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cooperation admits the form of either taking turns entering or using a cutoff strategy and
entering only for high private values of entry. Even with conditions that provide opportu-
nities for unnoticed or non-punishable “cheating”, our empirical analysis including a simple
strategy inference technique reveals that the Nash-equilibrium strategy is never the modal
choice. In fact, most subjects employ the socially optimal symmetric cutoff strategy. These
games capture the nature of cooperation in many economic and social situations such as
bidding rings in auctions, competition for market share, labor supply decisions in the face
of excess supply, queuing in line and courtship.
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pants at Emory University, Florida State University, the Harvard Business School, the MIT Sloan
School of Management, and University of Exeter for comments. Tzvi Kerpzseld, Kadia Kohelet,
Shy Maman, Tim Miller, Eran Ozery, Gad Rotman, Asaf Shaul, Tal Shavit, Ron Stern and Yael
Uzen provided valuable research assistance. This paper was completed while Ruffle was on sab-
batical at the Harvard Business School. He thanks them and Alvin Roth in particular for their
support and hospitality. We gratefully acknowledge financial support from Ben-Gurion University,
ESRC, the Israel Science Foundation and the University of Exeter.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9311654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In our economic and social interactions, we face the decision whether to cooperate with other

individuals on a daily basis. Cooperation often requires that one person cede his place to

another or else conflict or congestion ensues. Consider, for instance, two strangers who reach

the check-in counter at the airport at the same time. They can argue about who arrived

first or, what is more socially efficient, the person whose flight does not leave for another

four hours can allow the hurried passenger to go ahead. As a result, the person with the

higher value for the action pursues it, while the other person acquiesces. Such a cooperative

outcome may well arise when individuals value the same outcome differentially, even in the

absence of repeated play, if acquiescence is not too costly for one of the players.

When the same pair of individuals plays against one another repeatedly and players’

values to cooperation vary over time, the cooperative solution whereby the person with the

higher value to defection does so, while the other play cooperates is optimal and likely to

emerge. However, when players’ values to cooperation are private and players are unable to

communicate or signal these values, this first-best cooperative outcome is no longer feasible.

Instead, a different convention needs to arise to provide for some measure of cooperation and

to avoid conflict. Two alternatives are possible.

First, players can take turns cooperating. Cooperation dilemmas in families are often

resolved by implementing this alternating strategy. Spouses take turns making important

decisions; parents avoid favoring one child over another by rotating favors between them;

and siblings settle scores by recalling who enjoyed the same privilege (like riding in the front

seat) last time. Firms that compete with one another in multiple markets or in the same

markets repeatedly, or bidders who compete for similar objects auctioned off sequentially can

cooperate by taking turns capturing the market, instead of pricing or bidding aggressively

in each market. Zillante (2003) presents evidence that the four baseball card manufacturers

alternate the timing with which they each introduce new product lines in order to reduce



intra-period competition.1

A second form of cooperation available to players when values are private and cannot

be communicated or signaled is play according to cutoff strategies. Cutoff strategies entail

entering when the value to doing so exceeds some threshold or cutoff value and cooperating by

not entering otherwise. Firms might implicitly collude by staying out of relatively high-cost

or low-demand markets with the expectation that rival firms will reciprocate. For instance,

auction participants might bid only when the object is sufficiently valuable so as not to

inflate the winning bid unnecessarily. The spectrum auctions conducted in the U.S. and

Australia in which licenses were split up into numerous regional markets were susceptible to

such collusion,2 while in many European spectrum auctions nationwide licenses were sold

and incumbent firms varied from country to country providing less repeat interaction among

bidders and consequently less opportunity for cutoff-value collusion. Collusion in the form

of alternating nonetheless posed a problem in those European spectrum auctions in which

spectrum licenses were divisible and the available licenses outnumbered incumbents. In 1999,

German firms T-Mobil and Mannesman evenly split the bidding on ten homogeneous licenses

forcing the cessation of the auction after 2 rounds. In the Austrian 3G mobile-spectrum

auction, the 12 licenses were also divided evenly among six unequally sized incumbents with

the winning bid in each case only slightly above the reservation price (see Klemperer, 2002,

for further details).

In this paper, we introduce a class of two-player games with the following properties: 1)

non-cooperation is the unique dominant strategy; 2) the sum of players’ payoffs is higher if

both defect than if both cooperate; 3) in the socially optimal outcome, one player defects

and the other cooperates; 4) under incomplete information where players’ values to entering

1 Zillante (2003) discusses other known examples, such as the motion-picture and electrical switchgear
industries, in which new-product-release dates have been staggered to blunt head-on competition.

2 Indeed, the simultaneous open bidding employed in 13/16 of the FCC’s spectrum auctions allowed firms
to use the last digits of their bids to signal to others on which licences to bid or not bid. Cramton and
Schwartz’s (2000) analysis reveals that the small fraction of bidders who regularly used bid signaling paid
significantly less for their licences, resulting in lost auction revenues.
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are their private information, cooperation in the repeated game can take the form of cutoff

strategies whereby players cooperate only if their private value for defection is sufficiently

low or alternating strategies whereby players take turns cooperating.

We performed numerical optimization to select a parameterization best suited to study

experimentally the potential for cooperation. In the chosen parameterization, each player

receives a randomly drawn integer between 1 and 5 inclusive. A player’s number is his

private information. On the basis of his number, a player must decide between two actions:

enter or exit. By exiting a player receives zero. By entering he receives his number if his

opponent exits and one-third of his number if his opponent also enters. Thus, entering in

the one-shot game is the dominant strategy; however, it imposes a negative externality on a

player’s opponent, since it lowers his payoff by two-thirds provided he also enters.

One feature of the game parameterization chosen is that the optimal symmetric cutoff

strategy and the alternating strategy yield very similar joint expected payoffs. This raises

the empirical question of which of these two strategies are subjects more likely to adopt.

We conduct this game for 80 rounds under three treatments that differ according to the

point in time at which a player learns his opponent’s number (at the end of the round or not

at all) and the subject pairings (fixed across rounds or randomly determined). Cooperative

behavior is found to be remarkably high in all treatments. We employ a simple strategy

inference technique to estimate each player’s best-fit strategy. The optimal symmetric coop-

erative cutoff strategy whereby a player enters on the numbers 3, 4 and 5, and exits otherwise

is subjects’ modal choice in all treatments. Revealing opponents’ numbers at the end of the

round is particularly conducive to cutoff strategies since entry on low values is observable

and punishable.

When the opponents are fixed and their numbers are not revealed, cooperation falls

off significantly and the use of alternating strategies increases only marginally; cooperative

cutoff strategies continue to be employed by over 70% of subjects even though play according
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to these strategies cannot be observed. Surprisingly, the level of cooperative behavior is not

significantly different when opponents’ numbers are again revealed at the end of the round,

but opponents are rematched in each round. This is true, despite the facts that defection,

while observable, is not punishable and coordination on alternating strategies is no longer

possible.

We believe our game and its payoff structure captures the nature of cooperation in many

real-world scenarios. For example, McAfee and McMillan (1992) study collusive behavior

in auctions that takes the form of bidding rings. Their main result when transfers are

impossible is that every bidder whose valuation for the good is greater than or equal to the

auctioneer’s reservation price should bid exactly the reservation price. We test for a more

sophisticated form of collusion; namely, even though a bidder’s valuation may exceed the

reservation price, he stays out. Moreover, individuals may choose not to enter contests or

competitions if their value for the prize or probability of winning is sufficiently low and they

care about other more deserving or more capable participants. Junior employees backing

down from an internal promotion contest is a common occurrence. Cab drivers, bicycle

messengers, golf caddies, waitstaff, sky caps and vendors in a marketplace often face the

decision of whether to compete for a customer or acquiesce, with the consequences of their

decisions similar to our game’s payoff structure. More generally, labor supply decisions in

markets characterized by excess supply carry with them the positive externality of yielding

one’s place to another. In addition, relaxed shoppers commonly cede their spots in line to

those in a hurry, and Sunday drivers concede the right of way and willingly let in other cars.

