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1 Introduction

Barry O’Neill’s insightful 1987 paper revived interest in using experimental methods to test the

predictive power of mixed-strategy equilibrium. Following O’Neill’s experiment, a number of other

researchers have conducted new experiments based on two-person zero- sum games that have unique

mixed-strategy equilibria.1 The evidence for and against equilibrium theory has been mixed: while

the theory seems to perform better than it did in the experiments done prior to O’Neill’s,2 there

have nevertheless been consistent departures from the implications of equilibrium theory in each of

the experiments. We report here on a new experiment that produced unexpected departures from

the theory, and we speculate on possible explanations for these departures.

The experiment was designed for an unrelated research project, but the strikingly systematic

nature of the departures from equilibrium behavior led us to refine the experiment to focus on

these departures. The experiment was based upon two simple games of “hide and seek,” one with

deterministic payoffs and the other with stochastic payoffs, but otherwise strategically identical.

Since the two games are in some respects simpler than the games used in most previous experiments,

the theory might be expected to perform better than it had done before, and this throws the

departures from theoretical predictions into sharp relief.

The two games – stochastic and deterministic – have the same representation as a 2× 2 normal

form game. Each of the players, the Pursuer and the Evader, can move either to the Left or to

the Right. The game has a unique equilibrium, in which the Pursuer and the Evader each use the

same mixture: each player plays his Left action with probability 2/3 and his Right action with

probability 1/3.

Each of our subjects played only one of the two games, playing it many times against a single,

unchanging opponent (another subject). The subjects’ play in our experiment resembled, in some

respects, the results that have been consistently observed in previous experiments: choice frequen-

cies when aggregated across all subjects were relatively close to the equilibrium frequencies, there

was substantially more variation in choice frequencies across subjects than the theory predicts, and
1See, for example, Rapoport and Boebel (1992), Mookherjee and Sopher (1994, 1997), Bloomfield (1994), Ochs

(1994), Shachat (2002), and Binmore, et al. (2001). See also Brown and Rosenthal (1990) and O’Neill (1991) for an

analysis and discussion of the extent to which the data support the theory.
2For example, Suppes and Atkinson (1960), and Malcolm and Lieberman (1965).
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there was significant serial correlation in choices. But there were also some departures from the

theory that had not been observed in previous experiments. These departures were unexpected

and were strikingly systematic. They were of three kinds:

(1) Asymmetric role behavior: Although the player roles’ equilibrium mixtures are the same,

nearly every Evader chose Left more often than his Pursuer opponent.

(2) A game asymmetry effect: Although the equilibrium mixtures are the same in both games,

Pursuers and Evaders each played Left more often in the stochastic game than in the deterministic

game.

(3) Strong positive serial correlation: In contrast to previous experiments, in which subjects

tended to change their actions too frequently to be consistent with random choice, our subjects

switched from one action to the other too rarely.

We describe the experiment in detail in Section 2 and we describe the data in Section 3. In

Section 4 we investigate how well three prominent alternative models explain the observed devia-

tions from equilibrium play. Each of the alternative models is able to accommodate asymmetric

role behavior, but not at the magnitude observed in our data. None of the models explains other

important features of the data. In Section 5 we offer some conjectures about what might be driving

the main features of the data.

2 The Experiment3

At the beginning of each experimental session, the subjects were matched into pairs. Each pair

of subjects then repeatedly played either the Stochastic game or the Deterministic game, in some

cases for 100 repetitions, in other cases for 200 repetitions.

In the Stochastic Game, each player has two choices, Left and Right. If the players choose

different moves (one Left and one Right), then the Evader has successfully avoided detection and

no money changes hands. If the players choose the same move (both Left or both Right), then the

Pursuer has “found” the Evader, and a random device then determines whether the Pursuer wins
3All sessions of the experiment took place at the University of Arizona. The subjects were all Arizona undergrad-

uates recruited from undergraduate economics courses. No subject participated in more than one session. Sample

instructions are available online at http://www.u.arizona.edu/ mwalker/RSWDataBank.htm.
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money from the Evader: if both chose Left, then with probability 1/3 the Pursuer wins a fixed

amount of money from the Evader; and if both chose Right, then with probability 2/3 the Pursuer

wins the same amount from the Evader.

In the experiment, the subjects sat side-by-side at a table, separated from each other by an

opaque screen, facing a human monitor who recorded all details of play.4 The subjects’ roles as

Pursuers or Evaders were chosen by lot at the outset, and each subject retained both the same

role and the same opponent during the entire course of play. Each subject had two cards, one with

the label L on its face, the other with R on its face. In each round of play, each subject selected

one of his two cards, placing it face down and sliding it toward the monitor. Both cards were then

turned face up within sight of all three individuals. If the cards matched, the monitor rolled a

single die; if the die came to rest with one or two spots showing after both subjects had played L,

then the Evader transferred to the Pursuer a token with a known monetary value (to be described

momentarily); and if both subjects had played R, then the Evader transferred a token when the die

showed three or more spots. The Evader was given some working capital of tokens at the beginning

of play and the Pursuer started with no tokens.

The Deterministic Game differs in only one respect from the Stochastic Game we have just

described: in the Deterministic Game, when the two players choose the same direction (both Left

or both Right) the Pursuer wins an amount from the Evader for certain, and he wins twice as much

when both have chosen Right as when both have chosen Left.

Note that the expected monetary payoffs for the Pursuer in both games can be described by

the same payoff matrix

Evader

Left Right

Pursuer
Left

Right

1 0

0 2
.

The games are zero-sum in expected monetary payoffs. The utility payoffs associated with these

monetary payoffs will be considered below.
4Our intent was that each subject see his or her opponent, drawn from the same subject pool, at the beginning of

play, so that any thoughts of the opponent’s being a stooge or a computer program would be minimized. The opaque

screen prevented each player from being able to key on any element of the opponent’s behavior during the course of

play, other than perhaps the rate at which the opponent played.

