjects. We based our subject
classfication on the posterior mean probability that they were each type. If the posterior
probability of being the VM type is grester than or equal to 0.495,° then they are
classfied asthat type. Otherwise, they are classfied asthe leson control type. Note that
this classification procedure assigns people to the VM type unlessthere is * reasonabl €’

evidence to the contrary. Thisreflects our prior knowledge that the sample is unbaanced

3 Our FORTRAN code is available on request.

* Visual inspection of the draw sequences suggested that convergence had been achieved by cycle 250.
Complete draw sequences are available from the authors on request.

® Three subjects had a posterior probability of 0.496 of being the ventromedial type, and in each case we
assigned then to the ventromedial type. Two of these three are actually VM, so reversing the classification
for these three reduces the number of total VM types by 3 (from 17 to 14), and induces one additional type
classification error (from 4 to 5).
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infavor of VM patients. (Alternatively, this prior could be incorporated directly in the
agorithm, but this aternative approach seemed more transparent for the purpose of this
paper.) The posterior type probabilities favored one type over another by only afew
percentage points for most of our subjects. The highest posterior mean probability across
al subjects of being the VM type was about 66%, and the smallest was about 36%.

Table 1 provides the results of our typing procedure. We cal one of the two
edimated heurigics the “VM” heurigtics, smply because most of the subjects assgned to
itare VM patients. We denote the other heuristic asthe“LC” heuritic for the same
reason. It turns out that 17 subjects are classified as VM types, which isidentical to their
frequency in the data. However, two subjects classified as VM are in fact leson controls.
Thus, four subjects are “midabeled,” in the sense that their actua brain condition is not
reflected by the label of the heuridtic that they use.

Table 2 describes the margind pogterior distributions for the coefficients of each
heurigtic. Notice first that the margind posterior distributions of the coefficients for the
amount logt in the previous period have the mgority of their mass to one sde of zero for
both the LC and VM heurigtics. Moreover, the vaues of these coefficients are very
amilar. Thissuggestsimmediately that, as reported by Bechara et. d. (2000) based on a
different experimental design, both VM and lesion control patients respond to losses
incurred in the previous period, and that these responses are smilar. On the other hand,
the posterior means of the constant terms for the two heuristics differs by about 0.1, and
the pogterior means lie on different Sdes of zero. This provides some evidence that the

basdinerate at which VM’s and LC's choose from the bad deck differs.
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The standard deviation of each heurigtic’s error term is 0.96, and this can be used
to provide an interpretation of the coefficient estimates® Evaluated at posterior means,
subjects using the VM heurigtic will choose from the bad deck at a basdline rate of about
52%, which is about 10 percent higher than the LC' s 48% basdinerate. These basdine
rate differences are compounded by the effect of losses. Our estimates imply that both
types of subjects are more likely to choose from the same type of deck after experiencing
alossin that deck, than they would be otherwise.” For example, a subject who turns over
acard in the “bad” deck and receives acost of $1,250 will choose from the bad decks
again with 82% probability if they are usng the VM heurigtic, and 77% under the LC
heurigtic. Experiencing acost of $250 from the “good” decks generates probakilities of
17% and 16%, respectively. Overal then, these results indicate that VM patients choose
cards from the bad decks at a higher basdline rate than the LC subjects. As aresult, they
experience losses more frequently, and these losses lead them to choose yet more
frequently from the bad decks. The interaction of higher basdine choice rates and the
effect of experiencing losses lead to the subgtantialy higher bad deck choice frequencies
of VM subjects.

Our analysis leaves unanswered the question of why VM patients would tend to
choose from the $100 decks at a higher basdline rate than the lesion controls. Further
experimentation by Bechara et. d. (2000) suggests that the reason may be that VIM

damage leaves one unable to assess the future negative consegquences of one's actions

® The value of this parameter varied slightly during the Gibbs sampling algorithm due to a technical
oversight. This variation was quite small and exhibited no drift.

" This might be counterintuitive. One possible explanation for this behavior is that subjects come to expect
that itisunlikely to experience two lossesin arow in agiven deck. Alternatively, this result might reflect
an aggregation effect embedded in our statistical model. In particular, it is possible that subjects arein fact
switching decks after aloss, but not switching reward amounts.
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accurately. Certainly, this reasoning is conggtent with the life and times of Phineas
Gage, and is supported by the skin-conductivity experiments reported in Becharaet. d.,
(1997). VM patients seem to react to negative events, and yet not act in the future as

though they were aware that more such events might occur.

6. Concluding comments

Uncovering the nature and number of behaviora heurigtics that people use, even in very
narrow contexts, presents one of the most important current chalenges to the behaviord
sciences (see Houser, 2002b for an elaboration of thispoint.) A standard approach to this
involves somehow determining a universe of possible ways that people might act, and

then determining which one among this universe fits each person’s behavior best (see,

e.g., El-Gama and Grether, 1995). While this gpproach has been shown to work well in
many circumstances (see, e.g., Houser and Winter, 2003), there are some environmentsin
which its successislesslikely. The study of brain damaged peopleis one such
environment, because it does not seem likdly that introgpection by a person with a
normally functioning brain could provide accurate guidance on the heurigtics that might

be used by someone with a significant brain abnormdity. The HKM classfication
procedure is arobust dternative, and we have demonstrated in this paper that it seemsto
work reasonably well within the context of the well-known gambling task environment.

In particular, the results obtained by the HKM gtatistical procedure line-up well with the

results of broader, subsequent experimentation with VM patients.
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Classification

Actual Brain Condition

VM LC Total
VM 15 2 17
LC 2 6 8
Total 17 8

Table 1. Number of subjects of each classified type by actual

brain condition.
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Table 2
Marginal Posterior Distributions

LC Heuristic VM Heuristic
Mean SD Mean SD
Constant] -0.05362 0.09747 0.04513 0.08600
Loss Bad Deck 0.00062 0.00028 0.00066 0.00033
Loss Good Deck -0.00381 0.00138 -0.00400 0.00125

Note. These coefficients correspond to the differenced vaue function described in section
4.b, where the bad deck isdeck “1” and the good deck is deck “2.” Hence, the congtant is

b11-b1o, Loss Bad Deck isbyq, and Loss Good Deck is—hos.
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