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Abstract 

This paper investigates experimentally a market inspired by two separate strands of economic literature. The first 

strand is that of herd behaviour in non-market situations and the second that of the aggregation of private information in 

markets. The first suggests that socially undesirable herd behaviour may result when information is private; the second 

suggests that in a market context the private information may be aggregated efficiently through the price mechanism. 

The latter literature therefore suggests that socially undesirable behaviour may be eliminated through the market 

mechanism. We tested this hypothesis experimentally, in a very simple extension of a herd model into a market context, 

and found that many of the stylised facts of financial markets (i.e. fat tails of the distribution of returns and 

autoregressive dependence in volatility) can be reproduced in our experimental market. 
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I. Introduction 

It is now well established (Mandelbrot [32] and Fama [19]) that changes in asset prices (returns) 

do not have a Normal distribution. In fact, if we assume that returns are normally distributed we 

have to accept an unrealistically high number of ‘outliers’. This leads us to reject the normality 

assumption. 

There is abundant literature studying the empirical features of financial markets. Pagan [33] 

provided an authoritative survey of these stylized facts and of the econometric techniques to treat 

them. 

There are also several empirical works that analyze the empirical regularity of those markets, 

i.e. de Vries [9], Guillaume et al. [17] and Lux and Ausloos [27]. 

In the last couple of years, the study of behavioral models of dynamic interaction in financial 

markets – Beja and Goldman [3], Day and Huang [8], Lux and Marchesi [28, 29], Chen et al. [5, 7], 

Iori [19], Farmer [11], LeBaron [22], Gaunersdorfer and Hommes [13, 14], Arifovic et al. [1] and 

Georges [15] – has brought about a better understanding of some of the key stylized features of 

financial data, namely the fat tails of the distribution of returns and the autoregressive dependence 

in volatility. Some possible general explanations seem to emerge from this literature: first, volatility 

clustering and fat tails may emerge from an indeterminacy in the equilibrium of the dynamics. In 

particular, with different strategies performing equally well in some kind of steady state, stochastic 

disturbances lead to continuously changing strategy configurations which at some point generate a 

burst of activity. This type of dynamics can be found already in Youssefmir and Huberman [18] in 

the context of a resource exploitation model and can be identified in both the papers by Lux and 

Marchesi[28, 29].  

 

The purpose of this paper is to verify if the above stylized facts can be reproduced in the 

laboratory. 
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In the next section we shall describe our data and in section 3 we shall present some elementary 

statistics. In sections 4, 5, 6 and 7 we shall compare the features our experimental data with the 

stylized facts. In particular, we shall check for Unit Root, Fat Tails, Volatility Clusters and 

Autocorrelation, respectively. Finally in section 8 we draw some conclusions. 

 

II. Data description 

The data set analysed in this paper is ‘artificially generated’ in the laboratory. The 

experiment is based on at least two important strands of literature. The first of these strands is that 

of herd behaviour in a non-market context. The key references are Banerjee (1992) and 

Bickchandani, Hirshleifer and Welch (1992), both of which showed that herd behaviour may result 

from private information not publicly shared. More specifically, both of these papers showed that 

individuals, acting sequentially on the basis of private information and public knowledge about the 

behaviour of others, may end up choosing the socially undesirable option.  The second strand of 

literature motivating this paper is that of information aggregation in market contexts. A very early 

reference is the classic paper by Grossman and Stiglitz (1966) which showed that uninformed 

traders in a market context can become informed through the price in such a way that private 

information is aggregated correctly and efficiently. A summary of the progress of this strand of 

literature can be found in the paper by Plott (2000). A third, though less directly relevant, strand is 

that of the experimental economics literature, which suggests that the market may act as a sort of 

disciplining device on ‘irrational’ behaviour in individual contexts. This third strand reconciles, in a 

sense, the first two strands. 

The experiment was programmed using the z-Tree software of Urs Fischbacher [12]. It was 

piloted at the laboratory of ESSE at the University of Bari, and the main experiment, reported in 

this paper, was run at the laboratory of EXEC at the University of York. 