3



The monetary transfers in the experiment were effected by using push-pins as tokens. Each

subject had a pad into which the pins could be easily pushed, and the pads were demarcated so

that the subject could easily see both his current balance of pins and the dollar value of that

balance. The pads were redeemed for cash at the end of the session at a monetary rate per pin that

was stated at the beginning of the session. The monetary redemption rate for the Stochastic Game

was a half-dollar per pin. For the Deterministic Game it was one-sixth of a dollar per pin. The

redemption rates were selected so that at the equilibrium mixture the expected monetary payoffs

were the same in both games. When the Pursuer and the Evader both play their equilibrium

mixtures the monetary value of the game to the Pursuer is 1/9 of a dollar and the value to the

Evader is −1/9 of a dollar.

The Evaders began with $25 worth of tokens in the 100-play sessions and with $50 worth of

tokens in the 200-play sessions.5 Under equilibrium play, the Pursuer’s expected earnings were a

little more than $11 in the 100- play experiments and a little more than $22 in the 200-play sessions.

The Evader could expect on average to keep about $14 of the $25 he started with in the 100-play

experiments and about $28 of the $50 he started with in the 200-play sessions. Each experimental

session lasted for about one hour.

Twenty pairs of subjects played the Stochastic Game repeatedly, and another twenty pairs

played the Deterministic Game. In each case, fourteen of the pairs played the game 100 times and

the remaining six pairs played 200 times.

The natural prediction from game theory is that the subjects in the experiment will play a

Nash equilibrium of the repeated game (the 100- play game, or the 200-play game), which might

or might not consist of the players playing the equilibrium of the stage game at each of the 100 or

200 plays. And even in the 2 × 2 stage game the equilibrium may depend upon the players’ risk

attitudes.

O’Neill and others explicitly avoided risk attitudes in their stage games by devising games with

only two outcomes (for example, in O’Neill’s experiment every action profile led to one player or the
5By having one subject pay the other from an initial endowment, we provide stronger incentives (i.e., larger payoff

differences) in each round per dollar paid to the subjects, as compared with a design in which both subjects are

paid nonnegative amounts in each round. The disadvantage of this design element is that it raises the theoretical

possibility an Evader could go bankrupt. Players were notified that if that were to happen then the game would

terminate at that time. In practice, no Evader’s balance ever fell below $6.50.
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other winning a nickel). The Wooders-Shachat (2001) Theorem ensures that for such two-outcome

stage games the only equilibrium of the finitely repeated game consists of the players playing

the stage-game equilibrium at every stage. Thus, the two-outcome design introduced by O’Neill

provided a much sounder connection between equilibrium theory and mixed-strategy equilibrium

experiments.

But O’Neill’s elimination of theoretical concerns about the subjects’ preferences came at some

cost: because the games incorporated only deterministic payoffs, four or more actions for each player

were needed in order to produce a game that had only two outcomes and in which the “right” way to

play was not transparent.6 In our Stochastic Game, however, each player has only two actions, but

the Nash equilibria in both the stage game and the repeated game nevertheless remain independent

of players’ risk attitudes if the players’ preferences satisfy the compound lottery reduction axiom of

decision theory. Thus, if we assume that the subjects prefer first- order stochastically dominating

lotteries and that they also satisfy the compound lottery reduction axiom, then the players’ stage-

game utility payoffs in the Stochastic Game are simply their expected monetary payoffs and there

is a unique Nash equilibrium in which both the Pursuer and the Evader play the mixture that

places 2/3 probability on Left and 1/3 probability on Right in each stage game.

The Deterministic Game has three outcomes, not two. If the players are risk neutral, then the

monetary payoffs in the stage game can again be taken to be their utilities, and the Deterministic

Game is game- theoretically equivalent to the Stochastic Game. For most of our analysis, we will

assume that our experimental subjects were indeed risk neutral at each play of the game, since

they were playing a succession of 100 or 200 plays of the game for relatively small stakes. In

Section 5.1, however, we will take some account of the effect of risk attitudes, and we will find that

Prospect Theory may provide a partial explanation of differences in play between the Stochastic

and Deterministic Games.
6The only mixed- equilibrium games where theory does seem to square with experimental results are games with

so much symmetry that the equilibrium consists of each player mixing uniformly over his actions – games such as

“matching pennies” or “rock, paper, scissors.” It is generally agreed that the experimental results in these games

may be driven by the symmetric frame and are therefore not useful for testing equilibrium theory in general. Cf.

Mookherjee and Sopher (1994).
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3 The Data

Individual subjects’ play, aggregated over all 100 or 200 of the subjects’ action choices, is presented

in Tables 1(a) and 1(b) and in Figure 1. Each row of Table 1 describes the play of one pair of

subjects. The first twenty pairs of subjects played the Stochastic Game: the pairs labeled #1

to #14 played 100 repetitions each (i.e., there were 100 “plays,” indicated in the second column

of Table 1); and the six remaining pairs (#15 to #20) played 200 repetitions each. The twenty

pairs labeled #21 to #40 played the Deterministic Game; again, fourteen of these pairs played

100 repetitions and six pairs played 200 repetitions. The four columns labeled “Action Profile” in

Table 1 report the frequencies with which each of the four joint action profiles LL, LR, RL, and

RR were played by each pair. The next two columns, “Pur L” and “Eva L,” report the frequencies

with which the Pursuer subject or the Evader subject played his Left action ( i.e., the Pur L entry

in any row is the sum of the LL and LR entries, and the Eva L entry is the sum of the LL and RL

entries). Figure 1 depicts these Pur L and Eva L frequencies for each pair of subjects in a scatter

diagram: each of the forty points in Figure 1 represents the frequencies of Left play by a single pair

of subjects.

