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Abstract We introduce a parametric model of other-regarding preferences. The
income distribution and the kindness or unkindness of others’ choices (“intentions”)
systematically affect a person’s emotional state. The emotional state systematically
affects the marginal rate of substitution between own and others’ payoffs, and thus
the person’s subsequent choices. The model is applied to two sets of laboratory data:
simple binary choice mini-ultimatum games, and Stackelberg duopoly games with a
range of choices. The results confirm that other-regarding preferences respond to
others’ intentions as well as to the income distribution.
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Before any thing, therefore, can be the complete and proper object, either of gratitude

or resentment, it must possess three different qualifications. First it must be the cause

of pleasure in the one case, and of pain in the other. Secondly, it must be capable of

feeling these sensations. And, thirdly, it must not only have produced these sensations,

but it must have produced them from design, and from a design that is approved of in

the one case and disapproved of in the other.

– Adam Smith (1759, p. 181)

1 Introduction

Everyone knows that people care about other people. Economists have known it at least

since Adam Smith, but only recently have begun to recognize the need for explicit models.

Under what circumstances will I bear a personal cost to help or harm you? What is the

marginal rate of substitution between my own payoff and yours? The goal of this paper is

to propose a model that addresses such questions and, using some existing laboratory data,

to illustrate its application.

Many things may affect how I care about you, but two general motives stand out. First

is status, or relative position: are you a member of my family, or my boss or employee, or a

wealthy or poor neighbor? In the laboratory data, the most prominent such variable is the

distribution of income: what is your current payoff relative to my current payoff?

A second motive is reciprocity: how do I respond to your intentions towards me? If I

think you have helped me in the past or want to help me in the future, I am more likely

to value your welfare. Of course, economists are familiar with folk theorem arguments

that I help you now so that you will help me later and thereby increase the net present

value of my payoff stream. Reciprocity here refers to something quite different, although

complementary: if you are my friend, I find it pleasurable to increase your material payoff,

whether or not it affects the present value of my own material payoff. Negative reciprocity

is also included: if you are my foe (e.g., I think you have harmed me or my friends, or will do

so when you have the opportunity), I enjoy decreasing your material payoff. Smith (1759)
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refers to these emotions as the “moral sentiments” of gratitude and resentment, and suggests

three necessary conditions for their proper expression.

Our model formalizes the idea. In the model, status and reciprocity affect my emotional

state, summarized in a scalar variable θ, and my emotional state affects my choices. Smith’s

resentment corresponds to negative θ and gratitude corresponds to positive θ. The model

retains the conventional assumption that I choose an available alternative that maximizes my

utility function, and follows recent contributions in allowing the utility function to depend

on your material payoff y as well as my own material payoff m. The simplest example is

u(m, y) = m + θ y. The key innovation is to model the emotional state θ as systematically

affected by the reciprocity motive r as well as by the status motive s.

Section 2 sets the stage by summarizing recent related literature. Section 3 below

proposes specifications of the model elements r, s, and θ, and proposes a more general utility

function that allows non-linear indifference curves. Section 4 applies the model to laboratory

data from mini-ultimatum games, simple extensive form games where both players have

binary choices. Section 5 applies the model to laboratory data from Stackelberg duopoly

games, where both players have a range of choices. Section 6 suggests further applications,

and Section 7 offers a concluding discussion. Technical details from Sections 3 and 5 appear

in the appendices.

2 Recent Approaches

Economic models traditionally assume that decision-makers are exclusively motivated by

material self-interest. Maximization of own material payoff predicts behavior quite well

in many contexts. Examples include competitive markets, even when gains from trade go

almost entirely to sellers or almost entirely to buyers (Smith and Williams, 1990); one-sided

auctions with independent private values (Cox and Oaxaca, 1996); procurement contracting

(Cox, Isaac, Cech, and Conn, 1996); and search (Cason and Friedman, 2003; Cox and

Oaxaca, 1989, 2000; Harrison and Morgan, 1990).
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Maximization of own material payoff predicts poorly in a variety of other contexts.

Examples include ultimatum games (Güth, Schmittberger, and Schwarze, 1982; Slonim

and Roth, 1998), voluntary contribution of public goods games (especially such games that

allow costly opportunities for punishing free riders, e.g., Fehr and Schmidt, 1999), and

experimental labor markets (e.g., Fehr, Gächter, and Kirchsteiger, 1997). Fehr and Gächter

(2000) summarize recent evidence on the economic impact of motives beyond self-interest.

The laboratory data, together with suggestive field data, have encouraged the develop-

ment of models of other-regarding preferences. This literature falls into two broad classes.

First there are the relative payoff (or distributional) models of Fehr and Schmidt (1999),

Charness and Rabin (2002), Bolton and Ockenfels (2000), and Cox, Sadiraj, and Sadi-

raj (2002a). To facilitate comparison with our specifications, we write out two-player ver-

sions of these models.

The Fehr-Schmidt model has piecewise linear indifference curves over my income m and

your income y, with two marginal rate of substitution parameters 0 ≤ β ≤ α ≤ 1 for the

cases that my income is less than or greater than yours. The utility function is

u(m, y) =




m − α (y − m), if m < y,

m − β (m − y), if m ≥ y.

That is, I like own income and dislike income inequality, especially when I have the short

end. For two players, the Charness-Rabin distributional model looks the same except that

the MRS parameters have fewer restrictions, and so can include competitive preferences

(β < 0 < α), inequality- or difference-averse preferences (α > 0, β > 0), and quasi-maximin

preferences (1 > β > −α > 0). The Bolton-Ockenfels model also assumes that I like own

income and dislike income inequality, but the utility function takes the non-linear form

u(m, y) = v

(
m,

m

m + y

)
.

The function v is assumed to be globally non-decreasing and concave in the first argument, to

be strictly concave in the second argument (relative income m
m+y ), and to satisfy v2(m, 1

2) = 0

for all m. The Cox, Sadiraj, and Sadiraj (2002a) model includes nonlinear indifference curves
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for egocentric other-regarding preferences. The utility function has the form

u(m, y) =




(mα + θ− y α)1/α, if m < y,

(mα + θ+ y α)1/α, if m ≥ y,

with parameter restrictions 0 ≤ α ≤ 1, 0 ≤ θ− ≤ θ+ ≤ 1, and θ− < 1 − θ+. Thus I

am not averse to income inequality; I like own income and your income, but my marginal

rate of substitution depends on whose income is higher, and in comparing payoff pairs

(m, y) = (c, d) and (m, y) = (d, c) I prefer (c, d) to (d, c) when c > d.