We have n agents in our market. Each is endowed with a quantity of experimental money and m 

units of some asset. This asset pays a dividend at the end of the trading period. This dividend is 
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uncertain. There are two possible ‘states of the world’- each with equal probability – either the 

dividend is some positive number d, or it is zero. At the beginning of each trading period the true 

state is determined by the experimenter – but not revealed to the agents. They can, however, buy 

signals – which are partially but not totally informative as to the true state of the world. These 

signals take either the value 0 or the value 1. Agents are informed of all the relevant parameters – 

the positive dividend d, the cost of buying a signal c, and the two probabilities p and q1. 

We should now describe the trading process. We use a single-unit double-auction mechanism in 

which agents are free at any time to make bids and asks and to accept existing asks or bids. We 

adopted this trading procedure as it is well-known from countless experiments (in simpler contexts) 

that this mechanism reaches the competitive equilibrium quickly and efficiently.  

We run this experiment for four different parameter sets, each one corresponding to a different 

quadrant in the following diagram: 

 

 

 

 

 

The payment mechanism is the obvious one: agents start with some experimental money and 

with m units of the asset. During the trading process they can increase or decrease the number of 

units of the asset that they own and, depending upon the prices at which they trade, their stock of 

experimental money will increase or decrease during each period. At the end of each market period 

the true dividend for that period is announced and the appropriate dividend is paid in experimental 

money to the asset owners. Accordingly agents will end up with a stock of experimental money at 

the end of each trading period – which may be more or less than that with which they started that 

period. An agent’s trading profit for any trading period is the difference between the final stock of 

                                                 
1 More precisely, p is the probability of getting a signal of 1 if the true state of the world is that the dividend is 10; q is 

Treatment 1 

low cost/low quality 

Treatment 2 

high cost/low quality 

Treatment 3 

low cost/high quality 

Treatment 4 

high cost/high quality 
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experimental money and the initial stock. For the experiment as a whole the total profit to an agent 

is simply the sum of the profits over all trading periods of the experiment. There was a fixed rate of 

exchange between experimental money and real money. 

Note that agents can make losses. To avoid some of the problems associated with subjects 

making real losses in experiments, we endowed all agents with a participation fee, which could be 

used (if the subject agreed) to offset losses. Once this participation fee was exhausted, any further 

losses had to be covered by the subjects themselves – some subjects chose this option, others chose 

to leave the experiment once they had exhausted their participation fee2. 

We analysed also daily changes of the German share price index DAX. This will be our 

benchmark to compare the experimental data to real data. 

 

III. Some elementary statistics 

We have already noticed that empirical data in financial markets are not normally distributed. 

Table 1 reports some elementary statistics for the returns of the DAX and our four experimental 

treatments. 

It is clear that all five distributions exhibit excessive kurtosis. This implies that the experimental 

financial market, like real markets, exhibits more probability mass in the tails and in the center 

compared to a Normal distribution. Additionally the Bera –Jarque test for normality leads to a 

rejection of its null hypothesis. 

Bera-Jarque 
test 

44908.312 
(0.000) 

626.579 
(0.000) 

5094.409 
(0.000) 

1407.571 
(0.000) 

11223.906 
(0.000) 

      

Table 1 

                                                                                                                                                                  
the probability of getting a signal of 1 if the true state of the world is that the dividend is zero.   
2 A more detailed presentation of the experiment can be found in Hey and Morone [18]. 

 DAX Treatment 1 Treatment 2 Treatment 3 Treatment 4 
Mean 0 0 -0,001 -0,005 0 
S.D. 0,005 0,252 0,213 0,418 0,261 

Skewness -0.3216 -0.0826 0.0437 0.0602 -0.0185 
Kurtosis 10.4481 3.3944 8.8983 6.4489 14.0119 
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Now we will take a closer look at the statistical characteristics of our experimental data sets. 

More precisely, we will investigate whether and how the experimental market compares with the 

stylised facts observed in real financial markets: Unit Root, Fat Tail, Cluster Volatility and 

Autocorrelation. 

