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Abstract: Investors systematically deviate from rationality when making 

financial decisions, yet the mechanisms responsible for these deviations have 

not been identified. Using event-related fMRI, we examined whether 

anticipatory neural activity would predict optimal and suboptimal choices in a 

financial decision-making task. We characterized two types of deviations from 

the optimal investment strategy of a rational risk-neutral agent as risk-seeking 

mistakes and risk-aversion mistakes. Nucleus accumbens activation preceded 

risky choices as well as risk-seeking mistakes, while anterior insula activation 

preceded riskless choices as well as risk-aversion mistakes. These findings 

suggest that distinct neural circuits linked to anticipatory affect promote different 

types of financial choices, and indicate that excessive activation of these circuits 

may lead to investing mistakes. Thus, consideration of anticipatory neural 

mechanisms may add predictive power to the rational actor model of economic 

decision-making. 

Short Title: Neural Basis of Financial Risk-Taking 

Keywords: affect, accumbens, insula, risk, decision, choice, rational, finance, 

economics, fMRI, human. 
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Individual investors systematically deviate from optimal behavior, which 

could influence asset valuation (Daniel et al., 2002; Hirshleifer, 2001; Odean, 

1998). The causes of these deviations have not been established, but emotion 

may have some influence. While some research has examined the role of 

emotion in decision-making (Camerer et al., 2005; Loewenstein et al., 2001), 

and economists have begun to incorporate emotion into models of individual 

choice (Bernheim and Rangel, 2004; Caplin and Leahy, 2001), scientists still 

lack a mechanistic account of how emotion might influence choice. 

Understanding such mechanisms might help theorists to specify more accurate 

models of individual decision-making, which could ultimately improve the design 

of economic institutions so as to facilitate optimal investor behavior.  

Here, we sought to examine whether neural activation linked to 

anticipatory affect would predict financial choices. At least two hypotheses have 

been put forth regarding the role of affect in decision-making. According to one 

account, undifferentiated arousal might be related to both risk-seeking and risk 

aversion (Lo and Repin, 2002). However, according to a second account, 

positive aroused feelings associated with anticipation of gain (e.g., “excitement”) 

may promote risk-taking, whereas negative aroused feelings associated with 

anticipation of loss (e.g., “anxiety”) may promote risk-aversion (Knutson et al., 

2005; Paulus et al., 2003).  

Recent evidence from human brain imaging implies that affect evoked by 

the anticipation of gain and loss may carry distinct neural signatures. 

Specifically, the nucleus accumbens (NAcc) of the ventral striatum shows 

proportional activation during anticipation of monetary gains (Breiter et al., 

2001; Knutson et al., 2001), and this activation correlates with positive aroused 

affect (Bjork et al., 2004; Knutson et al., 2005; Martinez et al., 2003). Neural 
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markers of anticipatory negative affect have not been as clearly delineated, but 

the anterior insula provides a candidate substrate for a number of reasons. 

First, brain imaging studies have consistently reported activation of the anterior 

insula during anticipation of physical pain, which correlates with self-reported 

state anxiety (Buchel and Dolan, 2000; Chua et al., 1999; Ploghaus et al., 

1999). Second, the anterior insula shows activation during anticipation of 

aversive visual stimuli (Simmons et al., 2004). Third, the anterior insula shows 

activation during risky choice in games involving nonmonetary incentives, which 

correlates with subsequent risk-aversion and trait measures of negative 

aroused affect (Paulus et al., 2003). Although the anterior insula is also 

sensitive to attentional and other demands (Phan et al., 2002), a recent review 

suggests that activation in this region is more common under negative than 

positive affective circumstances (Wager et al., 2003). 

The goals of this experiment were first, to determine whether anticipatory 

activity in the NAcc and anterior insula would differentially predict risk-seeking 

versus risk-averse choices, and second, to examine whether activation in these 

regions would precede both suboptimal and optimal choices. Two studies have 

correlated anticipatory neural activation with choice, but both involved choices 

that occurred in the context of social interactions (which might prove more 

susceptible to affective biases) rather than financial decisions (Fehr et al., 2004; 

Sanfey et al., 2003). Another study demonstrated a correlation between neural 

activation and immediate versus delayed reward choices, but did not investigate 

risky choices (McClure et al., 2004).  

To investigate the influence of anticipatory neural activation on financial 

risk-taking, we combined a dynamic investment task with event-related fMRI. 

We compared subjects’ actual investment choices during the task to those of a 
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rational risk-neutral agent who maximizes expected utility. Suboptimal choices 

were defined as deviations from this model, and included both “risk-seeking 

mistakes” (in which people take risks when they should not) and “risk-aversion 

mistakes” (in which people do not take risks when they should).  

We designed a novel task to elicit a range of investment behaviors, 

including risk-seeking and risk-averse financial choices. The Behavioral 

Investment Allocation Strategy (BIAS) Task consisted of 20 blocks of 10 trials 

each (see Figure 1). During each trial, subjects first saw two stocks and a bond 

(Anticipation), and then chose one when the word “Choose” appeared above 

the assets (Choice). Then subjects waited for a brief period (Wait), after which 

their earnings for that trial and total earnings were displayed (Outcome). These 

were followed by a display of the outcomes of all assets on that trial (Market), 

and a fixation cross (Fixation; see Figure 1).  