The main alternatives so far to these distributional preference models are equilibrium

models that try to capture the reciprocity motive in terms of beliefs regarding inten-

tions. Building on the psychological games literature (e.g., Geanakoplos, Pearse and Stac-

chetti, 1989), Rabin (1993) develops a theory of fairness equilibria (for two player games in

normal form) based on the following representation of agents’ utilities. Define ai, bj , and

ci, respectively, as the strategy chosen by player i, the belief of player i about the strategy

chosen by player j, and the belief by player i about the belief by player j about the strategy

chosen by player i. Rabin (1993, pp. 1286-7) writes the expected utility function for player

i as

Ui(ai, bj , ci) = πi(ai, bj) + f̃j(bj , ci) [1 + fi(ai, bj)],

where πi(ai, bj) is the monetary payoff to player i, f̃j(bj , ci) is player i’s belief about how

kind player j is being to him, and fi(ai, bj) is how kind player i is being to player j (relative

to a benchmark taken to be the average of the highest and lowest possible payoffs). Thus

negative reciprocity (f̃j < 0 and fi < −1) as well as positive reciprocity increases utility.

The model looks for equilibria in actions and beliefs about intended kindness; typically there

are many such equilibria.

Dufwenberg and Kirchsteiger (2004) propose an extension to extensive form games with

N players, and Falk and Fischbacher (2001) propose a different extension that also cov-

ers incomplete information but uses a distributional preference utility function. Charness

and Rabin (2002), in addition to their distributional model, also propose an equilibrium
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model involving distributional preferences and beliefs about other players intentions. All

the models are complex and have many equilibria, and so seem intractable in most applica-

tions. Such problems seem unavoidable for models that assume equilibrium in higher order

beliefs.

Levine (1998) improves tractability by replacing beliefs about others’ intentions by es-

timates of others’ types. In his model, players’ utilities are linear in their own monetary

payoff m and in others’ monetary payoffs yj . For two player games, utilities are of the form

u(m, y) = m +
am + λ ay

1 + λ
y,

where am ∈ (−1, 1) is my type or “coefficient of altruism,” ay ∈ (−1, 1) is my current

estimate of your type, and λ ∈ [0, 1] is a weight parameter. Levine demonstrates that his

model is consistent with data from some ultimatum game and market experiments, and it

clearly is more tractable than the previous equilibrium models.

We propose a more drastic simplification. Instead of beliefs or type estimates we use

emotional states based on actual experience: my attitude towards your payoffs depends on

my state of mind, e.g., kind or vengeful, and your actual behavior systematically alters my

emotional state. Our model is consistent with the axiomatic approaches of Sobel (2001) and

Guttman (2000) but is more explicit. It is simply a preference model, not an equilibrium

model, and therefore sidesteps many of the complications involving higher order beliefs.

But unlike the distributional preference models discussed above, in our model an agent’s

distributional preferences are conditional on the revealed intentions of others.

Recent experiments compare the explanatory power of earlier models. Evidence contrary

to the (unconditional) distributional preference models includes the following. Kagel and

Wolfe (2001) find that rejection rates in the ultimatum game are essentially unaffected

by unequal (high or low) contingent payments to a third (strategic dummy) player. In

four separate public goods experiments, Croson (1999) finds positive relations between own

contribution and (a) own beliefs about others’ contributions and (b) actual contributions

of others, especially with the median of others’ contributions. In mini-ultimatum games
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(discussed further in Section 4 below), Falk, Fehr and Fischbacher (2003) find that the

rejection rate for a [2 of 10] offer declined as the alternative offer (not chosen by the proposer)

became less favorable to the respondent. They also find that people punish even when the

punishment does not reduce payoff inequality. Brandts and Charness (2000) find that

deception in the prior cheap talk stage significantly increases the punishment rate, and

some subjects reward favorable sender behavior. Blount (1995) finds that responders in her

ultimatum games accepted lower offers when they were randomly generated than when they

were chosen by human subjects. Offerman (2002) has similar results: intentional helpful

(hurtful) actions were rewarded (punished) more frequently than identical but randomly

generated actions. See also Ahlert, Crüger, and Güth (2001), Charness (2002), Güth and

Kovács (2001), Gibbons and Van Boven (2001), and Kagel, Kim, and Moser (1996).

On the other hand, there are some empirical studies that seem more favorable to uncon-

ditional distributional preferences than to reciprocal preferences, including Bolton, Katok

and Zwick (1998) and Bolton, Brandts and Ockenfels (1998). Cason, Saijo, and Yam-

ato (2002) look at voluntary contributions public good games with a prior participation

decision. They conclude that “spite” is more prevalent in Japan than in US subject pools,

but eventually outcomes are more efficient in Japan.

Cox (2002, 2004) uses a triadic experimental design to discriminate between actions

motivated by unconditional distributional preferences and actions motivated by reciprocity

considerations, in the context of the Berg, Dickhaut, and McCabe (1995) investment game.

Using dictator game treatments as controls, the experiments support the conclusion that

behavior is significantly motivated by altruism as well as by trust and positive reciprocity.

Cox, Sadiraj, and Sadiraj (2002b) use a triadic design in the context of the moonlighting

game introduced to the literature by Abbink, Irlenbusch, and Renner (2000). Cox et al. re-

port that altruism and positive reciprocity (but not negative reciprocity) are significant

motives for behavior in the moonlighting game.

Cox and Deck (2002) report data from eleven experimental treatments involving 692
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subjects that provide a systematic exploration of the existence and nature of motives for

reciprocal behavior in two-person games. The triadic experimental design supports dis-

crimination between motivations of reciprocity and (non-reciprocal) altruism. They find

significant positive reciprocity in the trust (or mini-investment) game when it is run with a

single-blind protocol but not when it is run with a double-blind protocol. They do not find

significant negative reciprocity in the “punishment” game (i.e., the (5, 5) mini-ultimatum

game) when it is run with a double blind protocol in a triadic design.

In summary, the laboratory evidence confirms that people do care about others’ payoffs

as well as their own. The marginal rate of substitution (between my payoff and yours) is not

constant, however, and may be affected by reciprocity as well as distributional and other

status motives. There is room for a tractable model that can assess empirically the impact

of the various motives.

3 Model Specifications

This section presents a new model of preferences that incorporates objectively defined vari-

ables r and s capturing reciprocity and status motives. For pedagogical and comparative

purposes, the presentation here considers only two player extensive form games of complete

information with first mover F receiving material payoff y, and second mover S receiving

material payoff m. The model shows how the emotional state of S defines the marginal rate

of substitution (MRS ) between own payoff m and other’s payoff y, and how the emotional

state responds to the values of r and s that arise from F ’s prior choice.