We describe several noteworthy features of the data, organized around the following questions:

Did the subjects play Left and Right in the equilibrium proportions? Did Pursuers and Evaders play

the same way, as the symmetric equilibrium predicts? Was play the same in both the Stochastic

and Deterministic Games, as their identical normal form representation predicts? And were the

subjects playing randomly, with no serial correlation, as equilibrium theory predicts?

3.1 Equilibrium Frequencies

The first thing one sees in the data in Table 1 and in Figure 1 is that the theoretical equilibrium

has some qualitative saliency, but that the equilibrium’s predicted mixtures do not provide a quan-

titatively accurate description of the subjects’ play. The equilibrium mixture for each player in

each game calls for Left with probability 2/3, so we should see substantially more Left play than

Right. And indeed, every Evader and almost every Pursuer did play Left more often than Right,

and most of them played Left substantially more often. But it is clear in Figure 1 that the Evaders,

on average, played Left significantly more often than the equilibrium rate of two-thirds, and further
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that there was a great deal of subject-to-subject variation. And the Pursuers, while indeed playing

Left about two-thirds of the time on average, also displayed substantial variation from subject to

subject. Column #9 in Table 1 presents the p-value of the chi-square test that compares the joint

action frequencies (columns #3 to #6 in the table) with the Nash equilibrium frequencies. The

equilibrium frequencies are rejected at the 5% significance level for 14 of the 20 pairs in each game.

However, since the games in our experiment are zero-sum, both players will receive their equi-

librium (or minimax) payoffs even if only one of the players plays his part of the mixed-strategy

equilibrium. It is therefore natural to ask whether either of the players in a fixed pair is playing the

equilibrium strategy. If neither is, then we have a stronger rejection of the theory: neither player

is ensuring himself his minimax value and both players’ play is exploitable. We assess whether

each subject is playing the equilibrium proportion of Left play with a simple binomial hypothesis

test. Column #10 in Table 1 reports the value of Pr(x;n, p), where Pr(·; ·, ·) is the cumulative

distribution function for the binomial distribution, x is the number of periods the Pursuer chose

Left, n is the total number of stage games, and p is the Nash equilibrium mixture probability, 2/3.

Column #11 reports the same calculation for the Evaders. If we conduct a two-tailed test at the

5% level of significance, we reject equilibrium play for probabilities less than .025 and greater than

.975. The Nash equilibrium frequencies are rejected at the 5% level for 45 of our 80 subjects. In

12 of the 40 pairs, we reject that either of the subjects’ play is consistent with equilibrium.

Since our subjects all played at least 100 times, and some 200 times, the question arises whether

their behavior changed over time, and in particular whether their play could have been converging

to an equilibrium. Figure 2 provides some evidence on this question: it shows the frequency of

Left play in successive time blocks of twenty periods each. The figure depicts in separate panels

the subjects who played 100 periods and those who played 200; in the top half of the figure is the

play in the Deterministic Game, and in the bottom half the play in the Stochastic Game. In none

of the four panels is there any indication that play is moving toward equilibrium (the dotted line,

for both player roles).

3.2 Symmetry of Player Roles

Another feature of the data that stands out sharply is that nearly every one of the points in Figure 1

lies above the 45◦- line: the subjects who played the Pursuer role and those who played the Evader
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role were not playing the same, despite the fact that the equilibrium mixtures for Pursuer and

Evader are the same in each game.7 In 35 of the 40 pairs the Evader played Left more often than

the Pursuer, in many cases much more often. In only 3 pairs (#16, 19, and 22) did the Pursuer

play Left more often than the Evader, and in each case it was only slightly more often. Aggregated

across all forty pairs, the Pursuers played Left 64% of the time, the Evaders 74% of the time. We

refer to this strong asymmetry between Pursuers’ and Evaders’ play as asymmetric role behavior.

For a formal test whether Pursuers and Evaders were playing the same or whether Evaders

were playing Left with higher probability we conduct a nonparametric sign test. Under the null

hypothesis the probability that a given Evader’s realized number of Left choices will exceed the

Left choices by his Pursuer opponent is one-half. (In fact, it is slightly less than one half, since

there is a non-zero probability they will play Left the same number of times.) Thus, the number

of pairs in which the Evader will play left more often than the Pursuer has a binomial distribution

Pr(x; n, p), where n is the number of pairs in which the Evader and Pursuer play Left an unequal

number of times, x is the number of those pairs in which the Evader plays Left more often, and

p = 1/2 (the conditional probability of such a “success,” given unequal Left play, if the two players

are playing the same). In our data 35 of the 40 Evaders played Left more than their opponents;

the probability of 35 or more such “successes” is 6.9 × 10−7 under the null hypothesis. It is clear

that asymmetric role behavior is a statistically significant feature of our data.

3.3 Behavior Across the Two Games

Comparing play in the Stochastic Game with play in the Deterministic Game reveals another

systematic feature of the subjects’ behavior that is not accounted for by equilibrium theory. Here we

see a game asymmetry effect : despite the fact that both games have the same profile of equilibrium

mixtures, both the Pursuers and the Evaders played Left (on average) more often in the Stochastic

Game than in the Deterministic Game. The last two rows of Tables 1(a) and 1(b) present the

choice frequencies aggregated across all pairs in each of the two games. The Pursuers played Left

67% of the time in the Stochastic Game and only 61% of the time in the Deterministic Game.

The Evaders played Left 76% of the time in the Stochastic Game and only 72% of the time in the
7In Binmore, et. al. (forthcoming) subjects played a game with the same normal form, under considerably different

conditions. A similar role asymmetry appears in their data but is unremarked by them.
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Deterministic Game. The hypothesis that the observed joint action frequencies in the Stochastic

and Deterministic Games are generated by the same distribution is stongly rejected: the chi-square

test statistic’s value is 36.437, for which the p-value is less than 10−7. While the game asymmetry

effect is not as striking as the asymmetric role behavior, it is nevertheless statistically convincing.