Finally, two friends cruising the town in search of companionship continually confront the

dilemma of deciding who gets to pursue individuals they encounter.

In the next section, we develop the theoretical framework for this class of two-player

games and through numerical optimization select a particular parameterization for our ex-

periments. We contrast our game with related games on cooperation in section 3. In section
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4, we detail our experimental design and procedures. Section 5 presents the results and

analysis. In section 6, we attempt to understand differences in cooperative behavior between

treatments, suggest why some cooperative strategies are more widespread than others and

discuss directions for future research. Section 7 concludes.

2 Theoretical Framework

2.1 Environment

We propose a two-player game with the following general structure. Each player receives

a randomly drawn integer between a and b inclusive where the probability of receiving a

number n is πn (where πn > 0 and
∑

n∈{a...b} πn = 1) and faces a binary decision, enter or

exit. By exiting a player receives zero. By entering he receives his number if the other player

exits or some function f weakly increasing in his number (and possibly also a function of the

other player’s number) if both enter. We assume that f is less than his number; hence entry

imposes a negative externality on the other player. We also assume that if it is profitable for

a player to enter alone (that is, his value is greater than zero), then it is also profitable for

him to enter when his opponent enters (f > 0 for values greater than zero). For the purposes

of this paper, we consider games in which a player’s number is his private information.

2.2 Solutions

There are noncooperative and cooperative solutions to this game. If each player is concerned

about maximizing only his own payoff, then we can solve for the Bayes-Nash equilibrium.

This yields the dominant strategy of entry for numbers greater than zero.

The cooperative solution is given by the pair of strategies that maximizes the sum of the

players’ expected payoffs. This can also be thought of as a Bayes-Nash equilibrium if we

treat an individual player’s utility as the sum of the pair’s payoffs. Suppose the other player
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enters with probability p(n) when his number is n. The joint payoff to entering with number

x is,
∑

n∈{a...b}
πn {x(1− p(n)) + p(n)[f(x, n) + f(n, x)]} .

The joint payoff to staying out is
∑

n∈{a...b} πnnp(n). If f is nondecreasing in both arguments,

then the cooperative solution entails cutoff strategies (that is, for a ≤ n < b if p(n) > 0, then

p(n + 1) ≥ p(n)). This is because if it is profitable to enter with number x, then it is also

profitable to enter with any number greater than x. These cutoff values may be non-interior

and even asymmetric. A pure-strategy cutoff is when there exists an n∗ such that for all

n ≤ n∗, p(n) = 0 and for all n > n∗, p(n) = 1. A mixed-strategy cutoff is when there exists

an n such that 0 < p(n) < 1.

An extreme form of asymmetric pure-strategy cutoffs involves one player entering for all

numbers greater than or equal to a (i.e., always enter) and the other entering for numbers

greater than b (i.e., always exit). In a repeated game, this cooperative solution can admit the

form of players taking turns between entering and exiting. This solution may only reasonably

be expected in games in which the same pair of players interacts repeatedly.

2.3 Choosing a Particular Game

From this general framework, we selected a game to test experimentally with the goal of de-

termining the degree and nature of cooperation. To choose a particular game, we performed

numerical optimization on the space of games in which players’ numbers are drawn from a

uniform distribution of integers between a and b inclusive. We restricted f(x, n) to be of the

form x/k (where k is an integer) to aid the subjects’ understanding of the game.

Our objectives were twofold: 1) to design a game for which the joint expected payoffs

(to be also referred to as the expected social payoff) from the optimal symmetric cutoff

strategies and the alternating strategies are very similar; 2) to maximize the difference the

joint expected payoff from playing the optimal symmetric pure-strategy cutoff, c∗, and the
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expected social payoff associated with the second-best symmetric pure-strategy cutoff. Put

another way, we want to maximize the steepness of the expected social payoff function

around the socially optimal pure-strategy cutoff. Achieving this second goal maximizes the

incentive for those players wishing to cooperate to enter for numbers greater than c∗ and

exit for numbers less than c∗. Deviations from this strategy can thus be interpreted as an

intention not to cooperate fully.

Before computing the game that maximizes these objectives, we can prove general propo-

sitions about the solution for the optimal symmetric pure-strategy cutoff and about the

socially optimal strategy as a function of the congestion parameter, k.

Proposition 1: The optimal symmetric cutoff for numbers drawn independently from the

uniform distribution of integers from a to b and congestion parameter k is given by,

c∗ =
−1− 2 b + (2 a− 1) k +

√
12 b (1 + b) (k − 1)2 + (1 + 2 b + k − 2 a k)2

6 (k − 1)
.

Proof: Let us examine the costs and benefits of extending the symmetric cutoff by one

from c− 1/2 to c + 1/2. We can represent the problem on a grid that is b− a + 1 units by

b− a+1 units. Each point on the grid refers to the net gains if the numbers drawn are from

that point. The uniform independent distribution implies that each grid point has equal

weight. Let us refer to each point as (x, y). The points affected are (·, c) and (c, ·). Divide

this set of points into three groups. Group one is (c, z) and (z, c) where z > c. Group two

is (c, z) and (z, c) where z < c. Group three is (c, c).

For each grid point in group one, there is a net gain of z − (z + c)/k. For group two,

there is a net loss of c for each grid point. For group three, there is a net loss of 2c/k. For

all of the points together, there is a net gain of,

2
m

k
+c·2(b−c)+2

b∑

z=c+1

(z−z + c

k
) =

b (1 + b) (k − 1)− (1 + 2 b + k − 2 a k) c− 3 (k − 1) c2

k
.
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This is simply a quadratic with both a positive and a negative root, where the positive root

is the optimal cutoff. QED

From the expression for c∗, we see that as the congestion parameter, k, increases, so does

the optimal symmetric cutoff for a given a and b. Intuitively, as k increases, it becomes

increasingly costly for both players to enter; as a result, the socially optimal threshold for

entry increases. Taking the limit of c∗ as k tends to infinity yields,

limk→∞ c∗ =
−1+2 a+

√
(1−2 a)2+12 b (1+b)

6
.

Proposition 2: When k ≤ 2, the socially optimal strategy is a cutoff strategy. In the

uniform case, as k →∞, the socially optimal strategy is alternating.

Proof: Independent of k, alternating yields a joint expected payoff equal to the expected

value of the range of numbers. Consider the case of k = 2: the strategy of always enter

(the lowest possible cutoff) yields half the expected value for each player. Thus, the joint

expected payoffs are the same for alternating and always entering. When the lowest possible

cutoff is not the optimal cutoff or when k < 2, the joint expected payoff from the cutoff

strategy will be strictly higher.

For the uniform distribution, using the grid method of the previous proof, alternating

yields (b− a + 1)
∑b

z=a z = (1 + b− a)2(a + b)/2. Using a cutoff strategy of c∗ yields a joint

payoff of 2(c∗ − a)
∑b

z=c∗ z = (1 + b− c∗)(c∗ − a)(b + c∗). The expression (1 + b− c∗)(c∗ − a)

reaches its maximum at c∗ = (1+a+b)/2, yielding (1+b−a)2/4. Since (b+c∗) is maximized

for c∗ = b, we know the joint cutoff payoff must be strictly less than (1 + b− a)2 · b/2. For

a > 0, this is less than the joint alternating payoff. QED

When the distribution of values is not uniform, the second result does not generally hold.

Take for example the values of 100 with probability 1/3 and 1 with probability 2/3. For

large k, alternating yields a joint expected payoff of 34. Entering only when one has 100
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yields 100 with probability 4/9 and ε otherwise. Hence, this optimal cutoff strategy yields a

higher joint expected payoff.