Due to its importance in existing literature, the distribution or relative payoff is sepa-

rated from other aspects of the status motive, and is captured in the shape of indifference

curves in (m, y) space. To see this clearly, suppose for the moment that both payoffs are

positive and that the second mover has kind preferences (i.e., increasing in both own and

other’s payoff). The indifference curves then have the usual negative slope. If preferences

are convex, the MRS increases as one moves along any indifference curve in the direction of
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increasing y/m ratio; see figure 1 (a). But y/m is a natural way to specify relative payoff.

The MRS is independent of y/m when indifference curves are linear, and greater sensitivity

to y/m takes the form of more convex preferences.

With homothetic preferences, all indifference curves have the same slope where they

cross any given ray, y/m = constant; in this case relative payoff dependence is well defined.

Fortunately the convenient and well-known constant elasticity of substitution (CES) util-

ity function represents homothetic preferences. Written in general form, the CES utility

function is u(m, y) = (mα + θ y α)1/α; see also Cox, Sadiraj, and Sadiraj (2002a).

We modify this function slightly. The exponent 1/α is problematic when it applies

to a negative expression, which will arise when θ is sufficiently negative. Of course, the

outside exponent doesn’t affect the shape of the indifference curves, but its sign affects their

ordering. The ordering is preserved and the negativity issue is finessed by using 1/α as a

coefficient. Hence the preference model is defined for convexity parameter α ∈ (−∞, 1] by

u(m, y) =




1
α (mα + θ y α), α �= 0;

my θ, α = 0.
(1)

With these preferences we have MRS = ∂u/∂m
∂u/∂y = θ−1

( y
m

)1−α. Hence the emotional

state θ is the willingness to pay (WTP = 1/MRS ) at an allocation on the equal payoff line

m = y. Preferences are linear (and MRS is constant) if α = 1, and preferences are strictly

convex (and MRS strictly increases in relative payoff y/m along indifference curves) if and

only if α < 1. Appendix A.1 shows that indifference curves for α �= 0 converge pointwise to

indifference curves of the Cobb-Douglas preferences u(m, y) = my θ as α → 0. A standard

textbook argument shows that as α → −∞, the indifference curves converge to Leontief

indifference curves with corners on the ray y/m = θ−1.

The emotional state θ is a function of the reciprocity motive r and the (residual) status

motive s. A natural specification for the reciprocity variable is r(x) = m(x) − m0 , where

m(x) is the maximum payoff the second mover can guarantee himself given the first mover’s

choice x, and m0 is m(x) when x is neutral in an appropriate sense. The idea is that
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the second mover regards additional payoff as kindness to be reciprocated, and shortfalls

from m0 as violations of his property rights, to be negatively reciprocated.1 Often it is

convenient to normalize r(x) so that it lies in the range [−1, 1]. Let mg = maxx m(x) and

mb = minx m(x). The normalized version is r(x) = (m(x)−m0)/(mg−mb), when mg > mb,

and r = 0 otherwise.

The variable s represents relative status (other than relative payoff, which is already

accounted for). Assume that social norms assign real (possibly integer) status values sF

and sS to the first and second movers in the context of the game currently played; these

may depend on the roles played as well as on observable personal characteristics such as

gender, age, job title, etc. Then a natural specification is s = sF − sS . For example, under

some social norms the first mover’s status and hence s would increase if she had to earn the

right to be the first mover.

In estimating the model, we maintain the following four assumptions.

A.1 Individuals choose so as to maximize a utility function of the form in equation (1).

A.2 The emotional state function θ = θ(r, s) is identical across individuals except for a

mean zero idiosyncratic term.

A.3 θ(r, s) is weakly increasing in r and s.

A.4 θ(0, 0) is non-negative but θ(r, s) is negative when its arguments r and s are sufficiently

negative.

The case of negative θ deserves a brief comment before presenting sample applications.

A person with negative θ is willing to pay to reduce other’s payoff. That is, y is a “bad”

1 Konow (2001) elaborates an objective theory of m0 as a function of the agent’s relative actual effort

levels (“accountability”), the efficient effort levels, the agents’ basic material needs, and the context. Konow

(2000) extends (part of) this theory to allow for self-serving subjective distortions of the objective m0 , and

confronts evidence from dictator games. (In our framework, this game entails a strategic dummy first mover.)

Konow (2003) surveys relevant moral philosophy and evidence. Gächter and Riedl (2003) offer a general

discussion and demonstrate the impact of m0 (which they call moral property rights or entitlements) in new

laboratory data.
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rather than a “good,” and the indifference curves slope upward. CES preferences then have

one straight line indifference curve, the ray y/m = |θ|−1/α corresponding to u = 0, and the

slopes of other indifference curves converge towards the slope of this ray as in figure 1 (b).

(a) Indifference curves for θ = 0.3.

y
m = 2

y
m = 3

2

y
m = 1

4

(b) Indifference curves for θ = −0.3.
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Figure 1: Indifference curves for the utility function u(m, y) = 2.5 (m 0.4 + θ y 0.4).

4 Evidence from Mini-Ultimatum Games

Mini-ultimatum games (Bolton and Zwick, 1995; Gale, Binmore, and Samuelson, 1995)2

have an especially simple structure that is amenable to our approach. As illustrated in

figure 2, the first mover F (the “proposer”) offers one of two possible positive payoff vectors,

and the second mover S (the “responder”) either accepts the offer, which then becomes the

actual payoff vector, or else refuses, in which case the payoff is (m, y) = (0, 0). In the 5/5

game, for example, if F chooses left (x = “Take”) then S chooses between payoff vectors

(m(x), y(x)) = (2, 8) and (m, y) = (0, 0); if F chooses right (x = “Share”) then S chooses

between (m(x), y(x)) = (5, 5) and (m, y) = (0, 0).

With standard self-interested preferences, S always accepts a positive payoff because

refusing gives him zero payoff. Ultimatum games are interesting because S often rejects

2 Binmore condemns the term mini-ultimatum game or MUG, which we perpetuate, and favors ultimatum

mini-game. As a compromise, we urge readers to parse MUG as mini-[ultimatum game].
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positive offers, and the mini-ultimatum game is especially interesting because, contrary

to the distributional models reviewed earlier, the rejection rate of the offer (2, 8) varies

systematically across games with different x = “Share” alternatives. We show that our

model accounts for this effect via the impact of the reciprocity variable r(x) on the WTP

parameter θ.