At the beginning of each block (indicated by a cue), one of the two stocks 

was randomly assigned to be the "good" stock, while the other was assigned to 

be the "bad" stock, without the subject’s knowledge. The good stock dominated 

the bad stock in the sense of first-order stochastic dominance (Huang and 

Litzenberger, 1988). Specifically, outcomes of the good stock (i.e., +$10 with 

50% probability; +$0 with 25% probability; and -$10 with 25% probability) were 

better than outcomes of the bad stock (i.e., +$10 with 25% probability; +$0 with 

25% probability; and -$10 with 50% probability), on average for each trial. The 

bond paid $1 with 100% probability on each trial. Earnings were drawn 

independently from these distributions for each trial, and subjects were informed 

about the distributions before playing the task.  
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Based on prior research, we first predicted that gain versus loss outcomes 

would activate the NAcc and mesial prefrontal cortex (MPFC) (Knutson et al., 

2003), and that loss versus gain outcomes would instead activate the anterior 

insula (Paulus et al., 2003). We then examined whether NAcc activation 

preceded both optimal and suboptimal stock (i.e., risky) choices, as well as 

whether anterior insula activation instead preceded both optimal and suboptimal 

bond (i.e., riskless) choices. 

Results 

Analyses of brain imaging data focused on changes in activation during 

outcome, market, and anticipation periods prior to a given choice. Analyses 

proceeded through two stages. In the first "localization" stage, we constructed 

group statistical maps to identify foci of interest and then verified the predicted 

patterns of activation with multivariate regressions. In the second "prediction" 

stage, we used activation extracted from these foci during the anticipation 

period to predict both optimal and suboptimal subsequent investment choices 

with logit regression models.  

In localization analyses of the outcome period, stock gain versus loss 

outcomes were associated with NAcc and MPFC activation at both the small 

volume corrected and global thresholds, as predicted (Knutson et al., 2003) 

(see Table 1 and Figure 2). Although the anterior insula did not show significant 

deactivation at the global threshold, bilateral foci did show the only 

deactivations in the brain for this contrast that passed the small volume 

corrected threshold (TC=-39,19,7; Z=-2.99; TC=38,19,11; Z=-2.99). Other 



7 

regions that passed the global threshold included right orbitofrontal cortex, left 

anterior cingulate, left precuneus, and left posterior cingulate, replicating prior 

findings (Knutson et al., 2003). Multiple regression of VOI data (hemodynamic 

lag=4 sec) verified that after prior stock choice, gain outcomes were associated 

with increased NAcc and MPFC activation (p’s<.05; see Table S1).  

In analyses of the market period, relative gain outcomes (i.e. larger 

difference between the outcome of the chosen versus unchosen stock) were 

also associated with NAcc and MPFC activation at the small volume corrected 

and global thresholds, as predicted (see Table 2 and Figure 2). Other areas that 

passed the global threshold included left middle frontal gyrus, bilateral caudate, 

left putamen, and dorsomedial thalamus. Multivariate regression of VOI data 

verified that after a stock choice, relative gain outcomes increased NAcc and 

MPFC activation. Conversely, relative loss outcomes increased anterior insula 

activation (see Table S2). After a bond choice, relative gain outcomes (i.e., 

either of the stocks performed worse than the bond) increased MPFC activation 

(see Table S3). 

While not the focus of this study, uncertainty correlated maximally and 

negatively with bilateral anterior cingulate foci, easily exceeding the global 

threshold (TC: +4,16,45, Z=-5.37, -4,16,45, Z=-6.99). Further analysis of 

anticipatory activation extracted from these foci revealed that activation was not 

greatest with maximal uncertainty (i.e., uncertainty=.5, corresponding to minimal 

information about which stock to choose), but rather with maximal conflict (i.e., 

uncertainty=.3, corresponding to minimal information about whether to choose 
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the stock or the bond). Specifically, activation in this region was -.08±.01 

(mean±SEM, n=2100) when uncertainty was less than .25; -.05±.01 (n=868) 

when uncertainty was between .25-.35; and -.15±.02 (n=832) when uncertainty 

was greater than .35. Additionally, anterior cingulate anticipatory activation 

robustly predicted subjects’ subsequent reaction time (t(3718)=7.92, R2=.15 in a 

linear regression model that included subject fixed effects). Thus, anticipatory 

anterior cingulate activation correlated most robustly not with uncertainty, which 

was greatest when it was unclear which stock to choose, but rather with conflict, 

which was greatest when it was unclear whether to choose a stock or the bond. 

However, anticipatory anterior cingulate activation did not correlate with 

subsequent choice, as described below. 

In prediction analyses, we included anticipatory NAcc, MPFC, and anterior 

insula activation (lag=4 sec) in logistic regression models of subsequent choice, 

after incorporating relevant behavioral variables (see Tables 3-5). Adding 

activation from control regions (i.e., bilateral anterior cingulate, orbitofrontal 

cortex, medial caudate, and amygdala) did not increase explanatory power, and 

so data from these regions were not included in subsequent prediction 

analyses.  

Logistic regressions indicated that anticipatory NAcc and anterior insula 

activation were correlated with subsequent choice, and that these associations 

critically depended upon prior choice. For all choices, anticipatory NAcc 

activation increased the likelihood of choosing a stock only when the prior 

choice was a bond (a 0.1% increase in NAcc activation led to a 0.06% increase 
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in the odds of choosing a stock; p<0.05). When the prior choice was a stock, 

anticipatory anterior insula activation increased the likelihood of choosing the 

bond (a 0.1% increase in anterior insula activation led to a 0.08% increase in 

the odds of choosing a bond; p<0.05; see Table 3 and Figure 3). MPFC 

activation did not correlate with subsequent choice. Thus, high NAcc activation 

preceded switching to risk-seeking choices, while high anterior insula activation 

preceded switching to risk-averse choices.  

Logistic regressions also indicated that anticipatory NAcc and anterior 

insula activation were correlated with the types of mistakes that subjects made. 