3.4 Serial Correlation

In many previous experiments with mixed-equilibrium games,8 the subjects have exhibited signif-

icant negative serial correlation: they tended to change their actions too often to be consistent

with independent play. A similar behavioral phenomenon – subjects switching too often – has been

consistently observed by experimental psychologists when they have asked subjects to simulate

random sequences. 9 But the subjects in our experiment exhibited the opposite behavior: they

tended to switch between Left and Right much less than they would have done if their choices were

independent.

In order to evaluate whether the experimental subjects were changing their actions from play

to play either too much or too little to be consistent with random play, we conduct a runs test for

serial independence on each subject’s sequence of choices. The test’s null hypothesis assumes that a

subject’s choices are generated by a fixed mixed strategy which is independent across time. Larger

realized values of the test statistic (and thus larger p-values) are produced by sequences with more

(and thus shorter) runs – i.e., sequences with more switching of choices.

Table 3 reports the test statistic’s p-value for each of our subjects. With a two-sided hypothesis

test and a 5% significance level, we reject the assumption of serial independence for 31 of our 80

subjects: these are the bold-face entries in Table 3. There are 27 subjects for whom rejection is the

product of too little switching and only four for whom rejection is the result of too much switching.

(Note that if all the subjects had truly been playing randomly, the expected number of subjects

for whom this 5% test would yield a rejection is four – two subjects on average would appear to

switch too often and two too rarely.) Overall, then, play for many of our subjects was characterized

overwhelmingly by positive serial correlation.
8For example, O’Neill (1987), Mookherjee and Sopher (1994), Rapoport and Boebel (1992).
9See, for example, Tune (1964), Wagenaar (1972) and Lopes (1982). Rapoport and Budescu (1992) found, however,

that negative serial correlation was less pronounced in subjects’ action choices in a mixed-equililbrium game than in

parallel simulation tasks.
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4 Alternative Models

Many previous studies10 have demonstrated the inability of mixed strategy Nash equilibrium to

provide a comprehensive description of human behavior in laboratory settings. Alternative models

have therefore been proposed to replace Nash equilibrium as positive theories of game playing. We

use our experimental data to estimate three prominent alternative models, and then to evaluate

the models’ success in explaining the anomalies in our data.

4.1 Quantal Response Equilibrium

The Quantal Response Equilbrium (QRE) introduced by McKelvey and Palfrey (1995) has success-

fully organized the aggregate empirical frequencies of action choices in many experimental games.11

Like Nash equilibrium, it is a static concept, or more specifically, a parametrized family of static

equilibrium models.

The key assumption of the QRE model is that each player calculates the expected value of

each of his available actions given his (correct, in equilibrium) belief about his opponent’s choice

probabilities, and that he attempts to respond optimally, but he makes random errors in the process.

In our games this assumption implies that the Pursuer calculates the expected utility of playing

Left and Right as follows, assuming that the Evader plays Left with probability q:

EL(q) = q + εPL andER(q) = 2(1− q) + εPR,

where εij is a random payoff disturbance for player i and action j. If the {εij} are independent

random variables having identical Log-Weibull distributions with variance parameter 1/λ, which is

the hypothesis of the logistic QRE, then the Pursuer will play Left with probability

p =
eλq

eλq + e2λ(1−q)
.

Similar calculations yield the Evader’s probability of Left:

q =
e−λp

e−λp + e−2λ(1−p)
.

10For example, Brown and Rosenthal (1990), Rapoport and Boebel (1992).
11For example, McKelvey, et.al. (2000), Anderson, et. al. (1998), Capra, et. al. (1999).
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For any fixed value of λ, a logistic QRE (i.e., an LQRE) for the Pursuer-Evader game is a

mixed strategy pair (p∗(λ), q∗(λ)) satisfying

p∗(λ) =
eλq∗(λ)

eλq∗(λ) + e2λ(1−q∗(λ))
and q∗(λ) =

e−λp∗(λ)

e−λp∗(λ) + e−2λ(1−p∗(λ))
.

Notice that as λ goes to zero the variance of the errors goes to infinity, and the LQRE has each

player playing each action with equal probability; and as λ goes to infinity, the variance of the

errors goes to zero, and the LQRE coincides with the Nash equilibium.

Figure 3 depicts the graphs of the p∗(·) and q∗(·) functions that uniquely solve the pair of

equations above, i.e., it depicts the LQRE for each value of λ. Note that p∗(λ) < q∗(λ) for all

λ ∈ (0,∞): the p∗(·) graph lies significantly below the q∗(·) graph, so the LQRE robustly (and

strikingly) predicts the role asymmetry effect.

Next we estimate separately, for each of our two games, the value of λ that maximizes the

likelihood of the data from that game.12 These estimated λ-values, along with their corresponding

LQRE choice probabilities of Left play – i.e., the model’s predictions – are presented in Figure 3.

All four predictions are consistent with two of the features we’ve identified in the data: each player

in each game is predicted to play Left substantially more often than he plays Right, as the subjects

did (on average), and as Nash equilibrium also predicts; and the Evader is predicted to play Left

substantially more than the Pursuer, as nearly all of our subject pairs did, and which the Nash

equilibrium does not predict.

Note, however, that all four predictions of Left play are nevertheless significantly lower than

the corresponding actual play of Left by our subjects: .568 predicted vs. .675 actual for Pursuers

in the Stochastic Game, and .698 predicted vs. .762 actual for the Evaders; and .543 predicted vs.

.610 actual for the Pursuers in the Deterministic Game, and .692 predicted vs. .717 actual for the

Evaders. For each game, the multinomial distribution over joint actions predicted by the maximum

likelihood LQRE is overwhelmingly rejected by the chi-square goodness- of-fit test.