1

Take

2

Share

2

Tolerate Punish Accept Reject

8

2

0

0

5

5

0

0

5 � 5 Game

1

Take

2

Share

2

Tolerate Punish Accept Reject

8

2

0

0

2

8

0

0

2 � 8 Game

1

Take

2

Share

2

Tolerate Punish Accept Reject

8

2

0

0

8

2

0

0

8 � 2 Game

1

Take

2

Share

2

Tolerate Punish Accept Reject

8

2

0

0

10

0

0

0

10 � 0 Game

Figure 2: Extensive forms of mini-ultimatum games.

The empirical task is to explain responder choice, coded

Z =




0, if S chooses (0, 0),

1, otherwise.

It is natural to use probit estimation, with explanatory variables derived as follows. Let

S’s property right m0 be his feasible payoff that is closest to equal split but not higher

than the proposer’s, so m0 = min{5, mg}. In the 8/2 game in figure 2, the reciprocity

variable is r = 0 because the proposer has no real choice and mg = mb. In the other three
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games mg = maxx{m(x)} > minx{m(x)} = mb and the normalized reciprocity variable

r(x) = (m(x) − m0)/(mg − mb) takes on a range of values.

The mini-ultimatum game data reported by Falk, Fehr, and Fischbacher (2003) contain

no variation in the status variable (other than relative payoff), so s is constant. By As-

sumptions A.1 – A.4 and a first order Taylor series approximation, second mover i has WTP

parameter θi = a+ b r +σ εi, where (for the constant value of s) a is the population average

value of θ at r = 0, and b is the non-negative responsiveness to r. Slightly strengthening

A.2, we assume here that idiosyncratic individual differences are normally distributed with

variance σ2 > 0.

For α < 0, u(0, 0) = −∞ and u(m(x), y(x)) is finite, regardless of whether x =“Take”

or x =“Share,” so the predicted choice always would be Z = 1. In practice, this implies

that for data sets that include rejections of the first-mover offer, the estimate of α will

be positive. When α > 0, we have Z = 1 if and only if 0 = u(0, 0) < u(m(x), y(x)) =

1
α (m(x)α + θ y(x)α) which is equivalent to 0 < (m/y)α + θi = (m/y)α + a + b r + σ εi, or

−εi < σ−1 ((m/y)α + a + b r). Hence the probability that Z = 1 is the standard cumulative

normal distribution evaluated at σ−1((m/y)α + a + b r), and probit estimation will recover

the structural parameters.

Using the Falk, Fehr, and Fischbacher data and the LIMDEP probit procedure, we

searched across various values of α, and found that likelihood was maximized in the vicinity

of α = 1/4 (with α = 1/8 almost as good). The estimated equation is

Pr[Zi] = −0.49 + 0.69 ri + 2.00 (m/y)α + εi.

The equation predicts correctly 302 of the subjects’ 360 choices. The coefficient estimate

for (m/y)α implies that σ−1 = 2.00 and σ = 0.5, with a p-value of 0.0000. The coefficient

estimate for r, with p-value of 0.001, implies that b = ∂θ/∂r is about 0.69/2 or 0.35. That

is, moving r from 0 to 1 (or from −1 to 0) would on average increase the probability that the

second mover would accept the proposal by about 0.35 of a standard deviation. Likewise,

other things equal, moving relative income m/y from 0.5 to 1 would increase the acceptance

probability by about 2.00 (11/4 − (0.5)1/4) ≈ 0.32 of a standard deviation.
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The coefficient estimates are fairly robust to changes in α. For α = 1/8 the point

estimates are within 10% of those given, and the coefficient on r doesn’t change much even

for α as low as −4. (With negative α, the portion of the data with m = 0 needs to be

omitted or modified to avoid the zero divide problem.) The coefficient increases to 1.3 as α

increases to its upper limit of 1, but the fit deteriorates substantially.

5 Evidence from Stackelberg duopoly

Huck, Müller, and Normann (2001, henceforth HMN01) present an experiment in which

randomly matched pairs of subjects play a Stackelberg duopoly game. The first mover (F )

chooses an output level x ∈ {3, 4, 5, . . . , 15}. The second mover (S) observes x and chooses

an output level q ∈ {3, 4, 5, . . . , 15}. The price is p = 30−x−q; both players have constant

marginal cost 6 and no fixed cost, so the profit margin for each player is M = 24 − x − q.

Payoffs therefore are m = M q and y = M x.

Given F ’s choice x, the second mover’s choice set is the locus in (m, y) space traced out

by varying q from 3 to 15. As illustrated in figure 3, it is a parabolic arc that opens toward

the y-axis whose vertex (m, y) =
(

1
4 (24 − x)2, 1

2 (24 − x)x
)

corresponds to q = 1
2 (24− x).

In figure 3, F ’s choice is x = 4; S’s choice q = 3 produces payoff vector (51, 68) while

q = 10 produces the vertex payoff vector (100, 40). With x = 4, choices q < 10 reduce m

but increase y, while choices q > 10 reduce both m and y.

y

m

q = 3

q = 1
2 (24 − x)

q = 15

20 40 60 80 100 120

20

40

60

80

100

Figure 3: Feasible joint profits when first-mover output is x = 4.
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The standard textbook analysis of this game is that S will always respond to F ’s choice

x by choosing q = 1
2 (24−x) to obtain the m-maximizing (vertex) payoff m(x) = 1

4(24−x)2,

and that F therefore will choose x = 12 to maximize his component y(x) = 1
2(24 − x)x of

the vertex payoff. Hence at the classic Stackelberg equilibrium x = 12, q = 6, p = 12, and

M = 6, yielding payoffs m = 36 and y = 72. In the symmetric, simultaneous move Cournot

game, the classic equilibrium choices are x = q = 8 so that p = 14, M = 8, and m = y = 64.

x
4 8 12 16 20 24

q

4

8

12

16 Number of data points

1

2 or 3

4 to 8

15 or 16

21

27

Figure 4: Actual choice pairs (x, q) and estimated best response function.

The HMN01 experiment produced a range of outcomes. Although the two most frequent

outcomes are the Cournot equilibrium outcome and the Stackelberg outcome, as shown

in figure 4, a large fraction (199 of 220) of second-mover outputs meet or exceed those

from the standard, self-interested, best-response function, and this tendency becomes more

pronounced as the first-mover output x increases. This second-mover choice pattern arises

naturally from our emotional state-dependent utility function. The intuition is that F

is being greedier when he chooses a larger x, and this pushes the reciprocity variable r(x)

towards more negative values. Hence S has a more negative emotional state θ, and therefore

chooses a larger q to reduce F ’s payoff y. This intuition is confirmed in figure 4: for high

values of the first-mover output x, observed choices q from the HMN01 data exceed the

standard best-response, which is shown as the straight line. The estimated best-response
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from our emotional state dependent utility model is shown in figure 4 as the curve.