IV. Unit root property 

Levels (or logarithms of levels) of prices have a unit root, which implies that returns (or the 

difference of logarithms of levels) are stationary. This implies that the price follows, in the simplest 

case, an autoregressive process of the first order: 

( ) ( ) ( )ttpctp ελ +−+= 1  ,     (1) 

where ( )tp  is the price at time t, ( )1−tp  is the price at time 1-t and ( )tε  is the unanticipated 

element. Equation (1) is clearly a “no arbitrage condition” (LeRoy [23]). 

The usual finding in financial markets is non-stationarity for the price time series and 

stationarity for its first difference, i.e. the returns. 

Table 2 reports the outcome of the Augmented Dickey-Fuller test. For each case the time series 

have been divided into 10 sub-samples and the test has been run on each sub-sample.  

 

We can, now, try to categorise the four treatments. It seems that we can divide them into two 

groups. Treatment 1 and Treatment 2 completely fail to exhibit nonstationarity in the price series. 

On the other hand Treatment 4 has a unit root in two out of ten periods, and Treatment 3 has a unit 

Time Series Range of λ             
Min               Max 

No. of 
rejections for 

one-sides test at 
95% level 

No. of rejections 
for two-sides 

test at 95% level 
DAX 0,4148 1,0038 2 out of 10 2 out of 10 
Treatment 1 -0,2788 0,2674 10 out of 10 10 out of 10 
Treatment 2 -0,0891 0,3301 10 out of 10 10 out of 10 
Treatment 3 -0,1763 0,9719 3 out of 10 3 out of 10 
Treatment 4 -0,0724 0,9635 8 out of 10 7 out of 10 

Table 2 
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root in seven out of ten periods. Note that the DAX exhibits a unit root in eight out of ten 

subsamples. This is an interesting result, since in Treatment 1 and 2 the quality of the signals is very 

poor (a signal is informative with probability 0.6 and is misleading with probability 0.4) and thus 

the aggregated information is not very informative. For this reason price fluctuates around the ‘un-

informed’ expected price. On the other hand in Treatments 3 and 4 the quality of the information is 

higher (a signal is informative with probability 0.8 and is misleading with probability 0.2) thus the 

price does not fluctuate around the ‘un-informed’ expected price but converges (in average) to the 

correct price. 

 

V. Fat tail phenomenon 

In section 3 we reported that our four experimental financial markets (as well as the DAX) 

exhibit excessive kurtosis and we noticed that return distributions exhibit more probability mass in 

the center and in the tail of the distribution. In the following figures it is clear what we meant by fat 

tails. In fact it is possible to see how the distributions of the returns are leptokurtotic. 

Returns' distribution in the DAX
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Returns' distribution in treatment 1
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Returns' distribution in treatment 2
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Returns' distribution of treatment 4
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We have to note that the kurtosis is, in a certain sense, a poor measure of deviation from 

normality. For this reason, we need to refer to a sharper characterization of the empirical 

distribution. It is now well known that the distribution of returns belongs to the class of the ‘fat tail’ 

distributions. These distributions exhibit a hyperbolic decline of probability mass3. 

 

 Treatment 1 Treatment 2 Treatment 3 Treatment 4 DAX4 

Hill 10% 2,527 1,898 2,320 1,013 2,945 

Hill 5% 6,035 2,905 3,422 1,723 2,974 

Hill 2.5% 7,684 6,177 4,930 5,937 3,105 

Table 3 

 

The visual impression of fat tails is also confirmed by the above table, which reports the Hill 

estimators for the five distributions (i.e. the four experimental treatments and the DAX). The tail 

index gives us information about the “fatness” of the tails of the distributions. In fact, given a tail 

index, the biggest integer number smaller than the tail index is the number of finite moments of the 

distribution. 

                                                 
3 For a more detailed analysis see Lux[27] 
4 The New York Stock Exchange Composite Index, the US Dollar – DM exchange rate and the price of gold exhibits 
similar figures, cf. Lux [26]. 
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Empirical studies show that the Hill estimators usually lie in the range of [2.5, 5]. Examples 

include Koedijk, Schafgans and de Vries [21], Jansen and de Vries [20], Loretan and Phillips [25], 

Longin [24], Lux [31] and Lux and Ausloos [27]. 