When the prior choice was riskless (i.e., the bond), anticipatory NAcc activation 

increased the likelihood of making a risk-seeking mistake (a 0.1% increase in 

NAcc activation led to a 0.07% increase in the odds of making a risk-seeking 

mistake; p<0.05). Also, anticipatory NAcc activation decreased the likelihood of 

making a risk-aversion mistake (a 0.1% increase in NAcc activation led to a 

0.06% decrease in the odds of making a risk-aversion mistake; p<0.05). When 

the prior choice was risky (i.e., a stock), anterior insula activation increased the 

likelihood of making a risk-aversion mistake (a 0.1% increase in insula 

activation led to a 0.11% increase in odds of making a risk-aversion mistake; 

p<0.05; see Tables 4-5 and Figure 3). MPFC activation was not correlated with 

subsequent mistakes. Thus, anticipatory neural activation correlated with both 

optimal and suboptimal subsequent choices, even after controlling for 

behavioral variables that should have been the primary determinants of those 

choices. 
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Finally, we investigated whether individual differences in average 

anticipatory activation correlated with subsequent choice, after establishing that 

average anticipatory activation varied across individuals. Because regression of 

anticipatory NAcc activation on subject fixed effects yielded no significant 

differences, relationships between individual differences in anticipatory NAcc 

activation and choice were not examined further. On the other hand, regression 

of anticipatory anterior insula activation on subject fixed effects did yield 

significant differences in 8 (p’s<.05) of 19 subjects, suggesting some individual 

differences in anticipatory insula activation. Individual differences in average 

anterior insula activation during anticipation were significantly correlated with 

the frequency of choosing a bond after having chosen a stock (t(17)=2.14, 

p<.05; R2=.21). Additionally, individual differences in average anterior insula 

activation during anticipation were also significantly correlated with the 

frequency of risk-aversion mistakes after having chosen a stock (t(17)=2.10, 

p<.05, R2=.21). Thus, individual differences in anticipatory anterior insula 

activation were related to making subsequent riskless choices and risk-aversion 

mistakes.  

Discussion 

While NAcc activation preceded both risky choices and risk-seeking 

mistakes, anterior insula activation preceded both riskless choices and risk-

aversion mistakes. These findings are consistent with the hypothesis that NAcc 

represents gain prediction (Knutson et al., 2001), while anterior insula 

represents loss prediction (Paulus et al., 2003). This is the first brain imaging 
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study to operationalize optimal choices, which by extension allows the 

identification of suboptimal choices. According to financial models, one can 

define risk-neutral choices based on Bayesian updating as rational, and 

deviations from these choices as irrational. The results therefore indicate that 

above and beyond contributing to rational choice, anticipatory neural activation 

may also promote irrational choice. Thus, financial decision-making may require 

a delicate balance – recruitment of distinct circuits may be necessary for taking 

or avoiding risks, but excessive activation of one mechanism or the other may 

lead to mistakes. 

While the observation that NAcc activation is correlated with subsequent 

risk taking and risk-seeking mistakes agrees with a gain prediction account of 

NAcc function (Knutson et al., 2001), the current findings are not as consistent 

with alternative accounts. Motor preparation accounts predict equal activation 

prior to motor acts of equal force (Mogenson et al., 1980), and so cannot 

explain the NAcc’s prediction of risk-seeking but not risk-averse choices, since 

both required active choices indicated by button presses. Similarly, a saliency 

account predicts equal activation during anticipation of both large gains and 

losses (Zink et al., 2003), and so cannot account for the NAcc’s prediction of 

risk-seeking but not risk-averse choices. Finally, a behavioral switching account 

predicts that NAcc activation will increase prior to any switch from a repeated 

behavior to a novel behavior (Robbins et al., 1986). While the influence of the 

NAcc in biasing choice was most pronounced when subjects switched from risk-

averse to risk-seeking choices, NAcc activation did not predict switches in the 

opposite direction (from risk-seeking to risk-averse choices). The same 
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arguments apply in reverse to the anterior insula predicting risk-averse choices. 

In either case, theories that fail to include the anticipated subjective value of an 

outcome cannot easily account for the observed pattern of results. 

Although both actual and relative gain outcomes increased activation in 

the MPFC, MPFC activation did not predict subsequent risk-taking behavior, 

consistent with its proposed role in representing gain prediction error rather than 

gain prediction (Knutson et al., 2003). Gain outcomes also activated other 

regions implicated in decision-making (e.g., orbitofrontal cortex, medial caudate, 

anterior cingulate cortex), but activation in these regions also did not predict 

subsequent risk-taking behavior. While activation in these regions do not 

correlate with subsequent risk taking, these regions may still play other 

important roles in decision-making (O'Doherty et al., 2003). For instance, 

anterior cingulate foci showed increased activation under conditions of 

increased response conflict, consistent with the postulated role of this region in 

conflict monitoring (Ridderinkhof et al., 2004).  

The BIAS task offers a number of advantages in eliciting financial choice 

behavior. First, because the BIAS task utilizes monetary incentives in a dynamic 

setting, our findings may generalize to real-world trading scenarios. Second, the 

BIAS task enables identification of both optimal choices and suboptimal 

choices. Third, the BIAS task elicits a range of behaviors from each individual, 

including both risk-seeking and risk-averse choices. Fourth, the event-related 

design of the study allowed us to correlate anticipatory rather than concurrent 
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neural activation with choice by temporally isolating anticipatory activation and 

controlling for key antecedent behavioral variables (i.e., earnings, uncertainty).  

While the event-related analyses ensured that both anticipatory activation 

and decision-making occurred prior to actual choice, the dynamic nature of the 

BIAS task leaves open the question of whether anticipatory activation preceded 

decision-making or the reverse. Some of the present findings support the idea 

that activation preceded decision-making. Specifically, the link between 

activation and subsequent choice critically depended upon prior choice. For 

example, if NAcc activation simply reflected the decision to pick a stock, then 

the relationship between NAcc activation and the likelihood of choosing a stock 

should not depend upon prior choice. However, anticipatory NAcc activation 

significantly predicted the likelihood of subsequent stock choice only if the bond 

was picked on the previous trial (see Table 3). The same argument also applies 

to insula activation. Future research that specifically manipulates anticipatory 

activation could further establish whether such activation influences decisions. 