Figure 5 further illustrates the intuition behind our model. Panel (a) redraws S’s choice

set from figure 3 given x = 4, and also includes a tangent indifference curve for positive

θ. Here S chooses q slightly below the selfish best reply q = 1
2 (24 − x) = 10, reducing his

payoff a bit below m(x) = 1
4 (24 − x)2 = 100 while boosting F ’s payoff noticeably above

y(x) = 1
2(24−x)x = 40. Panel (b) shows S’s choice set given F ’s much less generous choice

x = 12. The tangent indifference curve is for negative θ. Due again to the parabolic choice

set, by increasing q above the selfish best response, S obtains a first-order decrease in F ’s

payoff from y(x) = 72 while sacrificing only a second-order amount of his own payoff from

m(x) = 36. The key insight is that the attitude of S toward F is a function of the action

taken by F , i.e., the WTP parameter θ depends on x.

y

m

y

m

(a) Indifference curve for x = 4. (b) Indifference curve for x = 12.
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Figure 5: Indifference curves for utility function estimated from HMN01 data.

The second mover’s utility function can be written in terms of the players’ choices by

substituting the payoff functions m(x, q) and y(x, q) into equation (1), while keeping θ(x)

in general form. Simplifying slightly we get

U(x, q) =




1
α (24 − x − q)α (qα + θ(x)xα), α �= 0,

1
α (24 − x − q)1+θ(x) q xθ(x) , α = 0.

(2)

16



Equate to 0 the derivative of (2) with respect to q, and simplify to obtain the first order

condition

0 = (24 − x − 2 q) qα−1 − θ(x)xα. (3)

Although (3) is valid for all α ≤ 1, it can be solved for q = q∗(x ; θ, α) in closed form only in

special cases. Appendix A.2 demonstrates that a unique maximizer for equation (2) exists

for every parameter vector (θ, α) ∈ (−∞, ∞) × (−∞, 1], so the best response q∗(x ; θ, α)

is well defined. Appendix A.3 describes the algorithm used to determine q∗(x ; θ, α).

The empirical task is to explain S’s choice q∗(x ; θ, α) given F ’s choice x. The last

model element that we need to specify is θ(x). Define F ’s neutral choice as the solution

x = 8 to the equal payoff condition m(x) = y(x). This condition also characterizes the

Cournot equilibrium, and yields m0 = m(8) = 64. In the normalized reciprocity expression

r(x), the denominator is mg − mb = maxx m(x) − minx m(x) = m(3) − m(15) = 90, so

r(x) = 1
90 (m(x) − m0) = 1

360 (24 − x)2 − 32
45 . As in the previous application, the status

variable s is constant and the first order Taylor series yields

θ(x) = a + b r(x) = a +
b

90
(m(x) − m0). (4)

The HMN01 data we analyze consist of all Stackelberg games with randomly matched

players. These data include twenty-two first- and second-movers; each player participated

in ten Stackelberg games. The estimation procedure finds the parameter vector that mini-

mizes the sum of squared residuals SSR =
∑220

i=1
(q∗(xi ; a, b, α) − qi)2 for these 220 choice

pairs (xi, qi). Details of the estimation procedure appear in Appendix A.4. The resulting

parameter estimates (± standard errors) are â = −0.16 ± 0.05, b̂ = 0.816 ± 0.28, and

α̂ = 0.53 ± 0.44. The estimated best-response function is shown in figure 4; figure 5 shows

the estimated utility function. The confidence region for these three parameter estimates

is an ellipsoid. Five cross sections through the 95% confidence ellipsoid are depicted in

figure 6.

The parameter estimates allow us to test several hypotheses. Appendix A.5 details the

calculations for the test statistics.
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Figure 6: Cross sections through the 95% confidence region for a, b, and α.

H.1 The parameter pair (a, b) = (0, 0).

This is the natural null hypothesis of selfish preferences, responsive neither to reciprocity

nor to distributional concerns. The F test statistic for the data is F (2, 217) = 70.9, which

implies rejection of the hypothesis at a p-value of less than 10−16. The data firmly support

other-regarding preferences.

H.2 Under the maintained assumption that m0 = 64, the parameter a is positive.

In equation (4), the reference profit level m0 and the parameter a are not separately

identified, since θ(x) = A + b
90 m(x) where A = a − b

90m0 . Consequently the choice

m0 = 64, even though we find it persuasive, has no impact on the estimates for the reci-

procity parameter b or the distribution (or shape) parameter α. This null hypothesis can

therefore be interpreted as stating that the typical second mover in the HMN01 experiment

has a property right (or reference profit level) that is at or below the Cournot-Nash profit

level m0 = 64. The F statistic for the data is F (1, 217) = 10.6, which implies rejection

at the p-value of 0.001. We conclude that the second-movers in this experiment typically

maintain higher reference profit levels.

H.3 The parameter b is zero or negative.

This is the key null hypothesis. It states that, although they may respond to distri-

butional concerns, second movers do not respond to reciprocity concerns (or else respond
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perversely). The F statistic is F (1, 217) = 11.7, which implies rejection at the p-value of

less than 0.001. The data firmly support reciprocal behavior by the typical subject.

6 Further Applications

In an earlier version of the present paper, Cox and Friedman (2002) fit the model in equa-

tion (1) to a fairly complex two player extensive form game called the Moonlighting Game

(MLG). In the MLG, the first mover F can send money to or take money from the second

mover S, and the amounts sent are tripled. Then S, at differing personal costs, can increase

or reduce F ’s payoff. As in the Stackelberg game just analyzed, S’s choice set depends on

F ’s action, and contains a segment with positive slope as well as a segment with negative

slope. Unlike the Stackelberg game, the MLG choice set has a sharp kink between two linear

segments. Much of the data (from an experiment of Cox, Sadiraj and Sadiraj, 2002b) lies

on or very close to the kinks and corners of the budget set. Therefore estimates of model

parameters are not very precise. Qualitatively, the model explains the data quite well. It

predicts correctly that very few interior solutions lie on the positively sloped segment; this

follows from the almost linear indifference curves for negative θ shown in figure 1 (b). The

model also captures the strong tendency of second movers to reward first mover generosity

and the common tendency to punish first mover greed.