From table 3 we can argue that all our four treatments look like a real financial market, even 

though for a tail size of 2.5% the tails seems not to be very fat. It is interesting to note that in 

Treatment 2 and Treatment 4 the bursts are so strong that even tail indices below 2 were found. 

Remembering that in Treatment 2 and 4 the cost of information was high compared to Treatment 1 

and 3, it seems that markets in which the information is more expensive have larger price changes.  

We can try to rank our four treatments according to their tail index. Treatment 3 and Treatment 

2 seem to be very good approximations of a real financial market, whereas Treatment 4 exhibits too 

fat tails at both 10% and 5% tail size and too thin tails at 2.5%. Treatment 1 exhibits realistic tails at 

10% level but too thin tails at both 5% and 2.5% level.  

These results seem to be quite encouraging and the “rejection” of the fat tail hypothesis at 2.5% 

level could be related to the sample size (1303, 1545, 813, 1373 in treatment 1, 2, 3 and 4 

respectively). It could be of some interest to note that Lux and Sornette [26] demonstrated that the 

prevalence of a rational bubble component would lead to an Hill tail index estimator smaller than 1, 

which would imply non existence of the mean and variance of the data.  

 

VI. Volatility clustering 

Plotting the time series of returns it is immediately evident that the results of our experiment are 

dramatically different from previous experiments on financial markets. In fact we do not have the 

usual fast convergence to equilibrium, but we see periods of tranquillity interrupted by periods of 

turbulence. The time series plotted in the figures below are astonishingly similar to the empirical 

ones. Periods of quiescence and turbulence tend to cluster together. 
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Figure 6 

 

This fact was already pointed out by Mandeldrot [18], but it was by and large neglected until 

recently. The volatility cluster regularity (which is particularly clear in figures 6, 7, 8, 9 and 10) 

suggests that there is autocorrelation in the scale of the process i.e. in the second moments. 

Also the figure below exhibits clustered volatility in the returns. Treatment 1 and Treatment 2 

seem to capture this phenomenon pretty well. 

 

Figure 7 
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Figure 8 

On the other hand Treatment 3 and Treatment 4, even though they exhibit clustered volatility, 

seem to be different from a real financial market. A simple explanation could be that, because the 

quality of information in the market is higher compared to Treatment 1 and Treatment 2 the 

invisible hand is less trembling. 

Figure 9 

Figure 10 
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There is abundant literature that studies this phenomenon. Gaunersdorfer and Hommes [15] 

proposed that clustered volatility emerges from stochastic dynamics with multiple attractors. Some 

amount of noise added to a deterministic dynamic with two or more attractive states can lead to 

recurrent switches between one state and another. This kind of explanation seems to be confirmed 

by our experimental data. In fact we have more volatility clustering in the first two treatments, 

where the two “attractors” (i.e. 0 and 10) have almost the same power, but in the last two treatments 

in which the information is more precise both volatility and volatility clustering seem to be weaker.  

 

VII. Absence of autocorrelation 

Autocorrelation is often insignificant in raw returns, but highly significant in the volatility 

Figure 11 

measures, i.e. squared returns and absolute returns. The absence of autocorrelation is a very well-

known fact in financial data.  

In figure 11 we plotted the autocorrelation functions of the DAX raw returns, squared returns 

and absolute returns in the period 1959-1999 (daily observations). For each time series we 

computed the autocorrelation functions for 200 lags. In the first plot it is evident that the 

autocorrelation of raw returns is not significantly different from zero. On the other hand, 

considering the squared returns, we can observe a very long autocorrelation, and it is even larger in 

Dax autocorrelation function

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193

Raw returns Squares returns Absolute returns
         RAW RETURNS                SQUARED RETURNS                ABSOLUTE RETURNS 



 14

the case of absolute returns. For squared and absolute values the temporal independence is strongly 

rejected. These results are common to all financial markets. 

In figure 12  we report the autocorrelation of returns for Treatment 1 of our experiment. It is 

evident that returns, squared returns and absolute returns exhibit temporal independence contrary to 

financial market empirical evidence. We note that another unconventional feature characterizes 

figure 12: the presence of negative correlation among absolute and squared returns. This suggests 

that in Treatment 1 randomness overwrites the financial market features. 