In our search for a parameterization that yields similar joint expected payoffs for the

optimal cutoff and alternating strategies, Proposition 2 suggests values of k greater than 2,

but not too large: we allowed k to vary from 2 to 5. Over the range of numbers, {a, . . . , b},
we allowed b to be any integer greater than or equal to 3, and fixed a = 1. This latter

decision was made in part because if a is an integer less than 1, then the strategy “always

enter” is no longer a unique dominant strategy in the stage game. In selecting our game

parameters, for a given f , we can often increase the steepness of the expected social payoff

function around the socially optimal pure-strategy cutoff by shrinking the number of integers

in the range {a, . . . , b} (i.e., by lowering b in our case). However, when the optimal cutoff

for the expected social payoff is in mixed strategies, then this need not be true. Instead, the

expected social payoff function connecting the two pure-strategy cutoffs that straddle the

optimal mixed-strategy cutoff can be rather flat. Indeed the optimal symmetric cutoffs are

in mixed strategies for (b = 3, k = 4), (b = 4, k = 4), (b = 5, k = 2) and (b = 5, k = 4).

An optimal solution in mixed strategies should be avoided due to the salience of the nearby,

almost optimal, pure strategies, the improbability that both subjects will solve for, and play,

the optimal mixed-strategy cutoff and the added difficulty in analyzing the data.

The two optimal steepness parameterizations are (b = 3, k = 3) and (b = 5, k = 3). For

our experiments, we chose (b = 5, k = 3). Although the difference between the optimal

expected social payoff and the second-best expected social payoff from (b = 3, k = 3) is

0.30 per round, 0.06 units higher than the next-best parameterization of (b = 5, k = 3),

we decided against the former; with only three numbers in the range, arriving at the social

equilibrium of exiting on 1 and entering on 2 and 3 is too easy. We prefer a parameterization

for which the Nash and cooperative cutoff solutions differ by at least two numbers.

Figure 1 displays the results of our search for the range of numbers {1, . . . , 5} and k ∈
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{2, 3, 4, 5}. The figure reveals that the optimal pure-strategy cutoff value equals 1.5 for

k = 2, equals 2.5 for k = 3, 4, and equals 3.5 for k ≥ 5.3 The figure also shows that the

steepness around c∗ is maximized for k = 3. For k = 3, the pair’s expected payoff if each

player employs the optimal cutoff, c∗ = 2.5, is 216/75. For c = 3.5, the pair’s expected

payoff decreases to 198/75 and to 196/75 for c = 1.5. For c = 4.5, the pair’s expected payoff

is 130/75 and for c = 0.5 (always enter) it is 1.

[insert Figure 1 here]

For our chosen parameterization, the alternating strategy actually yields the pair slightly

more in expectation than the optimal symmetric pure-strategy cutoff:4 from alternating the

pair earns 3 units of profit in expectation, 9/75 units more than from c∗ = 2.5. That these

two strategies perform almost equally well despite their qualitatively very different natures

raises the empirical question of which one, if any, will be adopted by players.5 Not only

is the expected pair’s payoff from playing the alternating strategy (3) higher compared to

the optimal symmetric cutoff strategy (216/75), the variance of the expected payoff is also

lower: 2 compared to 2.42. Part of the intuition why the payoff variance is lower for the

alternating strategy is that this strategy always yields at least one unit of profit, while with

probability 4/25 the optimal cutoff strategy yields 0.

3 Related Literature

The best known and most frequently tested cooperation game, the prisoners’ dilemma, has a

unique dominant-strategy equilibrium in which both players defect; however, if both players

3 We express all cutoffs as halves to denote unambiguously that the player enters on all integers greater
than the cutoff and exits otherwise.

4 We persist with the cumbersome language of “optimal symmetric pure-strategy cutoff” because the
alternating strategies can be thought of as asymmetric pure strategies in which one player uses a cutoff of
c = 0.5 and the other uses c = 5.5.

5 Notice that had we chosen k = 2, not only is the social payoff function much flatter around the optimal
cutoff value, c∗ = 1.5, but the alternating strategy yields the identical expected social payoff as always enter
(c = 0.5).
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could commit to cooperation, both would be better off. The standard public-goods game is

an n-player extension of the prisoners’ dilemma in which each player decides how to allocate

his endowment between a private good (which benefits the player alone) and the public good

(which benefits all players equally). In the socially optimal outcome, all players contribute

their entire endowments to the public good; this conflicts with the unique dominant-strategy

equilibrium in which each player contributes his entire endowment to the private good.

Noncooperation (enter) is also the unique dominant-strategy equilibrium of our class of

games. Unlike the prisoners’ dilemma and public-goods games, however, the socially optimal

outcome in our game involves one person defecting and the other person cooperating. A

second distinction of our game is that if both players defect they are better off than if both

cooperate.

Amnon Rapoport and his coauthors have conducted various versions of a market entry

game. In an early version, Rapoport (1995), n symmetric players independently decide

whether to enter a market with capacity c ≤ n. Staying out yields a fixed payoff, whereas

entering yields a payoff that decreases in the number of entrants and yields less than the fixed

payoff from staying out in the case of excess entry.6 In subsequent versions of the market

entry game, Rapoport and coauthors have explored the effect of deciding whether to enter in

one of two markets where each market’s capacity changes in each period (Rapoport, Seale and

Winter, 2000) and asymmetric entry costs that are held constant throughout the experiment

(Rapoport, Seale and Winter, 2002). These games have large numbers of pure-strategy and

mixed-strategy equilibria, all characterized by some subset of players entering the market

with positive probability. Beginning with Kahneman’s (1988) original experiments on the

market entry game, the main result across all of these variations is that subjects learn to

coordinate on one of the Nash equilibria. Moreover, Erev and Rapoport (1998) have shown

that a variant of a reinforcement learning model can account for the mixed-strategy equilibria

6 The special case in which the payoff for entering changes only in going from within-capacity to over-
capacity is known as the El Farol Problem (see Arthur, 1994).
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observed in the play of standard market entry games.

Overall, these games and ours share the feature that entry imposes a negative externality

on other entrants. The most important differences are the uniqueness of the Nash equilibrium

in our setup and the fact that it is at odds with the full-information, social optimum whereby

one player cooperates and the other defects, whereas a multiplicity of Nash equilibria, all of

which are efficient, characterize standard market entry games. Moreover, exit is a strictly

dominated strategy in our class of games for a > 0 and f > 0. Put another way, if both

players enter (“excess entry”), unlike the market entry game, each entrant still earns more

than if he had exited.

4 Experimental Design and Procedures

4.1 Experimental Design

All experiments were conducted in (not necessarily fixed) pairs. Each player in the pair

received an independently and randomly drawn integer between 1 and 5 in each round.

Subsequently, each player independently decided whether to enter or exit. The decision to

exit yields 0, whereas entry yields the value of the number if the opponent exits and 1/3 of

the value of the number if the opponent also enters. All experiments were conducted for 80

rounds with 5 initial practice rounds.7

We conducted three experimental treatments that differ by the point in time at which a

player learns his opponent’s value (after the round or never) and by the opponent’s identity

(fixed or random). In the baseline treatment, “AfterFixed”, the pairs are fixed for 80 rounds

(but different from the 5 practice rounds) and each player learns his opponent’s value at the

7 We opted for a known rather than a probabilistic terminal round both for reasons of simplicity of
design and to keep the theoretical analysis similar to the one-shot game. Moreover, Normann and Wallace
(2004) show that except for end-game effects, subjects’ cooperative behavior in a prisoners’ dilemma game
is unaffected by the termination rule.
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end of the round. This provides relatively favorable conditions for cooperation. For example,

the pair may coordinate on and enforce both the alternating and the cutoff strategies. If a

player enters when it is not his turn to enter or on a low number, say 1, he recognizes that

his opponent will observe this defection and can retaliate by entering out of turn or the next

time he receives the number 1. Thus, for a sufficiently long horizon, when cooperation is the

status quo, uncooperative entry is unprofitable.8

The two additional treatments are both one variation away from AfterFixed and are

hypothesized to make cooperation more difficult to achieve. In the second treatment, “Nev-

erFixed”, pairs remain fixed, however, a player does not observe his opponent’s number at

the end of the round, only his decision to enter or exit. Thus, with cutoff strategies, if a

player decides to enter, his opponent does not know if he entered because he drew a high

number or because he is playing uncooperatively. This lack of information clearly renders

cooperation less likely. Another way to make cooperation more difficult is to change players’

opponents in each round.9 In the third treatment, “AfterRandom”, like the baseline treat-

ment, players observed their opponents’ numbers at the end of each round; however, pairs

were randomly reformed in each round. Random opponents make it impossible for a pair of

players to build cooperation between them. Moreover, if pairs aren’t fixed, the cooperative

strategy by which players alternate entering is no longer feasible.