A QRE explanation of the game asymmetry effect would require that a single value of the

parameter λ yield different play in our two games, but that cannot happen: the QRE is defined

in terms of a game’s normal form, and our two games have the same normal form. The QRE also

cannot account for the serial correlation in our data, because it is a static equilibrium concept.
12In each game’s data set, each of the 14× 100 + 6× 200 observations was weighted equally.
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4.2 Learning Models

Another class of alternative models assumes adaptive behavior by individuals as they repeatedly

play a game. The motivation for these models comes partly from the results of laboratory exper-

iments, in which behavior is typically not stationary. We consider two such learning models, the

Reinforcement Learning model introduced by Erev and Roth (1998) and the Experience Weighted

Attraction (EWA) model introduced by Camerer and Ho (1999).

4.2.1 Reinforcement Learning

Erev and Roth introduced a simple three-parameter reinforcement- learning dynamic which they

used to predict play in games that have a unique mixed-strategy equilibrium. In their model each

player maintains a score for each of his actions as the game is played repeatedly. At each play, the

player selects actions probabilistically; actions with a higher current score are chosen with higher

probability. Specifically, let Rij(t) denote player i’s score for his jth action prior to the game at

stage t ; let σij(t) denote the probability that i chooses j at stage t; and let Xi denote the set of

player i’s possible stage- game payoffs. The two initial conditions for the dynamical system are (a)

that at the initial stage, each of a player’s actions has the same probability of being selected (thus,

in our setting, σij(1) = .5 for each player i and each action j) and (b) that

Rij(1) = σij(1)S(1)Xi,

where S(1) is an unobservable strength parameter and Xi is the average of player i’s payoffs across

all action profiles less his minimum possible payoff for any action profile, or min{Xi}.
After the play at each stage, each score is updated according to the rule

Rij(t + 1) = (1− φ)Rij(t) + ((1− ε)I(ai(t)=j) +
ε

2
)(πi(j, a−i(t))−min{Xi}),

where φ is an unobservable parameter that discounts past scores; where I(ai(t)=j) is an indicator

function for the event that player i selected action j in period t; where the unobservable parameter

ε determines the relative impacts on the scores of the selected vs. the unselected action; and

where πi(j, a−i(t)) is i ’s payoff when he plays action j against the opponent’s stage-t action a−i(t).

(Player i’s minimum possible payoff for any action profile, min{Xi}, is subtracted from πi(j, a−i(t))
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to avoid negative scores.) The model is completed by assuming that

σij(t) =
Rij(t)∑
k Rik(t)

.

Notice that the range of Xi values varies across the two games even for fixed i: the different

monetary rewards and the move by nature both enter explicitly in the transition function for the

Stochastic Game.

We use the same estimation procedure used by Erev and Roth (1998): we estimate the values

of the three unobservable parameters S(1), φ, and ε by minimizing the mean square error of the

model’s predicted proportions of Left play in 20-period blocks, as depicted in Figure 4.13 More

specifically, for each fixed triple of parameter values from a discrete grid, we proceeded as follows:

For each of the two games we simulated the play of 500 pairs playing 200 stage games, and then we

calculated separately the frequency of Left play by the 500 Pursuers and by the 500 Evaders in each

20-period block. These frequencies are the model’s predictions for that triple of parameter values.

The true values of the parameters should of course not depend upon which game the subjects are

playing,14 so the parameters were estimated using the data from both games together. Within the

three-dimensional parameter-value grid, the triple of parameter values that minimizes the mean

square error, given the data, turns out to be

(S(1), φ, ε) = (3, .47, .09).

In the center panels of Figure 2 we present the average of 10,000 simulations using these esti-

mated parameter values. It is evident in Figure 2 that the model does predict that the Evaders

will play Left more often than the Pursuers, as our subjects did. Comparison of the left and center

panels of Figure 2 (the data, and the model’s predictions) reveals that the model underpredicts the

magnitude of the asymmetry, just as the QRE model does. This is particularly so in the first 5

time blocks, which contain most of the data.

The model does not account for the game asymmetry effect: indeed, the model actually makes

the opposite prediction, that Left will be played more frequently in the Deterministic Game than
13Because there were only six pairs in each of the later time blocks, and twenty pairs in each of the early blocks,

we weighted each mean square error by the square root of the number of pairs observed for that block.
14But because the realized monetary payoffs that are used to update the scores Rij are generated differently in our

two games, the same parameter values will typically generate different predictions in the two games.
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in the Stochastic Game. With regard to the data’s dynamic features, comparison of the left and

center panels of Figure 2 suggests that the model might be consistent with the upward trend of

Left play in the Deterministic Dame, but it does not capture the (stronger) upward trend in the

Stochastic Game.

Using the parameter values we have estimated, the Erev and Roth model generates positive

serial correlation in action choices: whenever an action is chosen its score is increased by more than

the unchosen action’s score, and its probability of being selected in the next stage game therefore

increases. But the model also predicts positive serial correlation in mixed-equilibrium games in

which subjects actually exhibit negative serial correlation.

4.2.2 The Experience Weighted Attraction Model

The second dynamic model we consider is EWA. In this model subjects choose stage-game actions

probabilistically according to the expression

σij(t) =
eλRij(t)

∑
k eλRik(t)

,

where at stage t player i chooses action j with probability σij(t); where λ is a parameter that plays

the same role here as in the Logistic QRE model; and where Rij(t) is a scoring function, as in

the reinforcement model, but is defined (i.e., updated) differently than in the reinforcement model.

The updating of Rij(t) involves a “discounting” factor N(t), which is updated according to

N(t + 1) = ρN(t) + 1 for t = 1,

where ρ is an unobservable discount parameter and N(1) is an unobservable parameter, interpreted

as the strength of experience prior to the beginning of play. The score Rij(t) is then updated as

follows:

Rij(t + 1) =
N(t)φRij(t) + ((1− ε)I(ai(t)=j) + ε

2)πi(j, a−i(t))
N(t + 1)

,

where πi(j, a−i(t)), φ, and ε have the same interpretations as in the model of Erev and Roth. The

initial scores, Rij(1) for each i and j, are additional unobservable parameters.