The dynamic nature of the BIAS task may have obscured stable individual 

differences in NAcc activation, which might influence subsequent choice, but 

are more evident in stationary tasks (Knutson et al., 2005). However, even 

during this dynamic task, significant individual differences were evident in insula 

activation during anticipation, and these predicted switching from risky to 

riskless choices as well as the likelihood of making risk aversion mistakes while 

doing so. The link between individual differences in anterior insula activation 
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and subsequent risk-averse choices replicates and extends prior findings 

(Paulus et al., 2003).   

While experts and nonexperts who differed in terms of prior coursework in 

finance and statistics did not significantly differ in behavior in this experiment, 

future research should also examine the influence of individual differences in 

trading experience on financial risk taking, since psychophysiological evidence 

suggests that experienced traders may show less emotional responsiveness to 

market events than inexperienced traders (Lo and Repin, 2002). While many 

psychophysiological measures (e.g., skin conductance, heart rate, pupillary 

dilation) index anticipatory arousal, the current results suggest that measures 

that probe anticipatory valence will also be necessary to predict the likelihood of 

subsequent risky choice.  

Overall, these findings suggest that risk-seeking choices (such as 

gambling at a casino) and risk-averse choices (such as buying insurance) may 

be driven by two distinct neural circuits involving the NAcc and the anterior 

insula. The findings are consistent with the notion that activation in the NAcc 

and anterior insula respectively index positive and negative anticipatory 

affective states, and that activating one of these two regions can lead to a shift 

in risk preferences. This may explain why casinos surround their guests with 

reward cues (i.e., inexpensive food, free liquor, surprise gifts, potential jackpot 

prizes) -- anticipation of rewards activates the NAcc, which may lead to an 

increase in the likelihood of individuals switching from risk-averse to risk-
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seeking behavior. A similar story in reverse may apply for the marketing 

strategies employed by insurance companies.  

Consideration of risk necessarily involves weighing potential gains against 

potential losses. The notion that distinct neural mechanisms anticipate gain 

versus loss suggests a novel componential view of risk taking.  Combined with 

such a view, these findings provide neural targets for investigating complex risk 

phenomena such as loss aversion, in which people weigh losses more than 

gains of equivalent size (Kahneman and Tversky, 1979). These findings further 

imply that neuroeconomic research may foster a more comprehensive theory of 

individual decision-making than the rational actor model and thus, may 

ultimately yield new insights relevant to economic policy and institutional design. 

Experimental Procedures 

Nineteen healthy volunteers (10 females, mean age=27, range=24-39 

years, right-handed) participated in the study. Prior to entering the scanner, 

subjects played a practice version of the investment task for at least 10 minutes, 

minimizing learning effects. Subjects were then shown the cash they could earn 

by performing the task successfully, and correctly reported believing that they 

would receive cash at the end of the experiment contingent upon their 

performance. Subjects received a fixed compensation of $20 per hour, as well 

as a tenth of their total task earnings. They were also informed that it was 

possible to lose money on the task, and that any losses would be deducted 

from their total payment. 
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To elicit a range of investment behavior, subjects included both “experts” 

and “nonexperts,” depending on whether they had taken prior graduate 

coursework in statistics and finance. Experts included Ph.D. students in 

Finance, Economics, or Accounting; while nonexperts included Ph.D. students 

in Humanities at Stanford University, to equate age, socioeconomic status, 

education and intelligence. A 2 (expert versus nonexpert-between) X 20 (block-

within) analysis of variance revealed a main effect of block (F(19,323)=2.35, 

p<.005), indicating that subjects chose the bond more often as the experiment 

progressed. However, experts and nonexperts did not significantly differ in 

choice of stocks versus bonds, either overall (54±6% vs 53±6%) or across 

blocks. Experts and nonexperts also did not significantly differ in the proportion 

of risk-seeking mistakes (26±6% vs. 35±8%; t(17)=.88, n.s.) or risk-aversion 

mistakes they made overall (23±6% vs. 29±6%; t(17)=.67, n.s.; calculated as 

percentage of mistakes made on trials where mistakes of that type were 

possible), suggesting more of a performance continuum than distinct groupings. 

Since choices and mistakes did not significantly differ between experts and 

nonexperts, we combined groups in subsequent analyses.  

Behavioral analysis. In the context of the BIAS task, the optimal strategy of 

a rational, risk-neutral agent is to pick a stock if he or she expects to receive a 

dividend that is at least as large as the bond earnings. Since the actual 

monetary amounts at stake in each trial were small (-$1 to $1), we used risk-

neutrality as the baseline model of investor behavior (Rabin, 2000), a model 

which assumes that individuals maximize expected return. A rational actor 

should also update his or her beliefs about the probability of each stock being 
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optimal according to Bayes’ rule. Based on these assumptions, we derived the 

optimal portfolio selection strategy, which was the same for all trials (see 

Supplementary Material).  

For each trial, the objective probability of each of the two stocks being 

dominant can be computed using Bayes’ rule. We refer to the minimum of these 

two probabilities as ”uncertainty” for that trial. Uncertainty is highest (and equal 

to 0.5) at the beginning of a block, when the probability of either stock being 

optimal is 50%, and decreases as more information about dividends is revealed, 

clarifying which stock dominates. On trials where uncertainty was 0.3 or lower, 

the optimal choice was one of the stocks – otherwise, the optimal choice was 

the bond. Thus, when uncertainty is close to the threshold value of 0.3, it is 

most difficult for subjects to determine the optimal strategy (i.e., whether to 

choose a bond versus stock), leading to maximum conflict. Thus, uncertainty is 

maximal when subjects cannot distinguish which of the two stocks is better, 

while conflict is maximal when subjects cannot distinguish whether it is better to 

choose a stock or the bond.  