In a repeated game, cooperation can be maintained even when players are self-interested

by means of punishment. Punishment is easiest in AfterFixed: if alternating or cutoff strate-

gies are employed, any deviation is easily detected and punishable. Punishment is hardest in

AfterRandom: while deviation is detectable, punishment is unattainable. NeverFixed repre-

sents an intermediate case for punishment: although deviations from alternating strategies

8 In all of our treatments, due to the certainty in the number of rounds, to always enter is the unique
Nash equilibrium in the repeated game as well as the unique dominant-strategy equilibrium in the one-shot
game.

9 Andreoni and Croson (forthcoming) survey the evidence on the impact of fixed partners versus random
rematching on cooperation in public goods games.
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are easily detected and punishable, detection in particular is difficult for cutoff strategies.

Frequent entry may just reflect lucky draws of high numbers. A rule could be adopted

whereby more than 7 entries in the past 10 rounds constitutes a deviation; however, efficiency

would be lost if more than 7 of the last 10 draws exceeded the cutoff of 2.5. Furthermore,

how does the pair coordinate upon the rule of 7 out of 10, or any other?

4.2 Experimental Procedures

Upon arrival, each subject was seated in front of a computer terminal and handed the sheet

of instructions (see the Appendix). After all subjects in the session had completed reading

the instructions, one of the experimenters read them aloud. To ensure full comprehension

of the game, subjects were given a series of knowledge-testing questions about the game

(the questions are also contained in the Appendix). Participation in the experiment was

contingent upon answering correctly all of the questions.10 Five practice rounds were

then conducted with identical rules to the actual experiment. To minimize the influence

of the practice rounds, subjects were rematched with a different opponent for the 80-round

experiment.

In the first two treatments, subject pairs progressed through the 80 rounds at their own

pace. After completing the experiment, subjects completed a questionnaire and remained

seated until others had finished to avoid discovering their partners’ identity. In the random

rematching treatment, the pairs could be formed randomly each round only after the last

subject had made a decision.

An important feature of our experimental design that allows us to compare subjects’

behavior across pairs and across treatments is our use of one pair of randomly drawn se-

quences of 80 numbers (85 numbers including the five practice rounds) from 1 to 5. Before

beginning the experiments, we drew two 80-round sequences, one for each pair member. We

10 No one was excluded from participating. All subjects who showed up answered correctly all of the
questions in the allotted time.
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applied these sequences to all subjects in all sessions and treatments.11 Thus, for instance,

in round 56 regardless of pair, session or treatment, the subject arbitrarily designated player

A received a value of 2, while player B received a value of 4.12

4.3 Subjects and Payments

Since the experiment requires a very basic knowledge of probabilities, participation was

limited to economics, engineering, business, natural science, mathematics and computer

science students. Students who had taken a class in experimental economics were not allowed

to participate.

Sixty-two subjects participated in one of the three AfterFixed sessions, 62 subjects in one

of the three NeverFixed sessions, and 46 subjects in one of the two AfterRandom sessions (24

in one session and 22 in the other). A session took between 75 and 85 minutes for the first

two treatments, and approximately 100 to 110 minutes for the AfterRandom treatment. To

compensate the students in the random rematching treatment for the extra time required,

a fixed payment of 10 shekels was added to their experimental earnings. In order to hold

constant the marginal incentives across treatments, the experimental-currency-to-shekel ratio

was fixed at 1:0.6 for all three treatments.

11 In practice, due to an undetected bug in the software, the order of numbers varied slightly between
some sessions, sometimes causing numbers intended for the practice rounds to replace numbers from the
experimental rounds. Notwithstanding, the two sequences of numbers remain nearly identical across pairs
and sessions.

12 The astute reader will note that to preserve the identical sequence of values in the random rematching
treatment requires that each subject be designated either a player A or a player B and that the random
rematching of player As be restricted to player Bs.

15



5 Results

5.1 Cooperation across Treatments

Table 1 presents the percentage of rounds in which subjects entered for a given number by

treatment. Thus, in the baseline treatment, AfterFixed, subjects entered only 16.3% of the

time they drew the number 1. These summary statistics reveal a number of findings. First,

as expected, cooperation increases by increasing information or by fixing partners. Second,

not all subjects are playing the Nash equilibrium. Exit is the modal decision for the number

1 in all treatments and also for the number 2 in the AfterFixed treatment. Moreover, the

sharp spike in entry percentages in going from the number 2 to 3 in all three treatments

suggests that many subjects may be employing the optimal symmetric cutoff strategy of 2.5.

Finally, that not all subjects are entering all of the time on numbers 4 and 5, particularly in

NeverFixed, suggests the use of alternating strategies for which entry and exit decisions are

independent of the numbers received. In the next subsection, we estimate either the cutoff

or alternating strategy that best fits each individual subject’s observed decisions.

[insert Table 1 here]

Comparing entry on different numbers across treatments, Table 1 reveals that the fre-

quency of entry is markedly higher in NeverFixed than in AfterFixed for the number 1 (30.8%

vs. 16.3%) and for 2 (53.8% vs. 29.4%). A χ2 test of proportions rejects the equality of the

entry proportions for the distribution of numbers 1 to 5 across the AfterFixed and Nev-

erFixed treatments, χ2 = 94.38, df = 4, p = .001. By the same token, we can reject the

equality of the entry proportions by number for the AfterFixed and AfterRandom treatments,

χ2 = 108.40, df = 4, p = .001. On the other hand, although Table 1 suggests a slightly

higher tendency to enter on numbers 2 and 3 in the AfterRandom treatment, we find no

significant difference between the proportions of entries by number in the NeverFixed and

AfterRandom treatments, χ2 = 4.58, df = 4, p = .334.
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Further evidence that cooperation in AfterFixed is significantly higher than in Never-

Fixed or AfterRandom, but that there is no significant difference between the latter two

treatments comes from a comparison of subjects’ profits. We computed average subject

earnings by treatment as a percentage of the full-information, efficient outcome in which

only the player with the higher number enters (in the case of ties, only one player enters),

given the actual distribution of numbers drawn over the 80 rounds. While this outcome is

not feasible in our experiments with private information and no communication, it serves

as a useful benchmark. In AfterFixed, subjects earned on average 71.6% of this first-best,

social optimum, significantly higher than the 67.6% achieved in NeverFixed and 66.9% in

AfterRandom. All of these yields are markedly higher than the 53.8% offered by Nash play,

attesting to the relatively high levels of cooperation in all three treatments.13

We estimate a random effects Probit model to explain the variation in subject i’s decision

to enter in period t. The specification for our random effects Probit model for each of the

three treatments is as follows,14

˜Enterit = constant + β1 ∗ C1.5 + β2 ∗ C2.5 + β3 ∗ C3.5 + β4 ∗ C4.5 + (1)

β5 ∗ Enteri,t−1 + β6 ∗ Enter−i,t−1 + β7 ∗ first10 + β8 ∗ last10 + εit,

where εit = αi + uit

and Enterit =





1 if ˜Enterit ≥ 0

0 otherwise.