As we did in our reinforcement-learning estimation, we estimated the EWA model from the

entire data set, a process in which given paramater values generate distinct predictions for the
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Stochastic and Deterministic Games. The data from our experiment yield the following maximum-

likelihood estimate of the nine-tuple of unobservable EWA parameters:15

(N(1), RPL(1), RPR(1), REL(1), RER(1), ρ, φ, ε, λ)

= (.833, .657, 0,−1.863, 0, .993, .998, 1, .578).

We used our estimated EWA model to simulate 10,000 pairs playing 200 periods of each game.

The rightmost panels in Figure 2 report the simulations’ averages in each block of twenty periods.

First note that the model’s predictions quickly move toward the Nash equilibrium, but that the

asymmetric role behavior does appear: the predictions consistently have the Pursuer playing Left

slightly less than the Evader. A comparison of the upper and lower right-hand panels reveals that

the model does not predict the game asymmetry effect.

As in the Erev and Roth model, with our estimated parameter values the EWA model generates

positive serial correlation in the players’ choices, but the same caveat applies here as in the Erev

and Roth model: the EWA model predicts positive serial correlation even in many games in which

subjects actually exhibit negative serial correlation.

Summarizing, each of the three alternative models generates, at least qualitatively, the asym-

metric role behavior observed in our data: the Evaders consistently playing Left more often than

the Pursuers. In the QRE model this effect is present for all possible values of the model’s param-

eters; in the learning models the effect is less pronounced than in the QRE model, and its presence

depends upon the values of the models’ parameters. In all three models the magnitude of the effect

is considerably less than what is observed in the data. None of the models captures the game

asymmetry effect, and while the two learning models do predict positive serial correlation, we have

indicated why this prediction is not very convincing.

5 Discussion

If the three alternative models we have considered aren’t able to rationalize the data generated

by our experiment, then how do we explain the behavior we have observed? We discuss several

possibilities, each of which may be playing some role in our experiment.
15RPR(0) and RER(0) are arbitrarily fixed at zero. This is a normalization.
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5.1 Risk Attitudes

Perhaps the most important insight that led O’Neill to reject prior mixed-strategy experiments

was that the experiments used games with three or more possible outcomes, and the results of the

experiments could therefore have been affected by the subjects’ risk attitudes. Like O’Neill’s game,

our Stochastic Game has only two possible outcomes for each player, and play should therefore be

unaffected by risk attitudes. The Deterministic Game, on the other hand, has three outcomes, so

risk attitudes might play a role in that game.

Incorporating risk attitudes into the Deterministic Game is straightforward. Since for each

player there are only three possible outcomes, a player’s preferences over lotteries among the out-

comes can be completely described by his relative utility for the intermediate outcome (i.e., the

outcome +1 for the Pursuer and −1 for the Evader). To make things precise, normalize each

player’s utility so that his worst outcome (0 for Pursuer, −2 for Evader) gives him utility 0 and

his best outcome (+2 for Pursuer, 0 for Evader) gives him utility 2. Let πP denote the utility

the Pursuer obtains from his intermediate outcome, +1; and let πE denote the utility the Evader

obtains from his intermediate outcome, −1. Then a player is risk-neutral over his three possible

outcomes if π = 1; he is risk averse if π > 1; he is risk-preferring if π < 1; and in general he is more

risk averse as the value of his π is larger.

It is easy to verify that the Pursuer’s and Evader’s Nash equilibrium mixtures place probability

σP =
2

4− πE
and σE =

2
2 + πP

on play of Left. If each player is risk-neutral, then we have σP = σE = 2/3, as we already know. If

both are risk averse, then we have σE < 2/3 < σP . But in virtually every one of our subject pairs

the Evader played Left more often than the Pursuer. So risk aversion is simply not consistent with

our subjects’ behavior. Indeed, the data suggest that σP < σE .

Prospect Theory (Kahneman and Tversky (1979)) holds that while people are indeed risk averse

for gains, they are instead risk preferring when facing losses. This would mean that the π-values

of players in the Deterministic Game would satisfy πP > 1 and πE < 1, and the equilibrium in the

Deterministic Game would therefore satisfy the inequalities σE < 2/3 and σP < 2/3. Since the

equilibrium in the Stochastic Game is unaffected by risk attitudes, each player in that game uses

a mixture that places 2/3 probability on playing Left. Thus, if people’s risk attitudes are correctly
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described by Prospect Theory, then both Pursuers and Evaders should (in equilibrium) play Left

less often in the Deterministic Game than in the Stochastic Game – precisely the game asymmetry

effect that appears in our data. However, average play of Left was more than 2/3 by subjects

playing both roles in both games.

An additional component of Prospect Theory is loss aversion: The magnitude of the change in

utility from a loss exceeds the magnitude of the change in utility from a gain of the same size. For

the payoffs in the Deterministic Game this is equivalent to the inequality 1−πE > πP−1, which is in

turn equivalent to πP +πE < 2, and the latter inequality is equivalent to σP < σE . Prospect Theory

therefore provides, at least qualitatively, an equilibrium explanation of the observed asymmetric

role behavior in the Deterministic Game. Furthermore, its explanatory power could be tested by

modifying our design so that both Pursuer and Evader are always paid nonnegative amounts (cf.

footnote 5).

Prospect Theory is clearly not the whole story however: it does nothing to account for the strong

asymmetric role behavior in the Stochastic Game.16 Further, a significant number of the Evader

subjects in the Deterministic Game played Left on substantially more than 2/3 of their plays,

which requires that πP < 1 – i.e., it requires that these Evaders believed (correctly) that their

opponents were risk preferring for gains, while the other Evader subjects believed (also correctly)

that their opponents were risk averse for gains. This seems unlikely. So while risk attitudes may

have contributed to the observed behavior, they fall short of fully accounting for the behavior.