For each trial, we compared subjects’ investment choices to those of a 

rational, risk-neutral agent. Deviations from this model were defined as different 

types of “mistakes.” These mistakes fell into three categories. Subjects might: 

(1) pick a stock when the bond was the optimal choice (“risk-seeking mistake”); 

(2) pick the bond when a stock was the optimal choice (“risk-aversion mistake”); 

or (3) pick a stock when the other stock is the optimal choice (“confusion 

mistake”). Confusion mistakes occurred in less than 1% of the trials and thus 
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were not considered in subsequent analyses. We used logit models to predict 

the likelihood of choosing a stock or make either type of mistake conditional, as 

well as unconditional, on prior choice.  

We predicted that several behavioral variables would influence 

subsequent choice (i.e., prior choice, prior outcome, relative earnings of chosen 

versus unchosen assets, cumulative earnings, and uncertainty). Logistic 

regressions indicated that when the prior choice was a stock, lower relative 

earnings reduced the likelihood of choosing a stock again (see Table 3). When 

the prior choice was a bond, lower relative earnings increased the likelihood of 

switching to a stock. Moreover, as predicted and independent of prior choice, 

increasing uncertainty increased the likelihood of choosing the bond. These 

predicted findings provided behavioral evidence for the validity of the task. 

Additionally, and independent of prior choice, increasing cumulative 

earnings increased the likelihood of choosing a bond (see Table 3). When the 

prior choice was a stock, increasing cumulative earnings also decreased the 

likelihood of making a risk-seeking mistake. When the prior choice was a stock, 

decreased relative earnings increased the likelihood of making a risk-aversion 

mistake (see Table 4). On the other hand, when the prior choice was a bond, 

decreased relative earnings increased the likelihood of making a risk-seeking 

mistake (see Table 5). Outcomes also influenced subsequent choice. When the 

prior choice was a stock, increasing outcome increased the likelihood of a 

choosing a bond as well as the likelihood of making a risk-aversion mistake 

(see Tables 3 and 4). Because behavioral variables including prior outcome, 
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relative earnings of the chosen versus unchosen asset, cumulative earnings, 

and uncertainty all influenced subsequent choice, we included them as 

covariates in prediction analyses. 

fMRI acquisition. Images were acquired with a 1.5-T General Electric MRI 

scanner using a standard birdcage quadrature head coil. Twenty-four 4-mm-

thick slices (in-plane resolution 3.75 X 3.75 mm, no gap) extended axially from 

the mid-pons to the top of the skull, providing adequate spatial resolution of 

subcortical regions of interest (e.g., midbrain, ventral striatum). Functional 

scans of the whole brain were acquired every 2 sec (TR=2 sec) with a T2*-

sensitive in-/out- spiral pulse sequence (TE=40 ms, flip=90°) designed to 

minimize signal dropout at the base of the brain (Glover and Law, 2001). High-

resolution structural scans were subsequently acquired using a T1-weighted 

spoiled grass sequence (TR=100 ms; TE=7 ms, flip=90°), facilitating 

subsequent localization and coregistration of functional data. 

fMRI Analysis. Localization analyses were conducted using Analysis of 

Functional Neural Images (AFNI) software (Cox, 1996). For preprocessing, 

voxel time series were sinc interpolated to correct for nonsimultaneous slice 

acquisition within each volume, concatenated across runs, and corrected for 

three-dimensional motion. Visual inspection of motion correction estimates 

confirmed that no subject’s head moved more than 2.0 mm in any dimension 

from one volume acquisition to the next. Preprocessed time series were 

submitted to a regression model that included three regressors indexing 
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residual motion, and six regressors modeling baseline, linear, and quadratic 

trends for each of the two runs. 

Regressors of interest were convolved with a gamma-variate function that 

modeled a canonical hemodynamic response prior to inclusion in regression 

models (Cohen, 1997). Maps of t-statistics for regressors of interest were 

transformed into Z-scores, coregistered with structural maps, spatially 

normalized by warping to Talairach space, slightly spatially smoothed (FWHM = 

4 mm) to minimize the effects of anatomical variability, resampled at 2 mm3, 

and combined into a group map using a meta-analytic formula (average 

Z*sqrt(n)) (Knutson et al., 2000). Thresholds for statistical significance within the 

predicted volumes of interest (i.e., NAcc, anterior insula, and MPFC) were 

determined by a local small volume correction (3 4 mm radius spheres or 12.56 

4 mm3 voxels corrected at p<.05 yields a threshold Z of 2.88, p<.004 

uncorrected), and required a minimum cluster of 4 contiguous voxels. 

Thresholds for statistical significance outside the predicted volumes of interest 

were set using a global family wise error rate that corrected for gray matter 

volume in subcortical and mesial prefrontal cortical regions (approximately 500 

4 mm3 voxels corrected at p<.05 yields a threshold Z of 3.88, p<.0001 

uncorrected (Knutson et al., 2000)), and required a minimum cluster of 4 

contiguous voxels.  

As indicated by behavioral analyses, all fMRI analyses included covariate 

regressors representing cumulative earnings (defined as current wealth earned 

during the task, updated at each outcome period) and uncertainty (updated at 

each market period). For outcome analyses, regressors of interest contrasted 
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stock versus bond choice, as well as gain versus loss outcome predicated on 

stock choice. Because the BIAS task is a dynamic reward learning task, we 

predicted that gain versus loss outcomes would activate both the NAcc (gain 

prediction) and MPFC (gain prediction error) (Knutson et al., 2003) and 

deactivate the anterior insula (Paulus et al., 2003). For market analyses, the 

regressor of interest contrasted amount earned on the current stock choice 

versus possible earnings from the unchosen stock, predicated on prior stock 

choice. As with actual outcomes, we predicted that better relative earnings 

during the market period would also activate the NAcc and MPFC.  