The dummy variable C1.5 equals one if player i’s period t number is 2, 3, 4 or 5 and

equals zero if it is 1; similarly, C2.5 equals one for numbers 3, 4 and 5, and zero otherwise,

13 Other efficiency measures include play according to the optimal symmetric pure-strategy cutoff of 2.5,
which yields 75.9%, the alternating strategy, which yields 78.9% if player A enters in the odd rounds or
82.5% if player B does, and the outcome in which both players exit in every round, which returns 0%.

14 The presence of the lagged dependent variable as a regressor renders our estimates inconsistent. To
correct for this, we estimated a correlated random effects model (Chamberlain, 1980) in which subject i’s
first-period entry decision and number were also included as regressors. (In the AfterRandom treatment, the
first-period entry decision is dropped since all 46 subjects entered in period 1.) Because all of the results are
qualitatively identical to our random effects Probit results, we report the latter for simplicity.
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and so forth for C3.5 and C4.5. The marginal effects of the estimated coefficients on these

variables can be interpreted as the marginal propensity to enter for numbers 2, 3, 4 and 5,

respectively. Also included in the regression equation are the subject’s own last-period entry

decision, Enteri,t−1, and that of his opponent, Enter−i,t−1. Finally, we control for initial

learning and end-game effects by including dummies for the first 10 and last 10 periods,

respectively. The error term, εit, is composed of a random error, uit, and a subject-specific

random effect, αi.

Table 2 displays the regression coefficients and marginal effects for each of the three

treatments. All of the variables are significant in AfterFixed. In particular, the computed

marginal effects displayed in the second column indicate that a subject is 13.9% more likely

to enter on a 2 than a 1, 58.7% more likely to enter on a 3 than a 2, 22.1% more likely

to enter on a 4 than a 3 and 5.5% more likely to enter on a 4 than a 5. These estimates

correspond closely to the differences in percentages of entries by number reported in Table

1, despite the inclusion of a number of other significant controls in the regressions. For

instance, if a subject entered in the previous round, he is less likely to enter this round,

while if his opponent entered last round, he is more likely to enter this round. Both of

these findings are consistent with the pair employing alternating strategies. Finally, the

significance of “first10” and “last10” supports initial learning and end-game effects in the

anticipated direction: subjects are less likely to enter early on and more likely to enter toward

the end of the game.

[insert Table 2 here]

The regression results from the NeverFixed and AfterRandom treatments are very similar,

the main differences being that the C4.5 variable is no longer significant in NeverFixed, while

neither C3.5 nor C4.5 is significant in AfterRandom. Table 1 reveals an entry frequency

of 97.2% (693/713 times) on the number 3 in AfterRandom, offering little scope for more

frequent entry on the number 4.
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Moreover, the initial learning effect captured by the “first10” variable is not significant

in either of these treatments. Intuitively, subjects do not adapt their behavior in response to

their opponents’ early choices (with the exception of unrequited alternating) because reci-

procity cannot easily be dispensed in these treatments; in NeverFixed, since the opponent’s

number is never revealed, his motive for entering remains ambiguous, while fair play cannot

be rewarded and cheating cannot be punished in AfterRandom because the opponent keeps

changing.

One curiosity in AfterRandom is the continued significant, negative coefficient on the

subject’s own previous-period decision, indicative of alternators in spite of the impossibil-

ity of coordinating on alternating strategies when partners are randomly rematched each

round. Anticipating the strategy inference results in the next subsection, there exists one

subject who alternated, entering in odd rounds and exiting in even ones in 79/80 rounds.

To account for this outlier, we estimate an additional specification that includes an inter-

action dummy variable for subject 17 and his previous-period decision. The coefficient of

−6.29 on subject17 ∗ Enteri,t−1 is strongly significant (p < .01), whereas the coefficient on

Enteri,t−1 is no longer significant (p = .48), suggesting the absence of correlation between

one’s previous-period and current-period decisions, after controlling for the number received

in each period.

The estimates of ρ in Table 2 measure the fraction of the error term’s variance accounted

for by subject-specific variance. The highly significant estimates ranging from 0.395 in

AfterFixed to 0.569 in AfterRandom indicate that between 40% and 57% of the variance in

the error term is explained by subject heterogeneity.

5.2 Individual Strategies

To understand better the heterogeneity in subject behavior, we infer the strategy that best

fits each subject’s observed decisions. For each subject, we compare the ability of the different
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cutoff and alternating strategies to classify correctly the subject’s entry and exit choices. For

different time horizons over the 80-round game, we compute the goodness of fit for each of

the possible pure-strategy cutoffs, c ∈ {0.5, 1.5, 2.5, 3.5, 4.5, 5.5}, and the two alternating

strategies, enter in even rounds, exit otherwise and enter in odd rounds, exit otherwise. The

strategy that minimizes the number of errors in classifying the subject’s observed decisions

is selected as the one that the subject most likely employed.15

[insert Table 3 here]

Table 3 reports the distribution of individuals’ best-fit strategies for rounds 11–70 by

treatment. In the case where two strategies explain a subject’s decisions equally well, each

of the tied strategies receives half a point. Thus, for instance, nine subjects are playing

according to the Nash equilibrium strategy of c = 0.5; for one of these subjects, the cutoff

strategy c = 1.5 fits his decisions equally well. Excluding the first 10 and the last 10 rounds

reduces the error rates by minimizing the influences of the observed learning and end-game

effects. All but one to three (depending on the treatment) of the individual best-fit strategies

are robust to the different time horizons tested, like all 80 rounds, the last 60 rounds, the

last 40 rounds and rounds 16–65.

Overall, this simple inference technique fits the data well as seen in the error rates of 6%,

8% and 5% for each of the three treatments respectively. Thus, of the 3720 decisions made

by the 62 subjects in AfterFixed between rounds 11 and 70, 3479 of them correspond to the

best-fit strategy inferred for each subject. By comparison, if we assume that all subjects

are playing the Nash equilibrium strategy, then the third-to-last row of data in Table 3

indicates that the error rates jump to between 21% and 32% depending on the treatment. In

15 This methodology is a much simplified version of the strategy inference technique developed in Engle-
Warnick and Ruffle (2004) because it permits only one decision rule of the form “if [condition satisfied], then
Enter; otherwise Exit”. We do not allow for nested rules. Accordingly, the technique does not allow for
changes in subjects’ strategies over time. Furthermore, our simple technique implicitly assumes a common
prior over all strategies under consideration. Its simplicity notwithstanding, this technique does remarkably
well in organizing subjects’ decisions, as reflected in the very low error rates in Table 3.
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addition, we generated random decisions for subjects calibrating the probability of entry to

match the observed overall rate of entry in each treatment (.677, .744 and .793 for the three

treatments, respectively). We then calculated the error rate from these random decisions for

each subject’s best-fitting strategy and for each subject assuming Nash play. The results in

the bottom two rows of Table 3 again demonstrate that our inferred strategies on the actual

data fit the data much better than the best-fitting and Nash strategies on the randomly

generated data. This suggests that subjects are indeed playing in a non-random, methodic

fashion that can be captured by cutoff and alternating strategies.16

Despite the slight payoff advantage and lower payoff variance of the alternating strategy,

we find that the optimal symmetric cutoff strategy of c∗ = 2.5 best characterizes the decisions

of 39/62 subjects in the AfterFixed treatment. In fact, several pairs coordinate on this

strategy without even a single error, while in other pairs, one partner occasionally deviates

by entering on the number 2. Pair 17 is a case in point. Player 17B decides according to the

cutoff c∗ = 2.5 flawlessly through all 80 rounds; his opponent’s best-fit strategy is also the

cutoff c∗ = 2.5; however, in rounds 35 and 52, he “cheats” by entering on a 2. Nine subjects

appear to be employing the cutoff of 1.5, nine other subjects’ strategy is to enter all of the

time (c = 0.5), four subjects (two of whom form a pair) use the hyper-cooperative cutoff of

3.5, and only one pair of subjects uses alternating strategies. Pair 21 begins alternating in

period 33 and continues without deviation through period 80.