Future applications can explore the impact of other aspects of status. Possibly relevant

treatments include age, gender, and observable socioeconomic characteristics, as well as

the process that assigned the second- and first-mover roles. Available evidence suggests

that the status variable s interacts strongly with the reciprocity variable r. For example,

the Cox, Sadiraj, and Sadiraj (2002b) Treatment C data automate first movers, and the

second movers’ choices then are generally consistent with θ = 0, suggesting a dominant

interaction r × s with s = 0.3 Zizzo and Oswald (2001) found that subjects with low status

3 Alternatively, one could simply define m0 as the automated choice of the first mover and obtain r = 0

directly.
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are particularly eager to “burn” the payoffs of players with large unearned payoffs.

No doubt there are many other existing data sets to which the model can be fit. The

model also suggests new experimental designs for sharper tests and further development.

In particular, consider two player extensive form game experiments that elicit willingness

to pay (WTP) own payoff for other’s payoff, while systematically varying relative income

opportunities y/m, other aspects of status s, and reciprocity considerations r. The data

would allow sharp estimates for the impact of each motive.

To illustrate, continue to hold s constant and take the linear Taylor series approximation

of the systematic portion of the emotional state, θ = a + b r, noting that the coefficients a

and b depend on the particular value of s. Use a Taylor series expansion around the equal

payoff position y = m to obtain

(
m

y

)1−α

= 1 + (1 − α)
m − y

y
+

α2 − α

2

(
m − y

y

)2

+ O

((
m − y

y

)3
)

.

Use the reciprocity variable r(x) = m(x)−m0 ; this is observable given the first mover’s

choice m(x) assuming that m0 is unambiguous. Substitute these expressions into the basic

CES relation WTP = θ
(

m
y

)1−α
from Section 3 and use the Taylor series approximation of

θ from Section 3 to obtain

WTP = a + b (m(x) − m0) + (a + b (m(x) − m0)) (1 − α) m−y
y

+ (a + b (m(x) − m0))
α2−α

2

(
m−y

y

)2
+ (a + b (m(x) − m0)) O

((
m−y

y

)3
)

.

This equation suggests a simple OLS regression of the elicited WTP on variables formed from

the observable interim allocation m(x) of my payoff, and the final allocation of both payoffs,

m and y. From the coefficient estimates one recovers the desired structural parameters a,

b, and α.

Future applications should also explore games with more than two players. The model

extends directly. My utility function depends on every other player i’s payoff yi, via my

emotional attitude θi towards each player i, and my utility function is simply

u(x, y1 , . . . , yn) =
1
α

(xα + θ1 yα
1

+ . . . + θn yα
n).
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Dependence of θi on the motives r and s is the same as in the two player case. Of course,

in games where players can’t separately identify the other players, there is only one θ.

For games in which each player can observe the individual history of every other player,

the model could be enriched to include an indirect reciprocity motive as well as the direct

motive captured in r.

7 Discussion

We hypothesize that a person’s desire to help or harm others depends on emotional states

that arise from universal motives such as reciprocity and status. In this paper we proposed

a simple empirical model incorporating this hypothesis.

The first hurdle for an empirical model is tractability: can the model be estimated from

available data? We obtained an affirmative answer by examining two existing data sets,

laboratory studies of mini-ultimatum games (MUG) and Stackelberg duopoly. The MUG

data consist of binary choices from the second mover following binary choices by a first

mover. We derived and estimated a probit model that accounted for the data rather well

and that produced parameter estimates consistent with a priori predictions (assumptions

A.3 and A.4). The Stackelberg duopoly data consist of a range of choices by a second mover

following a range of choices by a first mover. Again we derived and estimated a model (this

time using non-linear least squares regression) that accounts for the data and produces

parameter estimates that strongly support reciprocal behavior.

Of course, to be considered successful and important, an empirical model must jump

further hurdles. Which variants work best? Can extensions deal with different sorts of

data? How well do the best variants compare to alternative models? We close with a few

thoughts on these matters.

Assumption A.2 states that individuals differ only in idiosyncratic additive components

of the emotional state variable θ. The data shown in figure 4 and other evidence suggests

that people may differ in their responsiveness b to given reciprocity and status motives.
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Therefore future work should consider estimation using random coefficient models.

The definitions presented here extend directly to extensive form games in which some

players have several moves, to normal form games, and to some other games of incomplete

information. Future empirical work will show how successful such extensions are relative to

available alternatives. Our approach has several advantages that might survive beyond the

current implementation. First of all, it uses a model of preferences and choice, not equi-

librium, and so is tractable and transparent. Second, it is more flexible than distributional

preference models in that it takes other motives into account. Third, it is open to new find-

ings in the psychology of emotions and so may facilitate interdisciplinary cross-fertilization.
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Appendix A.1: Utility function for α = 0

Let

u(m, y ; α) =




1
α (mα + θ y α), α ∈ (−∞, 0) ∪ (0, 1],

m y θ, α = 0.

We want to show that for α �= 0, the indifference curves of u(m, y ; α) converge to indiffer-

ence curves of u(m, y ; 0) = my θ. Fix a point (m0 , y0) with m0 > 0 and y0 > 0. For every

α ∈ (−∞, 0) ∪ (0, 1], the set {(m, y) : u(m, y ; α) = u(m0 , y0 ; α)} is the indifference curve for the

given α that passes through the point (m0 , y0). On this indifference curve, y can be written as a

function of m:

y(m ; α) =
(

mα
0

+ θ y α
0
− mα

θ

)1/α

.

It suffices to show for each fixed m̄ > 0 that y(m̄ ; α) converges pointwise to y(m̄ ; 0) = m1/θ
0

y0 m̄−1/θ

as α → 0.

The limit of y(m̄ ; α) as α → 0 can be determined by applying L’Hospital’s rule to ln y(m̄ ; α):

lim
α→0

ln y(m̄ ; α) = lim
α→0

1
α

ln
(

mα
0

+ θ y α
0
− m̄α

θ

)

= lim
α→0

mα
0

ln m0 + θ y α
0

ln y0 − m̄α ln m̄

θ
.

From this it follows that
ln y(m̄ ; 0) =

ln m0 + θ ln y0 − ln m̄

θ

so along the indifference curves of u(m, y ; 0), my θ = m0 y θ
0
, which is the required result.

Appendix A.2: Definition of the best-response function q∗(x ; θ, α)

Theorem 1: For each x ∈ (0, 24) and each (θ, α) ∈ (−∞, ∞) × (−∞, 1] there is a unique

q∗ ∈ (0, 24 − x] that maximizes the utility function U(x, q) = 1
α (24 − x − q)α (qα + θ xα).