5.2 Objective vs. Subjective Uncertainty

In the Introduction we indicated that since the Stochastic Game is simpler than the games typically

used in previous two-outcome mixed strategy experiments (each player has only two pure strategies

instead of four or more), the theory might be expected to perform better here than in the previous

experiments. But the Stochastic Game might not actually be so simple. In two of the four cells of

the payoff matrix the outcome is a lottery, an uncertain prospect. So while the game has far fewer

strategy combinations than a 4×4 or larger game, the reduction in the strategy sets might have

been more than offset by replacing outcomes that are certain with ones that are uncertain.
16A non-linear probability weighting function, which is often adopted in Prospect theory, could potentially account

for the asymmetric role effect in the Stochastic Game.
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For example, in some of our experimental sessions we asked the subjects, upon completing the

experiment, to write down for us any strategy(s) they were using as they played the game. Several

of the subjects who played the Stochastic Game indicated that they were paying more attention

to the behavior of the die than to their opponent’s behavior. One subject (an Evader) wrote “I

tried to guess the probability of when a 1 or 2 was ‘due’ up on the dice, and sneak a right card

in. It is not very easy to figure out when the other person is going to change their ‘favorable’ left

or right card.” A Pursuer subject wrote “Sometimes I would try to guess what the die roll would

be, and didn’t even think about what the evader was going to do.” Altogether, nearly half of the

Stochastic Game subjects indicated that on at least some of their plays they were trying to predict

the outcome of the die roll.

These comments suggest that some of the subjects did not view the die rolls as a serially

independent random process. While it’s not likely that they treated the die, or Mother Nature,

as literally a third player in the game, they may have viewed the opponent’s actions and the die’s

outcomes as similar processes, each generating unpredictable “actions” that affected their own

payoff.

How would this view of the lottery outcomes affect behavior? We know from the Ellsberg

Paradox, and similar examples, that people are typically more comfortable with objective risks than

with subjective ones. Of the two kinds of uncertainty faced by a subject in the Stochastic Game,

uncertainty about what one’s opponent will do is surely the more subjective, and uncertainty about

the die roll more objective. A subject might therefore view the die-uncertainty as more “focal” and

devote more of his attention to “playing against the die” than to playing against his opponent –

exactly the approach described by the subjects quoted above.

Consider the extreme situation in which the players in the Stochastic Game are playing only

against the die, and placing no weight on the opponent’s likely action. Then a Pursuer would play

Right, and an Evader would play Left. This is of course not an equilibrium (at least not a Nash

equilibrium): while the Pursuer is using his best response to the die’s “mixture,” he is using his

worst response to the Evader’s choice of Left. The Evader’s play of exclusively Left, on the other

hand, is a best response to both the die’s “mixture” and his opponent’s play.

Because the Pursuer does so badly here, this pattern of play could not be expected to persist,

and indeed we observe every Stochastic Game Pursuer play Left on at least 40% of his plays. But
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the additional uncertainty of the die in the Stochastic Game, which is more objective than the

strategic uncertainty about one’s opponent, could be expected to reinforce a tendency toward Left

play by Evaders. Moreover, greater Left play by Evaders in the Stochastic Game should eventually

bring forth greater Left play by Pursuers as well, as in the game asymmetry effect that our data

exhibits.

5.3 Initial Beliefs and the Dynamics of Play

Each of the subjects in our experiment was surely a novice at the game he or she was playing: none

of the subjects had seen or played either game before. So there is no reason to expect equilibrium

play at the outset of a match. This leads us to consider how play might progress as players play

the game repeatedly. We have already discussed reinforcement and EWA learning models, each

of which predicts a path of play that depends partly upon assumptions about the model’s initial

conditions. Here we focus directly on the idea that players respond to their beliefs about how their

opponents will play, and we ask what players’ initial beliefs might have been and how they might

have influenced observed play.

In belief-based learning models17 a player has a belief about how his opponent is going to play,

and chooses actions for himself that he thinks will do well against his opponent’s play. As play

progresses, a player observes his opponent’s actual play and uses that information to update or

revise his belief, which produces a corresponding change in his own play in order to do well against

the revised belief.

The left panels of Figure 4 show the time series of play, aggregated across all subjects, and

aggregated across time into twenty-play blocks. In the earliest stages of play the Evader subjects,

on average, played Left somewhat more often than the equilibrium prescribes, while the Pursuer

subjects played Left less often than called for in equilibrium. This pattern of play at the outset

would be consistent with beliefs by Evader and Pursuer subjects alike that their opponents would

play Left less often than the 2/3 rate prescribed by equilibrium.

Can we say anything directly about the beliefs our subjects actually did hold at the outset of

an experimental session? We did not ask our subjects for any information prior to their play. But

the beliefs of another, similar set of subjects provide some evidence on this question. One of the
17For example, Milgrom and Roberts (1991) and Fudenberg & Levine (1998).

19



authors presented the Stochastic Game instructions to the 44 students in his game theory course.

This was done at the first meeting of the course, before the students had learned anything about

game theory; thus, they were drawn from roughly the same subject pool as the subjects in our

experiment. The students were asked to predict the average number of Left plays, out of 100 plays,

by people who had played this game in an experiment. (A five dollar reward was promised for the

prediction that came closest to the actual average of play.) The average prediction about Evader

play was 58 Left plays out of 100; the average prediction about Pursuer play was 49 Left plays out

of 100. Only five of the 44 student respondents predicted more than 67 Left plays by Pursuers, and

only eight respondents predicted more than 67 Left plays by Evaders.

Thus, it seems very likely that the predominant belief of our experimental subjects was that

one’s opponent would play Left less than 2/3 of the time. As we have described above, this would

lead, in a belief-based model of play, to play in the early stages that would be similar to our data.