 

Figure 12 

 

Figure 13 
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Treatment 2 exhibits autocorrelation functions with features typically characterizing financial 

markets. In fact, the raw data are completely uncorrelated, the squared returns have very long 

correlation and the absolute returns exhibit longer and higher autocorrelation. 

 

Figure 14 

 

Figure 15 

 

Also Treatment 3 and 4 (figure 14 and figure 15 respectively) have this feature but it is weaker 

compared to Treatment 2.  
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To investigate better the autocorrelation structure, we applied the Box-Ljung test (Table 4) to 

the autocorrelations up to lags 8, 12, 16 for the raw data as well as the squared and the absolute 

returns. 

 

 Treatment 1 Treatment 2 Treatment 3 Treatment 4 DAX 

 8 lags 12 lags 16 lags 8 lags 12 lags 16 lags 8 lags 12 lags16 lags 8 lags 12 lags16 lags 8 lags 12 lags 16 lags 

raw returns 353.56 287.26 295.73 386.51 504.60 1073.42 216.72 305.89 658.69 418.19 444.48 554.08 102.46 1641.57 3590.50

significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Squared returns 354.32 292.99 299.50 395.44 623.38 1431.08 218.70 344.46 803.71 420.43 510.93 659.40 117.41 1926.47 4682.58

Significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Absolute returns 356.73 322.26 315.29 401.30 769.32 1785.33 218.70 344.46 803.71 440.36 528.58 714.63 121.41 2204.23 5592.22

Significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 4: Box-Ljung test 

 

It is clear that we have to reject the null hypothesis that the absolute values of the 

autocorrelation coefficients are not significantly different from zero at both the 0.05 and 0.01 

significance level (for raw, and for squared and absolute returns as well) . 

 

VIII. Conclusion 

In this paper we investigate the characteristics of an experimantal financial market, and we 

compare it to a real one. 

Our market is inspired by two separate strands of economic literature – the first that on herd 

behaviour in non-market situations and the second that on the aggregation of private information in 

markets. The first of these two strands of literature suggests that socially undesirable herd behaviour 

may result when information is private; the second suggests that in a market context the private 

information may be aggregated efficiently through the price mechanism. The latter strand therefore 

suggests that socially undesirable behaviour may be eliminated through the market. 
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The first result we obtain concerne the relationship between information quality and market 

efficency: 

• If the quality of the information is low, market seams to fail to aggregate information 

and the price fluctuate around the un-informated price. 

• If the quality of the information is high, the invisible hand seams to work ‘properly’.  

The second result we obtain relate the cost of information with the leptokurtosis of the returns 

distribution: 

• The more expensive information is the more leptokurtic returns distribution are. 

We finally have evidence that dissemination and aggregation of information through the trading 

mechanism is possible, but it is no longer defensible to argue that rational expectations can be 

achieved instantaneously, or precisely. 

 



 18

References 

Ariofovic, J., and R. Gencay, Statistical properties of genetic learning in a model of exchange rate, 

Journal of Economic Dynamics and Control (2000) 24:981-1006. 

Banerjee, A. V., A simple model of herd behaviour, (1992) Quorterly Journal of Economics, 107, 

pp. 797-817. 

Beja, A., and M. B. Goldman, On the dynamic behaviour of prices in disequilibrium, Journal of 

Finance (1980) 35:235-248. 

Bickchandani, S., D. Hirshleifer and I. Welch, A theory of fads, fashion, customs and cultural 

change as informational cascades, (1992) Journal of Political Economy, 100, pp 992-1026. 

Chen, S. H., and C. H. Yen, On the Emergent Properties of Artificial Stock Markets: Some Initial 

Evidence, Journal of Economic Behaviour and Organisation (in press). 

Chen, S. H., T. Lux and M. Marchesi, Testing for Non-Linear Structure in an Artificial Financial 

Market,(2002) mimeo. 

Chen, S. H., T. Lux and M. Marchesi, Testing for Nonlinearity Structure in an Artificial Financial 

Market, Journal of Economic Behaviour and Organisation (in press). 