Proof: We partition the space of values for θ, α, and x into a connected (relatively) open set A

with a unique interior solution to the utility maximization problem and into a connected closed set

B with a boundary solution to the utility maximization problem. The boundary between sets A

and B, which depends on θ, α, and x, is characterized by the function θ(x, α) = − ( 24−x
x

)α. Region

B is subdivided into a region B1 where the utility function is bounded, and a region B2 where the

utility function has an asymptote as q → 24 − x. Figure A.2.1 (a) shows these three regions in a

cross section for x = 8; figure A.2.1 (b) shows a cross section for x = 16.
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Figure A.2.1: Regions evaluated to characterize the best response function

In order to evaluate properties of U(x, q), it is useful to represent the output q of S as

q = c (24 − x) with c ∈ [0, 1]. Define Ũ
x
(c) ≡ U(x, c (24 − x)). Then

Ũ
x
(c) =

1
α

(1 − c)α (24 − x)α (cα (24 − x)α + θ xα). (A.2.1)

The derivative of this utility function is

Ũ
′
x
(c) = (1 − c)α−1 (24 − x)α ((1 − 2 c) cα−1 (24 − x)α − θ xα). (A.2.2)

For c ∈ (0, 1), Ũ
′
x
(c) = 0 if and only if f

x
(c) ≡ (1 − 2 c) cα−1 (24 − x)α − θ xα is zero. Lemma 1

shows that for α ∈ [−2, 0) ∪ (0, 1), f
x
(c) is a convex function, so that f

x
(c) has at most two roots.

Lemma 2 shows that for α ∈ (−∞, −2), f
x
(c) is convex on an interval (0, c′) and monotonically

increasing on (c′, 1), so that it again has at most two roots. The two lemmas are used subsequently

to prove Claims 1 through 3, which show that there is a unique maximizer of Ũ
x
(c) for regions A,

B1 , and B2 . Claims 4 and 5 treat the cases α = 0 and α = 1 separately, but shows that they are

consistent with the other cases. Theorem 1 follows from Claim 1 through 5.

Lemma 1: For α ∈ [−2, 0) ∪ (0, 1), f
x
(c) is a convex function of c, for all c ∈ (0, 1). Therefore

the first-order condition for a local maximum, Ũ
′
x
(c) = 0, has at most two roots in (0, 1) for these

values of α.

Proof: For α ∈ (−∞, 0)∪(0, 1], f ′′
x
(c)(α−1) cα−3 (24−x)α (α−2α c−2). For α < 1, this has

the opposite sign from the last term, so f
x
(c) is convex when α − 2α c − 2 < 0. For α ∈ (0, 1)

and for α ∈ [−2, 0) this inequality holds for all c ∈ (0, 1). Hence for α ∈ [−2, 0) ∪ (0, 1),

f
x
(c) is convex.
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Lemma 2: For α ∈ (−∞, −2), f
x
(c) is a convex function of c for c ∈ (0, α−2

2 α

)
, and it is a strictly

increasing function for c ∈ (α−2
2 α , 1

)
. Therefore, f

x
(c) has at most two roots on (0, 1).

Proof: As noted in the proof of Lemma 1, fx(c) is convex only if α − 2α c − 2 < 0. For

α < 0 this is equivalent to the inequality c < α−2
2 α , and if α < −2, then α−2

2 α < 1 so that

convexity only holds for c ∈ (0, α−2
2 α

)
. Since f ′

x
(c) = cα−2 (24− x)α (α− 2α c− 1) is positive

for c > α−1
2 α , and α−1

2 α < α−2
2 α when α < −2. The conclusion of the lemma follows from this

observation.

Claim 1: In region A, with θ > θ(x, α), there is a unique value c∗ ∈ (0, 1) where Ũ
x
(c) takes on

its maximum value.

Proof: As c → 0, Ũ
′
x
(c) → ∞, so the value of c that maximizes Ũ

x
(c) is in the interval

(0, 1]. As c → 1, the first term in equation (A.2.2) approaches ∞, the second term is finite,

and the last term has the finite limit g(x) ≡ −(24 − x)α − θ xα. Whether Ũ
′
x
(c) approaches

+∞, 0, or −∞ as c → 1 therefore depends on the sign of the last term, which is f
x
(c).

Since lim c→0 f
x
(c) = ∞ and lim c→1 f

x
(c) = g(x) is negative for θ > θ(x, α), f

x
(c) changes

sign on (0, 1) at least once. By Lemma 1, f
x
(c) changes sign at most twice in (0, 1) for

α ∈ [−2, 0) ∪ (0, 1) (and hence Ũ
′
x
(c) changes sign at most twice). By Lemma 2, f

x
(c)

changes sign at most twice in (0, 1) for α ∈ (−∞, −2). Therefore there are at most two roots

of f
x
(c) = 0 in (0, 1) (and equivalently, there are at most two roots of the first order condition

Ũ
′
x
(c) = 0). As c → 1, f

x
(c) → g(x) and g(x) < 0 in region A. Since f

x
(c) approaches a

negative limit as c → 1, it has a unique root in (0, 1), which demonstrates that Ũ
′
x
(c) = 0

has a unique root in (0, 1).

Claim 2: In region B1 , with θ ≤ θ(x, α) and α ∈ (0, 1), we show that Ũ
′
x
(c) > 0 for all ac ∈ (0, 1),

so that there is a boundary maximum of Ũ
x
(c) at c = 1, i.e., q∗ = 24 − x.

Proof: The sign of Ũ
′
x
(c) is the same as the sign of fx(c), so it is sufficient to show that

f
x
(c) > 0 at its minimum on (0, 1). The argument below demonstrates first that f

x
(c) is

decreasing on (0, 1) so that it takes on its minimum at c = 1 and then shows that fx(1) > 0

so that Ũ
′
x
(c) > 0 for all c ∈ (0, 1).

Since f ′
x
(c) = cα−2 (24 − x)α (c − 2 c α − 1), f ′

x
(c) < 0 if and only if c − 2 c α − 1 < 0. The

last inequality is equivalent to the inequality c > α−1
2 α for α < 0. Since this inequality holds
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for all α ∈ (0, 1), f
x
(c) is decreasing on (0, 1). Since f

x
(1) = g(x), and g(x) is positive in

region B1 , it follows that Ũ
′
x
(c) > 0 for all c ∈ (0, 1).

Claim 3: In region B2 , with θ ≤ θ(x, α) and α < 0, we show that for any c′ < 1, Ũ
x
(c) is bounded

for c ∈ [0, c′] and Ũ
x
(c) → ∞ as c → 1 so that there is an asymptote of the utility function at c = 1.

Consequently, there is a boundary maximum of Ũ
x
(c) at c = 1, i.e., q∗ = 24 − x.