Figure 2 shows that subsequent play in both the Stochastic and Deterministic Games was at

least qualitatively consistent with belief-based learning: Pursuers began by playing Left “too little,”

and Evaders correspondingly increased their rate of Left play; Evaders began by playing Left “too

often,” and Pursuers correspondingly increased their rate of Left play.18

6 Concluding Remarks

We have described several puzzling features of the data generated by our experiment, but we have

not identified or developed a comprehensive theory that accounts for them all. Perhaps future

experiments will provide sharper versions of these phenomena, which will in turn suggest a unified

theory. Or perhaps one of our readers will see a pattern in this data set that has eluded us and

that will reveal all.
18There is perhaps some additional evidence that our subjects were responding directly to the play of their opponents

(rather than responding to it indirectly, via the reinforcement their own earnings provided). About half of the

responses to our debriefing question indicated the respondent was trying to anticipate his opponent’s play, or to

outwit his opponent, or that he had played as he did in order to do well against the play he had observed by his

opponent.
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Action Profile
NE test Binomial Binomial

Pair # Stages LL LR RL RR Pur. L Eva. L P-value Pur. L Eva. L
1 100 .34 .07 .34 .25 .41 .68 .000 .000 .647
2 100 .84 .05 .09 .02 .89 .93 .000 1.000 1.000
3 100 .39 .25 .29 .07 .64 .68 .203 .320 .647
4 100 .34 .16 .46 .04 .50 .80 .000 .000 .999
5 100 .62 .07 .26 .05 .69 .88 .000 .723 1.000
6 100 .71 .08 .14 .07 .79 .85 .000 .998 1.000
7 100 .21 .19 .33 .27 .40 .54 .000 .000 .006
8 100 .30 .25 .30 .15 .55 .60 .028 .010 .097
9 100 .47 .10 .33 .10 .57 .80 .007 .028 .999
10 100 .52 .20 .20 .08 .72 .72 .457 .893 .893
11 100 .41 .16 .28 .15 .57 .69 .181 .028 .723
12 100 .59 .06 .29 .06 .65 .88 .000 .398 1.000
13 100 .71 .11 .13 .05 .82 .84 .000 1.000 1.000
14 100 .64 .10 .17 .09 .74 .81 .001 .954 1.000
15 200 .64 .15 .17 .04 .79 .81 .000 1.000 1.000
16 200 .47 .25 .18 .11 .72 .65 .382 .955 .281
17 200 .46 .17 .28 .10 .63 .74 .123 .121 .985
18 200 .56 .16 .25 .05 .71 .80 .000 .917 1.000
19 200 .48 .25 .20 .07 .73 .68 .191 .977 .680
20 200 .62 .10 .26 .02 .73 .88 .000 .968 1.000

Aggregate 2600 .52 .15 .24 .09 .67 .76 .000 .810 1.000

Pair Level Data Analysis: Stochastic Game
Table 1(a)

(Pursuer, Evader)



Action Profile
NE test Binomial Binomial

Pair # Stages LL LR RL RR Pur. L Eva. L P-value Pur. L Eva. L
21 100 .36 .07 .48 .09 .43 .84 .000 .000 1.000
22 100 .36 .26 .23 .15 .62 .59 .304 .188 .066
23 100 .32 .23 .27 .18 .55 .59 .032 .010 .066
24 100 .56 .20 .22 .02 .76 .78 .013 .984 .995
25 100 .50 .09 .36 .05 .59 .86 .000 .066 1.000
26 100 .55 .11 .27 .07 .66 .82 .013 .481 1.000
27 100 .36 .17 .31 .16 .53 .67 .038 .003 .566
28 100 .47 .15 .23 .15 .62 .70 .274 .188 .791
29 100 .54 .13 .24 .09 .67 .78 .093 .566 .995
30 100 .27 .26 .32 .15 .53 .59 .004 .003 .066
31 100 .41 .14 .28 .17 .55 .69 .047 .010 .723
32 100 .38 .18 .31 .13 .56 .69 .137 .017 .723
33 100 .23 .19 .32 .26 .42 .55 .000 .000 .010
34 100 .31 .15 .35 .19 .46 .66 .000 .000 .481
35 200 .43 .21 .25 .13 .63 .67 .741 .153 .566
36 200 .66 .16 .16 .03 .82 .82 .000 1.000 1.000
37 200 .37 .21 .27 .16 .58 .64 .037 .004 .190
38 200 .62 .14 .19 .06 .76 .81 .000 .997 1.000
39 200 .38 .13 .38 .12 .51 .75 .000 .000 .996
40 200 .49 .19 .26 .07 .68 .74 .128 .625 .990

Aggregate 2600 .44 .17 .28 .11 .61 .72 .000 .000 1.000

(Pursuer, Evader)

Pair Level Data Analysis: Deterministic Game
Table 1(b)



Pursuer Evader Pursuer Evader
Pair # P-value P-value Pair # P-value P-value

1 .092 .790 21 .993 .664
2 .031 .209 22 .026 .632
3 .662 .850 23 .180 .009
4 .420 .172 24 .000 .953
5 .521 .294 25 .063 .487
6 .014 .840 26 .001 .694
7 .735 .989 27 .003 .657
8 .064 .799 28 .731 .684
9 .846 .172 29 .050 .689

10 .567 .092 30 .993 .551
11 .205 .338 31 .380 .521
12 .018 .000 32 .046 .006
13 .000 .001 33 .604 .016
14 .181 .000 34 .172 .023
15 .057 .007 35 .000 .023
16 .001 .012 36 .000 .045
17 .940 .002 37 .005 .979
18 .004 .588 38 .222 .013
19 .000 .685 39 .002 .935
20 .378 .000 40 .000 .992

Stochastic Game Deterministic Game

Table 2: Runs Tests' P-Values
(Boldface indicates a rejection of independence at the 5% level of significance.)



Figure 1: Evader vs. Pursuer Left Play
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Figure 2: Times Series of Proportion of Left Play: Actual and Predicted
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Figure 3: Logistic QRE for Pursuer-Evader Gane
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