Table 4 displays the numbers and decisions for a pair of subjects from each of the three

treatments. The number of errors for each pure-strategy cutoff value and the alternating

strategies for rounds 11–70 are displayed below the decisions of each subject, with the num-

ber of errors for the best-fit strategy highlighted in bold.17 Pair 10 (shown in Table 4)

16 A complementary method to determine the strategies subjects play is to ask them. We did this in a
post-experiment questionnaire. For cases in which their responses are interpretable, they match our inferred
strategies exceptionally well, with the caveat that many subjects claim to decide randomly when in fact their
decisions display a clear tendency to enter on higher numbers and exit on lower ones.

17 We display subject pairs with above average error rates for the simple reason that the behavior of
subjects who stick to a strategy with few or no errors is easily and more parsimoniously described in words.
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demonstrates the necessity that both pair members employ the complementary alternating

strategies for them to endure. Player 10A begins alternating in period 1, exiting in odd

rounds and entering in even ones. Her opponent shows signs of alternating, except when he

receives a 4 or 5 in which case he enters. Player 10A continues to alternate through period

16 despite four entries and one exit out of turn by 10B. In round 17, 10A receives a 5 and

enters, breaking her alternating pattern. The pair eventually appears to coordinate on the

cutoff strategy c∗ = 2.5, until round 64 in which 10B enters on a 2. From round 71 through

the final round, both players enter in every round.

[insert Table 4 here]

The NeverFixed treatment is a more likely candidate for alternating because the playing of

cutoff strategies cannot be observed and, as a result, cannot be enforced. Still, a meager two

out of 31 pairs coordinate on the alternating strategies. Pairs 5 and 7 adopt the alternating

strategies in rounds 2 and 8, respectively, and play them without error for the duration. An

additional subject whose best-fit strategy is enter in odd rounds eventually abandons this

strategy after his opponent failed to adopt the complementary alternating strategy.

The distribution of best-fit strategies shown in Table 4 reveals a marked shift from higher

to lower entry cutoff values in going from AfterFixed to NeverFixed or from AfterFixed to

AfterRandom. For example, the percentage of subjects playing the optimal symmetric pure-

strategy cutoff of 2.5 declines from 62.1% in AfterFixed to 38.7% in NeverFixed or to 38.0%

in AfterRandom, while those who play the Nash equilibrium increases from 13.7% to 20.2%

(NeverFixed) or 22.8% (AfterRandom). Like the overall proportions of entry by number and

by treatment in Table 1 and subjects’ actual earnings as a percentage of the social optimum,

both discussed in section 5.1, the individual inferred strategies again point to a decline in

cooperation when less information is provided or partners are randomly reformed, but no

difference in the cooperative behavior between these two conditions.
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The percentage of entry decisions by number displayed in Table 1 and the Probit regres-

sion results from Table 2 also reveal subjects’ willingness to cooperate in these experiments.

What our strategy analysis adds is the observation that pair members typically coordinate

on the same cooperative strategy. In the AfterFixed treatment, of the 30 pairs that employ

cutoff strategies, 22 of them coordinate on the same cutoff values, while 16/28 pairs do so

in NeverFixed, despite not being able to observe the other’s numbers. Moreover, for all 12

pairs in which partners do not coordinate on the same cutoffs, their inferred cutoffs differ by

only one integer value and their error rates tend to be above average due to an ambivalence

between two competing cutoff values. Pair 30, displayed in Table 4, represents a case in

point. Player 30A begins by alternating, entering if and only if the round number is odd.

Player 30B, however, has his own agenda, consistently exiting on 1s and 2s and entering

on 3s, 4s and 5s, with only 3 exceptions over the entire 80 rounds (namely, entering on a

2 in rounds 30 and 41 and on a 1 in round 80). Because his opponent does not adopt the

complementary alternating strategy, 30A enters defiantly on a 1 in rounds 18 and 20, before

adopting the cutoff of 1.5 and playing it with few deviations until the end.18

6 Discussion

6.1 Is the shame of being seen cheating enough?

The finding that play in AfterRandom is no less cooperative than in NeverFixed is, in our

view, surprising. In NeverFixed, if a player does not play cooperatively and enters every

period or “too often”, his opponent may retaliate by entering in every period. Such recourse

is not available when opponents are randomly rematched in every round. The mere fact

18 Player 30A is among the few subjects for whom a nested strategy would substantially improve the
errors in classifying his decisions. Allowing a nested strategy of the form, “if round < 18, then Enter on Odd
rounds; otherwise (if number > 1, then Enter, otherwise Exit)”, decreases the subject’s errors from 9 to 4
for rounds 11–70 and from 15 to 6 for all 80 rounds.
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that cheating or non-cooperative play is fully observable (even if it isn’t punishable) in

AfterRandom appears to be sufficient to keep players in line. The question remains whether

this result extends to a much larger sample population where the probability is infinitesimally

small that player X will ever meet someone who has played against him, or whether he will

ever meet someone who has played someone who has played against player X, ad infinitum.19

6.2 What makes a cooperative strategy ubiquitous?

Although the pair’s expected profit from employing the alternating strategy is slightly higher

(by 9/75 of a unit per period) and the variance lower than those from the optimal symmetric

cutoff strategy of c∗ = 2.5, the overwhelming majority of subjects employ the latter strategy.

We believe that there are three important reasons for this.

First, the alternating strategy must be implemented by both pair members to be effec-

tive; unilateral use of this strategy is very costly, and, as we saw with the individuals who

attempted to implement it alone, eventually abandoned. By contrast, cooperation according

to a cutoff strategy involves staying out on the lowest numbers, when it is least costly to do

so.

Second, the alternating strategy ignores the values to entry in each round. Instead it

relies on an algorithm seemingly void of economic appeal to determine whether to enter.

The lack of economic appeal becomes especially salient when a player receives the number 5

and it is his turn to exit.

Third, suppose a player fears his opponent might tremble in implementing his intended

strategy. In the case of the alternating strategy, an error means that a player enters when

it is not his turn (when his opponent enters) and exits when he is supposed to enter. In

the former, the mistake reduces his entering opponent’s payoff by 2/3 and, in the latter, the

opponent’s payoff of zero from exiting is unchanged. In the case of the symmetric cutoff

19 An experimenter can avoid even this indirect contact by forming pairs using the turnpike method, which
requires at least twice as many subjects per session as rounds.
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strategies of c∗ = 2.5, a tremble by a player means that either he enters with numbers 1 and

2 or exits with numbers 3, 4, and 5. If each of these errors is equally likely, then an error

means that the player is entering less frequently (with probability 2/5 compared to 3/5 with

no errors). As a result, a player’s error actually benefits his opponent.

With these disadvantages associated with the alternating strategy, the slight 0.12 unit per

round advantage for the pair was inadequate. One could magnify the alternating strategy’s

joint-expected-payoff advantage, thus making its adoption more likely, by shrinking either

the absolute or percentage difference between a and b. For instance, we would expect to

see more alternating when players’ integers are drawn from a uniform distribution between

6 and 10 where the joint expected per round payoff from alternating is 8 compared to 6.35

from c∗ = 6.5. By shrinking the absolute difference between a and b to the extreme case

where a = b, we would expect all players to adopt alternating. In short, alternating makes

increasing sense as players’ values to entering become more alike. If children’s utilities from

riding in the front seat are similar, they will take turns enjoying this privilege. By the same

token, firms with similar expected profits from introducing a new product into the market

seem able to coordinate on rotating the timing with which they do so, as demonstrated by

the examples of motion-picture and baseball-card releases (Zillante 2003).