Volumes of interest (VOIs) were specified as 8 mm diameter spheres 

centered on foci identified in the outcome analysis in the NAcc, MPFC, and 

insula (see Table 1), thereby ensuring that equal amounts of data were 

extracted for each subject in each region. Visual inspection confirmed that VOIs 

encompassed only gray matter for each individual subject (Knutson et al., 

2004). Additional control volumes of interest of the same size and shape were 

specified in the bilateral anterior cingulate at foci correlated with uncertainty 

(TC: +/-4,16,45), in the bilateral orbitofrontal cortex at foci correlated with 

outcome (TC +/-26,36,-8), and in the bilateral amygdala (TC: +/-22, -10,-26), 

and bilateral medial caudate (TC: +/-10,7,10) based on the Talairach atlas, in 

order to verify local specificity of predicted effects. 

Prediction analyses were conducted on activation timecourse data that was 

spatially averaged and extracted from these VOIs. Prediction analyses tested 

whether NAcc activation during anticipation was associated with subsequent 

stock choice as well as risk-seeking mistakes, after controlling for potential 
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behavioral confounds. Prediction analyses also tested whether anterior insula 

activation during anticipation was associated with subsequent bond choice as 

well as risk-aversion mistakes, after controlling for potential behavioral 

confounds. Additional analyses utilized identical models, but substituted data 

extracted from control VOIs.  

Individual differences analyses were conducted by first using logistic 

regressions to determine whether subject fixed effects alone had a significant 

influence on VOI activation during anticipation. Given sufficient variability across 

subjects in activation during anticipation (e.g., fixed effects were significant in 

over 25% of the subjects), logistic regressions were conducted that examined 

the effects of individual differences in average VOI activation during anticipation 

on the frequency of choosing the stock versus the bond, as well as on the 

frequency of making risk-seeking or risk-aversion mistakes.  
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Table 1:  Activation foci for choice outcome: Contrast of gain versus loss 

following stock choice.  

 

Region Z-score Tal. Coordinates 

L MPFC 5.34 -3,56,4 

L MPFC* 5.47 -3,49,0 

R OFC 3.89 22,36,-8 

R NAcc 6.41 11,12,-3 

L NAcc* 5.82 -13,8,-4 

L Ant. Cing 4.07 -1,-1,34 

L Precuneus 4.71 -1,-33,43 

L Post. Cing. 5.11 -3,-34,27 
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Table 2:  Activation foci for market outcome: Contrast of chosen stock versus 

unchosen stock value.  

 

Region Z-score Tal. Coordinates 

L MFG 3.93 -3,56,8 

L MPFC 4.26 -3,49,-5 

L Caudate 4.46 -7,19,8 

R Caudate 4.59 7,19,8 

L Putamen 4.14 -20,9,-2 

DM Thalamus 5.00 -1,-7,12 
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Table 3:  Logit estimation of the probability of choosing a stock or bond in trial t. 

The dependent variable, StockChoicet, is an indicator variable equal to 1 if a 

stock was chosen, and 0 if the bond was chosen on trial t. lNAcct
ANT, lMPFCt

ANT 

and linsulat
ANT are activations in the left NAcc, MPFC and anterior insula in the 

Anticipation period of trial t. RelEarningst is equal to the difference between the 

dividends on trial t of the stock not chosen and those of the chosen stock. If the 

asset chosen in trial t was the bond, RelEarningst is equal to the maximum 

dividend paid by the two stocks on that trial. Outcomet is equal to the earnings 

made on trial t. Uncertaintyt is the uncertainty of the choice and defined as 
min(Pr{Stock T = Good | History}, Pr{Stock R = Good | History}). CumEarningst 

is wealth accumulated during the task up to and including trial t. Subject fixed 

effects included, with robust standard errors. Inclusion of brain variables 

increases R-sq by 1% in each regression. 
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Previous choice was 

a stock 

Previous choice was 

the bond All data 

StockChoicet Coef Coef Coef 

lNAcct
ANT -0.0498 0.5889 0.3192 

  (0.24) (3.21)*** (2.70)*** 

lMPFCt
ANT -0.0461 -0.0222 -0.0137 

  (0.26) (0.15) (0.14) 

linsulat
ANT -0.7875 0.1910 -0.2359 

  (3.04)*** (0.89) (1.69)* 

RelEarningst-1 -0.0550 0.0447 -0.0360 

  (5.18)*** (4.08)*** (6.65)*** 

Outcomet-1 -0.0253  -0.0452 

  (1.88)*  (4.65)*** 

Uncertaintyt -4.7256 -8.8818 -8.1441 

  (7.68)*** (12.89)*** (21.42)*** 

CumEarningst-1 -0.0036 -0.0017 -0.0031 

  (3.43)*** (1.99)** (5.51)*** 

Constant 2.7542 1.8624 2.7986 

  (7.37)*** (5.30)*** (12.33)*** 

Observations 1578 1595 3367 

Pseudo R-sq 0.27 0.31 0.33 

Robust z statistics in parentheses    

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 4:  Logit estimation of the probability of making a risk-aversion mistake in 

trial t. The dependent variable, RAMt (Risk-Aversion Mistake), is an indicator 

variable equal to 1 if the bond was chosen on trial t while the optimal choice 

was one of the stocks. lNAcct
ANT, lMPFCt

ANT and linsulat
ANT are activations in 

the left NAcc, MPFC and anterior insula in the Anticipation period of trial t. 