Day, R., and W. Huang, Bulls, bears and market sheep, Journal of Economic Behaviour and 

Organisation (1990) 14:299-329. 

de Vries, C. G., Stylized facts of nominal exchange rate returns, pp. 348-389, in ed. F. van der 

Ploeg, The Handbook of International Macroeconomics. Blackwell: Oxford (1994). 

Fama, E., Mandelbrot and the Stable Paretian Hypothesis, Journal of Business (1963) 35:420-429. 

Farmer, D., and S. Joshi, The price dynamics of common trading strategies, Journal of Economic 

Behaviour and Organisation (in press). 

Fischbacher, U., z-Tree – Zurich Toolbox for Readymade Economic Experiment – Experimenter’s 

Manual, 

Gaunersdorfer, A., and C. Hommes, A non linear structured model for volatility clustering, Mimeo 

University of Vienna. 



 19

Gaunersdorfer, A., C. Hommes and F. Wagner, Bifurcation routes to volatility clustering, Mimeo 

University of Vienna. 

Georges, C., Learning dynamics in an artificial currency market, Mimeo Hamilton’s Collage. 

Grossman and Stiglitz, Information and Competitive Price Systems, (1966) American Economic 

Review, 246-253. 

Guillaume, D. M., M. M. Dacorogna, R. R. Dave’, U. A. Muller, R. B. Olsen and O. V. Pictet, 

From the bird’s of eye to the microscope: A survey of new stylized facts in the intra-daily 

foreign exchange markets, Finance and Stochastics (1997) 1:95-129 

Hey, J. D., and A. Morone, Do Markets Drive Out Lemmings – or Vice Versa? (2002) mimeo. 

Iori, G., A micro-simulation traders’ activity in the stock market: the rule of heterogeneity, agents’ 

interactions and trade friction, Journal of Economic Behaviour and Organisation (in press). 

Jansen, D. W., and C. G. de Vries, On the Frequency of Large Stock Returns: Putting Booms and 

Busts into Perspective, Review of Economics & Statistics (1991) 73:18-24. 

Koedijk, K. G., M. M. A. Scafgans and C. G. de Vries, The Tail Index of Exchange Rare Returns, 

Journal of International Economics (1990) 29:93-108. 

LeBaron, B., Agent based computational finance: suggested readings and early research, Journal of 

Economic Dynamics and Control (2000) 24:679-702. 

LeRoy, S. F., Efficient Capital Markets and Martingales, Journal of Economic Literature (1989) 

27:1583-1621. 

Longin, F. M., The Asymptotic Distribution of Extreme Stock Market Returns, Journal of Business 

(1996) 69:383-408. 

Loretan, M., and P. C. B. Phillips, Testing the Covariance Stationarity of Heavy-tailed Time 

Series, Journal of Empirical Finance (1994) 1:211-248. 

Lux, T., and D. Sornette, On Rational Bubbles and Fat Tail, (2002) mimeo. 

Lux, T., and M. Ausloos, Market fluctuations I: Scaling, Multi-Scaling and Their Possible Origins, 

mimeo. 



 20

Lux, T., and M. Marchesi, Scaling and Criticality in a Stochastic Multi-Agent Model of Financial 

Market, Nature (1999) 397:498-500. 

Lux, T., and M. Marchesi, Volatility clustering in financial market: a micro-simulation of 

interacting agents, International Journal of Theoretical and Applied Finance (2000) 3:675-

702. 

Lux, T., The Limiting Extremal Behaviour of Speculative Returns: An Analysis of Intra-Daily 

Data from the Frankfurt Exchange, (2002) mimeo. 

Lux, T., The Stable Paretian Hypothesis and the Frequency of Large Returns: An Examination of 

Major German Stocks, Applied Financial Economics (1996) 6:463-477. 

Mandelbrot, B., The Variation of Certain Speculative Prices, Journal of Business (1963) 35:394-

419. 

Pagan, A., The econometrics of financial markets, Journal of Empirical Finance (1996) 3:15-102. 

Plott, C. R., Markets as Information Gathering Tools, (2002) Southern Economic Journal, 67, 1-15. 

 