6.3 Implications of our Results and Extensions

Slight changes in our experimental parameters can produce a very different game. For in-

stance, a negative lower bound on the range of numbers, a, allows for spite. A subject who

receives a negative number and enters has points subtracted from his profit. His choice to

enter despite a negative payoff stems from a desire to punish his partner. Spiteful behavior

has been observed and resulted in more efficient contributions to public goods (Cason, Saijo

and Yamato 2002; Fehr and Gachter 2000) and higher offers in proposer-responder games

(Andreoni, Harbaugh and Vesterlund 2003). Moreover, we explored in this paper two real-
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izations of the timing-at-which-a-subject-learns-his-opponent’s-number variable (After and

Never). We could also permit subjects to observe their opponents’ numbers Before deciding

whether to enter or exit. Under this full-information condition, the socially optimal strategy

changes to enter for the subject with the higher number and exit for the other subject.20

The pair’s expected per-period payoff increases to 3.80,21 compared to 3 for alternating and

2.88 for c∗ = 2.5.

There are additional ways to achieve this socially optimal outcome, even in the absence

of full information. For instance, if we allow subjects to transmit a number or series of

numbers to their opponents (cheap talk), then the decision to reveal truthfully and precisely

one’s number can permit optimal cooperation. Alternatively, if subjects are allowed to offer

side payments (bribes) to their opponents prior to entry decisions, then the size of the side

payment may signal perfectly the player’s number and optimal cooperation may be achieved.

In the absence of communication, our results demonstrate notably high levels of coopera-

tion, especially when compared to repeated prisoners’ dilemma and public-goods experiments

in which convergence toward the unique dominant strategy of defection has been documented

in dozens of experiments. Accordingly, our results speak to the ability of duopolists to collude

implicitly, suggesting that even if antitrust authorities commit more resources to monitoring

and punishing communication between firms and through such efforts succeed at preventing

it, implicit collusion will prevail. This begs the question of whether more than two firms are

able to collude in our environment.

20 Note that with full information and k < 2, the socially optimal strategies depend on players’ numbers.
For example, with numbers are 3 and 5, both should enter; however, if their numbers are 2 and 5 and
7/5 < k < 2, then only the high-value player should enter.

21 This assumes that the pair coordinates on only one person entering whenever they have the same
number; if they both enter whenever they have the same number, then their expected payoff is 3.40.
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7 Conclusions

There are a large number of opportunities for cooperative behavior in the real world that

have heretofore not been studied theoretically or tested experimentally. These situations

are characterized by a tension between the unique noncooperative equilibrium in which both

players defect and the socially optimal outcome in which one player cooperates and the other

defects.

In this paper, we introduce such a game. Our game is unique in that the socially optimal

outcome involves one player defecting and the other cooperating or backing down. Because

cooperation yields a payoff of zero, it cannot reasonably be expected in a one-shot game,

except under very special circumstances (e.g. when the value to defection is sufficiently low).

In a repeated game, the challenge lies in coordinating who will back down and under what

circumstances. Accordingly, we conduct our game repeatedly under different conditions with

the goal of determining whether and what kind of cooperation will emerge when players’

values for defection are private. Cooperation generally takes the form of cutoff strategies

whereby players cooperate when their values for defection are sufficiently low. We observe

very high levels of cooperation even when defection cannot be observed or punished. What

is more, pair members coordinate exceedingly well on the same cooperative strategies. For

whatever reason, few pairs elect to coordinate on the cooperative strategies whereby they

take turns cooperating and defecting.

In this paper, we have tested cooperative behavior in only a small number of games (all

with private information) from those possible given the generality of the game structure.

Future research will explore other variations and their cooperative and efficiency properties

under different informational conditions.
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Appendix

Pre-Experiment Questions

1. How many numbers are there in the range of 1 to 5?
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2. What is the probability of obtaining the number “4” in any given round?

3. What is the anticipated average of the numbers you will receive over the entire 80 rounds of

play?

4. Suppose that you have received the number “1” during three consecutive rounds. What is the

probability of receiving another“1” in the next round?

5. Suppose that you receive the number “1” and your opponent receives the number “2” in a

particular round.

a. If you both enter, what will be your payoff from this round? What will be your opponent’s

payoff?

a. If you enter and your opponent exits, what will be your payoff from this round? What will be

your opponent’s payoff?

b. If you both exit, what will be your payoff from this round? What will be your opponent’s payoff?

c. If you exit and your opponent enters, what will be your payoff from this round? What will be

your opponent’s payoff?

Instructions to Participant
The experiment in which you will participate involves the study of decision-making. The in-

structions are simple. If you follow them carefully and make wise decisions, you may earn a
considerable amount of money. Your earnings depend on your decisions. All of your decisions will
remain anonymous and will be collected through a computer network. Your choices are to be made
at the computer at which you are seated. Your earnings will be revealed to you as they accumulate
during the course of the experiment. Your total earnings from the experiment will be paid to you,
in cash, at the end of the experiment.

There are several experiments of the same type, which are taking place at the same time in this
room.

This experiment consists of 80 rounds. You will be paired with another person. This person
will remain the same for all 80 rounds. Each round consists of the following sequence of events.
At the beginning of the round, you and the person with whom you are paired each receives a
randomly and independently drawn integer number from 1 to 5 inclusive. This number is your
private information, that is, the other person will not see your number and you will not see the
other person’s number. After seeing your numbers, each of you must decide separately between one
of two actions: enter or exit. At the end of each round, your number, your action, and the other
person’s action determine your round profit in the following way. If you both chose to exit, then
you both receive zero points. If you chose to exit and the other person chose to enter, then you
receive zero points and the other person receives points equal to his number. On the other hand,
if you chose to enter and the other person chose to exit, you receive points equal to your number
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Other Person
Enter Exit

Enter x/3, y/3 x, 0
You Exit 0, y 0, 0

and the other person receives zero points. If you both chose to enter, then you receive points equal
to half of your number and the other person receives points equal to half of his number. The table
below summarizes the payoff structure.

Suppose you receive a number, x, and the other person receives a number, y. The round profits
for each of the given pair of decisions are indicated in the table below. The number preceding the
comma refers to your round profit; the number after the comma is the other person’s round profit.

After you have both made your decisions for the round, you will see the amount of points you
have earned for the round, the other person’s decision and his number. When you are ready to
begin the next round, press Next.

At the end of the experiment, you will be paid your accumulated earnings from the experiment
in cash. While the earnings are being counted, you will be asked to complete a questionnaire. Prior
to the beginning of the experiment, you will partake in a number of practice rounds. The rules of
the practice rounds are identical to those of the experiment in which you will participate. Note
well that for the purpose of the practice rounds, you will be paired with a different person from
the actual experiment. The purpose of the practice rounds is to familiarize you with the rules of
the experiment and the computer interface. The profits earned in these practice rounds will not
be included in your payment. If you have any questions, raise your hand and a monitor will assist
you. It is important that you understand the instructions. Misunderstandings can result in losses
in profit.
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Joint expected payoff as a function of players' symmetric cutoff strategies and k

The pair's joint expected payoff as a function of symmetric pure-strategy cutoffs 0.5 to
5.5 for the range of numbers 1 to 5 and the indicated values of k.

Number AfterFixed NeverFixed AfterRandom
1 16.3% 30.8% 31.0%
2 29.4% 53.8% 64.0%
3 86.2% 88.8% 97.2%
4 98.0% 95.6% 98.1%
5 98.5% 95.4% 98.9%

Overall 67.7% 74.4% 79.3%

For each number, each cell indicates the percentage of
entry across all subjects in the treatment.