StockChoicet is an indicator variable equal to 1 if a stock was chosen, and 0 if 

the bond was chosen on trial t. RelEarningst is equal to the difference between 

the dividends on trial t of the stock not chosen and those of the chosen stock. If 

the asset chosen in trial t was the bond, RelEarningst is equal to the maximum 

dividend paid by the two stocks on that trial. Outcomet is equal to the earnings 

made on trial t. Uncertaintyt is the uncertainty of the choice and defined as 
min(Pr{Stock T = Good | History}, Pr{Stock R = Good | History}).CumEarningst 

is wealth accumulated during the task up to and including trial t. Subject fixed 

effects included, with robust standard errors. Inclusion of brain variables 

increases R-sq by 1% in each regression.  
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Previous choice 

was a stock 

 

Previous choice 

was the bond 

 

 

All data 

RAMt Coef Coef Coef 

lNAcct
ANT 0.2962 -0.5787 -0.1973 

  (1.11) (2.34)** (1.21) 

lMPFCt
ANT -0.1224 -0.1361 -0.1578 

  (0.52) (0.61) (1.11) 

linsulat
ANT 1.0985 0.1027 0.4973 

  (3.22)*** (0.34) (2.56)** 

RelEarningst-1 0.0474 -0.0511 0.0384 

  (3.45)*** (3.20)*** (5.02)*** 

Outcomet-1 0.0495  0.0497 

  (2.47)**  (3.89)*** 

Uncertaintyt 3.9333 11.6122 11.7142 

  (2.25)** (7.52)*** (11.86)*** 

CumEarningst-1 0.0019 0.0016 0.0026 

  (1.40) (1.58) (3.67)*** 

Constant -2.3645 -2.4798 -3.3136 

  (5.27)*** (5.11)*** (10.64)*** 

Observations 1015 694 1857 

Pseudo R-sq 0.26 0.21 0.25 

Robust z statistics in parentheses   

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 5:  Logit estimation of the probability of making a risk-seeking mistake in 

trial t. The dependent variable, RSMt (Risk-Seeking Mistake), is an indicator 

variable equal to 1 if a stock was chosen on trial t while the optimal choice was 

the bond. lNAcct
ANT, lMPFCt

ANT and linsulat
ANT are activations in the left NAcc, 

MPFC and anterior insula in the Anticipation period of trial t. StockChoicet is an 

indicator variable equal to 1 if a stock was chosen, and 0 if the bond was 

chosen on trial t. RelEarningst is equal to the difference between the dividends 

on trial t of the stock not chosen and those of the chosen stock. If the asset 

chosen in trial t was the bond, RelEarningst is equal to the maximum dividend 

paid by the two stocks on that trial. Outcomet is equal to the earnings made on 

trial t. Uncertaintyt is the uncertainty of the choice (or uncertainty of the 

environment) and defined as min(Pr{Stock T = Good | History}, Pr{Stock R = 
Good | History}). CumEarningst is wealth accumulated during the task up to and 

including trial t. Subject fixed effects included, with robust standard errors. 

Inclusion of brain variables increases R-sq by 1% in each regression. 
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Previous choice 

was a stock 

 

Previous choice 

was the bond 

 

 

All data 

RSMt Coef Coef Coef 

lNAcct
ANT 0.3998 0.7395 0.4868 

  (0.93) (2.63)*** (2.69)*** 

lMPFCt
ANT -0.4330 -0.1108 -0.1210 

  (1.44) (0.50) (0.81) 

linsulat
ANT -0.6024 0.4430 -0.0577 

  (1.19) (1.30) (0.27) 

RelEarningst-1 -0.0838 0.0395 -0.0152 

  (3.81)*** (2.34)** (1.67)* 

Outcomet-1 0.0037  -0.0416 

  (0.16)  (2.49)** 

Uncertaintyt -12.4172 -14.6378 -8.8036 

  (6.20)*** (5.37)*** (8.07)*** 

CumEarningst-1 -0.0089 -0.0008 -0.0038 

  (4.32)*** (0.58) (4.22)*** 

Constant 7.1203 3.1759 2.9538 

  (5.93)*** (2.58)*** (5.24)*** 

Observations 353 874 1295 

Pseudo R-sq 0.30 0.34 0.25 

Robust z statistics in parentheses   

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Figure 1:  Trial structure (2 sec per panel).  

 

 

 

 

 

 



38 

 

Figure 2:  Effect of actual and relative outcomes on neural activation 

(n=19). Top panels depict the contrast of large gains vs. large losses during the 

Outcome period following stock choice. Bottom panels depict the contrast of 

chosen versus unchosen outcomes during the Market period following stock 

choice. 
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Figure 3: Association of anticipatory neural activation with subsequent 

choice. Left panel indicates a significant effect of anterior insula activation on 

the odds of making riskless (bond) choices and risk-aversion mistakes (RAM) 

after a stock choice (Stockt-1). Right panel indicates a significant effect of NAcc 

activation on the odds of making risk-aversion mistakes, risky choices, and risk-

seeking mistakes (RSM) after a bond choice (Bondt-1). The odds ratio for a 

given choice is defined as the ratio of the probability of making that choice 

divided by the probability of not making that choice. Percent change in odds 

ratio results from a 0.1% increase in NAcc or anterior insula activation; 

*coefficient significant at p<.05.  
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Optimal Portfolio Selection Strategy 
 

During trial τ in each block, a rational risk-neutral agent should pick stock i 

if he/she expects to receive a dividend Di
τ at least as large as the bond 

earnings, that is, if: 

E[Di
τ|Iτ-1] >= E[DB

τ |Iτ-1] = 1, where Iτ-1 is the information set up to trial τ-1. 

That is: Iτ-1={Di
t| ∀ t≤τ-1, ∀ i∈ {Stock T, Stock R, Bond C}}. 