Proof: It is clear from equation (A.2.1) that Ũ
x
(c) is bounded for c ∈ [0, c′]. As c → 1, the

term (1 − c)α → ∞ for α < 0, and the first and third terms are both finite, so Ũ
x
(c) → ∞ if

the last term, cα (24 − x)α + θ xα, tends to a negative limit as c → 1. Since θ < θ(x, α) in

region B2 and this expression is equivalent to (24 − x)α + θ xα, the claim follows.

Claim 4: For α = 0, there is a unique maximum of U(x, q) at q∗ = 24−x
2+θ when θ > −1 and there

is a unique maximum of U(x, q) at q∗ = 24 − x when θ ≤ −1.

Proof: This follows immediately from the utility maximization problem for α = 0.

Claim 5: For α = 1, there is a unique maximum of U(x, q) at q∗ = 12 − 1+θ
2 x when θ > θ(x, 1)

and there is a unique maximum of U(x, q) at q∗ = 24 − x when θ ≤ θ(x, 1).

Proof: This follows immediately from the utility maximization problem for α = 1.

Appendix A.3: Calculation of q∗(x ; θ, α)

Claim 1 in Appendix A.2 demonstrates that for all (x, θ, α) ∈ B1 ∪ B2 (where θ < θ(x, α)),

U(x, q) takes on its maximum at q = 24 − x. Claim 1 also demonstrates that (1) if (x, θ, α) ∈ A,

then U ′(x, 0) = ∞ and U ′(x, 24−x) < 0 and (2) U ′(x, q) has a single root in (0, 24−x). We use (1)

and (2) to calculate q∗(x ; a, b, α). Since the derivative is infinite at q = 0, we start by evaluating

U ′(x, 1). If U ′(x, 1) > 0 we use the secant method with U ′(x, 1) and U ′(x, 24 − x) to find q∗ such

that U ′(x, q∗) = 0. If U ′(x, 1) < 0, we bisect the interval until we find 2−k such that U ′(x, 2−k) > 0,

and then apply the secant method to identify q∗ such that U ′(x, q∗) = 0.

Appendix A.4: Gauss-Newton non-linear regression

The general form of the Gauss-Newton non-linear regression is

β (j+1) = β (j) − c (j)
(
D (j)

)−1

g (j), (A.4.1)

where β (j) is the parameter estimate after j iterations of the Gauss-Newton algorithm, D (j) is an

approximation to the Hessian matrix of the regressors, g (j) is the gradient of SSR(β (j)), and c (j)
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is a constant that is chosen to assure convergence. (In this application, the regressor functions

are q∗
(
x ; β (j)

)
. See Davidson and MacKinnon [1993, pp. 201-5] for a general formulation of the

Gauss-Newton method in non-linear least squares.) This appendix describes the choices of D (j) and

c (j) used to find parameter estimates for the Stackelberg game. For notational convenience, the

parameter triple (a, b, α) and β are used interchangeably throughout this appendix.

The matrix D (j) is constructed from the Jacobian matrix J(β) of the regressors, which in this

case is the best-response function q∗(x ; a, b, α). The jth row of J(β) is the derivative of the regressor

q∗(x ; a, b, α) evaluated at the jth observation xj , i.e.,

(J
n, 1(β), J

n, 2(β), J
n, 3(β))

(
∂q∗(xn ; a, b, α)

∂a
,

∂q∗(xn ; a, b, α)
∂b

,
∂q∗(xn ; a, b, α)

∂α

)
.

We take D (j) = 2J
(
β (j)

)�
J
(
β (j)

)
+ I. With β (j+1) defined as in equation (A.4.1), SSR

(
β (j+1)

)
may be greater than SSR

(
β (j)

)
for many values of c (j). The value of c (j) is selected so that

SSR
(
β (j+1)

)
< SSR

(
β (j)

)
. In the algorithm we employ, c (j) = 2−k, where k is the first value from

the set k ∈ {0, 1, 2, . . . , 20} such that SSR
(
β (j+1)

)
< SSR

(
β (j)

)
.

In addition to the iterative Gauss-Newton parameter estimation procedure above, there are two

other aspects of the algorithm that we should note. First, iterations continue so long as the maximum

of the differences
∣∣a (j+1) − a (j)

∣∣, ∣∣b (j+1) − b (j)
∣∣, ∣∣α (j+1) − α (j)

∣∣, and
∣∣SSR

(
β (j+1)

)− SSR
(
β (j)

)∣∣
is greater than 10−8. Finally, once the adjustment of both the parameter estimates and the SSR is

below the threshold 10−8 and a parameter estimate β (j∗) is obtained, we conduct a grid search over

SSR(β) in a region around β (j∗) to insure that β (j∗) minimizes SSR(β).

Appendix A.5: Tests of hypotheses

H.1 The parameter pair (a, b) = (0, 0).

When a and b are both restricted to be zero (so that the model is restricted to the standard

model of individualistic preferences), SSR = 1476.5. The F statistic is

SSR(β̃) − SSR(β̂)/2

SSR(β̂)/(n − k)
=

(1476.5 − 892.8)/2
892.8/217

= 70.9,

where β̃ is the parameter estimate pair for the restricted model and β̂ is the parameter estimate

pair for the unrestricted model. The cumulative distribution of F (2, 217) at 70.9 is greater than

1 − 10−16, so we are able to reject the hypothesis that preferences are individualistic with a p-value

of less than 10−16.
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H.2 For m0 = 64 (which is the Cournot-Nash profit level for S), the parameter a is positive.

When a is restricted to be greater than or equal to zero, SSR is minimized at a = 0, b = 1.14,

and c = 0.78. For these parameters, SSR = 936.4. The F statistic for the test of the hypothesis that

a > 0 is

SSR(β̃) − SSR(β̂)/1

SSR(β̂)/(n − k)
=

936.4 − 892.8
892.8/217

= 10.6,

where β̃ is the parameter estimate pair for the restricted model and β̂ is the parameter estimate

pair for the unrestricted model. The cumulative distribution of F (1, 217) at 10.6 is 0.999, so the

hypothesis that a > 0 can be rejected with a p-value of 0.001, i.e., we can reject the hypothesis that

the second mover has a reference profit level that is at or below the Cournot-Nash profit level.

H.3 The parameter b is negative.

When b is restricted to be less than or equal to 0, SSR is minimized when a = −0.30, b = 0, and

c = 1.00. For these parameters, SSR = 941.0. The F statistic for the test of the hypothesis that

b < 0 is

SSR(β̃) − SSR(β̂)/1

SSR(β̂)/(n − k)
=

941.0 − 892.8
892.8/217

= 11.7.

The cumulative distribution of F (1, 217) at 11.7 is greater than 0.999, so the hypothesis that b < 0

can be rejected with a p-value of less than 0.001.
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