Let xi
τ = Pr{ Stock i = Good |Iτ-1}. Then: 

E[Di
t|Iτ-1] = xi

τ [0.5 * 10 + 0.25 * (-10) + 0.25 * 0] + (1 - xi
τ) [0.5 * (-10) + 0.25 

* 10 + 0.25 * 0] = 2.5 * (2xi
τ - 1) 

Hence, a risk-neutral agent will pick stock i only when his belief xi
τ is such 

that: 

2.5 * (2xi
τ - 1)>=1 ⇔  xi

τ >= 0.7  

If the agent’s beliefs are weak, that is: xi
τ<0.7, ∀ i ∈ {Stock T, Stock R}, then 

the optimal strategy for the risk-neutral agent is to pick the bond in trial τ. 
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A rational agent should update his or her beliefs xi
τ according to Bayes’ 

rule. 

In this paper, we refer to the uncertainty of a trial τ, defined as min(x i
τ ,x j

τ ), 

where i,j ∈ {StockT,StockR} and i ≠ j. Hence, the uncertainty is highest (and 

equal to 0.5) at the beginning of a block, because at that point the probability of 

either one of the stocks being the good one is 50%. The uncertainty decreases 

as more information about dividends is revealed and it becomes clearer which 

stock dominates.  
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Tables 
Table S1:  Determinants of left NAcc, anterior insula and MPFC activation 

during the OUTCOME period, for trials where a STOCK was chosen. 

CumEarningst is wealth accumulated during the task up to and including trial t. 

Uncertaintyt  is defined as min(Pr{Stock T = Good | History}, Pr{Stock R = Good 

| History}). +10.00t is an indicator variable equal to 1 if the dividend paid by the 

stock on trial t was +10. -10.00t is an indicator variable equal to 1 if the dividend 

paid by the stock on trial t was -10. Subject fixed effects included.  

Dependent 

variable 
lNAccOUT

t  linsulOUT
t  lMPFCOUT

t  

 Coef. Coef. Coef. 

-10.00t -0.0138 0.0224 -0.0076 
 (0.56) (1.21) (0.26) 

+10.00t 0.0838 0.0013 0.1408 
 (3.85)*** (0.08) (5.23)*** 

Uncertaintyt -0.0322 0.0063 -0.1090 
 (0.49) (0.14) (1.59) 

CumEarningst-1 -0.0000 0.0001 0.0001 
 (0.16) (1.07) (1.30) 

Constant 0.1083 0.0992 -0.0219 
 (2.27)** (2.57)** (0.27) 

Observations 2036 2036 2036 
R-sq 0.0581 0.0518 0.0434 

Robust t statistics in parentheses. Robust standard errors. * 

significant at 10%, ** significant at 5%, *** significant at 1%. 
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Table S2:  Determinants of left NAcc, anterior insula and MPFC activation 

during the MARKET period, for trials where a STOCK was chosen. 

CumEarningst is wealth accumulated during the task up to and including trial t. 

Outcomet are earnings made on trial t. Uncertaintyt  is defined as min(Pr{Stock 

T = Good | History}, Pr{Stock R = Good | History}).  +20t is an indicator variable 

equal to 1 if the difference between the dividend paid by the chosen stock and 

that paid by the not chosen stock is equal to +20. -20t  is an indicator variable 

equal to 1 if the difference between the dividend paid by the chosen stock and 

that paid by the not chosen stock is equal to -20. +10t and –10t are defined 

similarly. Subject fixed effects included.  

Dependent 

variable 
lNAccMKT

t  linsulMKT
t  lMPFCMKT

t  

 Coef. Coef. Coef. 

-20.00t -0.0159 0.0551 0.0295 

 (0.46) (1.87)* (0.64) 

-10.00t 0.0227 0.0388 -0.0519 

 (0.80) (1.75)* (1.63) 

+10.00t 0.0525 -0.0174 0.0732 

 (2.23)** (0.83) (2.43)** 

+20.00t 0.0531 -0.0619 0.0918 

 (2.10)** (2.78)*** (2.83)*** 

Outcomet 0.0015 0.0021 -0.0009 

 (1.08) (1.80)* (0.51) 

Uncertaintyt 0.0619 -0.0898 0.0513 

 (1.04) (1.70)* (0.71) 

CumEarningst-1 0.0001 0.0001 0.0000 

 (0.85) (1.76)* (0.15) 
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Constant -0.1496 -0.1505 -0.2006 

 (3.94)*** (3.82)*** (2.42)** 

Observations 2036 2036 2036 

R-sq 0.0237 0.0314 0.0347 

Robust t statistics in parentheses. Robust standard errors. * 

significant at 10%, ** significant at 5%, *** significant at 1%. 
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Table S3:  Determinants of left NAcc, anterior insula and MPFC activation 

during the MARKET period, for trials where the BOND was chosen. 

CumEarningst is wealth accumulated during the task up to and including trial t. 

Uncertaintyt  is defined as min(Pr{Stock T = Good | History}, Pr{Stock R = Good 

| History}). Since subjects chose the bond, which yielded +1, we define +11t as 

an indicator variable equal to 1 if the maximum dividend paid by either stock 

was -10 (1-(-10)). –9t is an indicator variable equal to 1 if the maximum dividend 

paid by either stock was +10 (1-10). Subject fixed effects included.  

 

Dependent 

variable 
lNAccMKT

t  linsulMKT
t  lMPFCMKT

t  

-9.00t -0.0280 0.0062 -0.0153 
 (1.23) (0.32) (0.63) 

+11.00t -0.0318 0.0352 0.1199 
 (0.96) (1.24) (3.26)*** 

Uncertaintyt -0.0788 -0.1976 -0.1531 
 (1.16) (3.40)*** (2.04)** 

CumEarningst-1 -0.0000 0.0001 -0.0001 
 (0.06) (0.62) (0.68) 

Constant 0.0615 0.0928 0.1307 
 (1.22) (1.96)** (1.58) 

Observations 1708 1708 1708 
R-sq 0.0161 0.0387 0.0548 

Robust t statistics in parentheses. Robust standard errors. * 

significant at 10%, ** significant at 5%, *** significant at 1%. 
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