Figure 1

Table 1
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Variable coefficient marginal coefficient marginal coefficient marginal coefficient marginal 
(std. error) effect (std. error) effect (std. error) effect (std. error) effect
0.513*** 0.790*** 1.386***    1.473***
(0.079) (0.070) (0.096) (0.102)
2.161*** 1.522*** 2.088*** 2.344***
(0.081) (0.083) (0.138) (0.157)
1.039*** 0.653*** 0.231 0.334
(0.112) (0.105) (0.175) (0.213)
0.257* 0.025 0.290 0.382
(0.156) (0.118) (0.208) (0.271)

-0.257*** -0.734*** -0.350*** -0.071
(0.065) (0.066) (0.094) (0.100)

-6.290***
(0.515)

0.356*** 0.563*** 0.162* 0.197**
(0.065) (0.064) (0.092) (0.098)

-0.246*** -0.123 -0.036 -0.035
(0.089) (0.082) (0.110) (0.116)
0.563*** 0.542*** 0.519*** 0.654***
(0.091) (0.086) (0.128) (0.140)
-1.247 -0.655 -0.594 -0.585
(0.104) (0.106) (0.150) (0.183)

Number of Obs. 4898 4898 3634 3634
0.395 0.406 0.512 0.569
(0.031) (0.029) (0.030) (0.039)

Log L -1244.3 -1486.3 -773.0 -685.2

*** p-value less than .01
**  p-value less than .05
*   p-value less than .10

Random effects Probit regression results for each of the three treatments. The entry decision of subject i in period t is regressed
on dummy variables for the numbers received, the subject's and his opponent's last-period entry decision and whether the game
is in the first 10 or last 10 rounds of play.

Table 2

last10

constant

    ---     ---

-0.062

0.103

Enter i,t-1

subject17*Enter i,t-1

Enter -i,t-1

first10

C1.5

C2.5

C3.5

C4.5

0.000

0.000

0.000

0.000

0.000

0.009

-0.993

0.268

0.205 0.112

0.171

0.239

0.000

0.000

0.000

    ---

0.000

-0.190

    ---     ---     ---

0.000

0.088

-0.124

0.135

0.000

-0.078

0.088

0.139

0.587

0.221

0.055

ρ

The dependent variable is subject i's entry decision in period t.

Random Effects Probit Models for Entry Decisions in all 3 treatments
Treatment

AfterFixed NeverFixed AfterRandom

0.210

0.377

0.129



AfterFixed NeverFixed AfterRandom
c*=0.5 (always Enter) 8.5 (.137) 12.5 (.202) 10.5 (.228)
c*=1.5 9 (.145) 19.5 (.314) 17 (.370)
c*=2.5 38.5 (.621) 24 (.387) 17.5 (.380)
c*=3.5 4 (.064) 1 (.016) 0
c*=4.5 0 0 0
c*=5.5 (always Exit) 0 0 0
Enter in odd rounds 1 (.016) 3 (.048) 1 (.022)
Enter in even rounds 1 (.016) 2 (.032) 0
Total 62 (1) 62 (1) 46 (1)
experimental data
best-fitting strategies 0.06 0.08 0.05

probability Nash equilibrium strategy 0.32 0.26 0.21
of error randomly generated data

best-fitting strategies 0.32 0.25 0.22
Nash equilibrium strategy 0.33 0.25 0.22

Number (fraction) of subjects whose best-fit strategy based on their decisions from rounds
11-70 corresponds to the one indicated. The average error rates from classifying subjects
according to these inferred strategies and from the assumption that all subjects are playing 
the Nash equilibrium are shown along with the average error rates for randomly generated data.

Table 3
Strategy Inference Results by Treatment
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Round A B 10A 10B A B 30A 30B A B 8A OppB
1 4 5 Exit Enter 3 5 Enter Enter 3 5 Enter Enter
2 3 4 Enter Enter 1 2 Exit Exit 1 2 Enter Exit
3 3 5 Exit Enter 2 1 Enter Exit 2 1 Exit Enter
4 4 2 Enter Exit 5 4 Exit Enter 5 4 Enter Enter
5 2 4 Exit Enter 5 1 Enter Exit 5 1 Enter Exit
6 1 3 Enter Exit 4 3 Exit Enter 4 3 Enter Enter
7 3 3 Exit Enter 1 5 Enter Enter 1 5 Exit Enter
8 1 2 Enter Exit 2 5 Exit Enter 2 5 Exit Enter
9 1 3 Exit Enter 3 2 Enter Exit 3 2 Enter Enter
10 4 4 Enter Enter 1 3 Exit Enter 1 3 Exit Enter
11 1 5 Exit Enter 2 3 Enter Enter 2 3 Enter Enter
12 2 2 Enter Exit 3 2 Exit Exit 3 2 Enter Enter
13 2 1 Exit Exit 5 4 Enter Enter 5 4 Enter Enter
14 4 2 Enter Enter 4 2 Exit Exit 4 2 Enter Enter
15 2 2 Exit Exit 2 2 Enter Exit 2 2 Exit Enter
16 1 5 Enter Enter 4 3 Exit Enter 4 3 Enter Enter
17 5 2 Enter Enter 1 4 Enter Enter 1 4 Exit Enter
18 2 4 Exit Enter 1 1 Enter Exit 1 1 Exit Exit
19 1 3 Exit Enter 5 3 Enter Enter 5 3 Enter Enter
20 3 4 Enter Enter 1 1 Enter Exit 2 5 Exit Enter
21 4 4 Enter Enter 5 4 Enter Enter 5 5 Enter Enter
22 4 4 Enter Enter 5 1 Enter Exit 5 3 Enter Enter
23 3 3 Enter Enter 4 5 Enter Enter 5 3 Enter Enter
24 3 2 Enter Exit 5 2 Enter Exit 4 3 Enter Enter
25 2 4 Enter Enter 1 4 Exit Enter 1 1 Exit Exit
26 1 4 Exit Enter 5 3 Enter Enter 2 4 Enter Enter
27 4 3 Enter Enter 4 5 Enter Enter 4 4 Enter Enter
28 3 5 Enter Enter 3 4 Enter Enter 3 5 Enter Enter
29 1 2 Exit Enter 3 5 Enter Enter 4 4 Enter Enter
30 2 1 Enter Exit 4 2 Enter Enter 1 4 Exit Enter
31 5 4 Enter Enter 2 4 Enter Enter 3 2 Enter Exit
32 5 1 Enter Exit 1 3 Exit Enter 3 1 Enter Exit
33 4 3 Enter Enter 3 3 Enter Enter 1 5 Exit Enter
34 1 5 Exit Enter 1 2 Exit Exit 5 5 Enter Enter
35 2 5 Exit Enter 1 3 Exit Enter 5 2 Enter Exit
36 3 2 Enter Exit 4 4 Enter Enter 3 1 Enter Exit
37 1 3 Exit Enter 1 5 Enter Enter 3 2 Enter Enter
38 2 3 Exit Enter 2 2 Enter Exit 5 4 Enter Enter
39 3 2 Enter Exit 2 1 Enter Exit 4 2 Enter Enter
40 5 4 Enter Enter 4 2 Enter Exit 4 4 Enter Enter
41 4 2 Enter Exit 2 2 Exit Enter 3 4 Enter Enter
42 2 2 Exit Exit 1 5 Exit Enter 3 3 Enter Enter
43 4 3 Enter Enter 5 2 Enter Exit 5 5 Enter Enter
44 1 4 Exit Enter 2 4 Enter Enter 1 2 Exit Exit
45 1 1 Exit Exit 1 3 Exit Enter 3 2 Enter Enter
46 5 3 Enter Enter 3 4 Enter Enter 1 1 Exit Exit

Table 4

AfterRandom
NumbersNumbers

AfterFixed NeverFixed
PlayersPlayers

Decisions and Errors by Strategy for a Pair of Subjects in each Treatment

Numbers Players



47 2 5 Exit Enter 2 5 Enter Enter 5 4 Enter Enter
48 5 5 Enter Enter 5 5 Enter Enter 5 1 Enter Enter
49 5 4 Enter Enter 5 3 Enter Enter 4 5 Enter Enter
50 2 5 Enter Enter 5 3 Enter Enter 5 2 Enter Enter
51 1 5 Exit Enter 4 3 Enter Enter 1 4 Enter Enter
52 2 3 Enter Enter 1 1 Exit Exit 5 3 Enter Enter
53 1 3 Exit Enter 2 4 Enter Enter 4 5 Enter Enter
54 4 1 Enter Exit 4 4 Enter Enter 3 4 Enter Enter
55 5 3 Enter Enter 3 5 Enter Enter 3 5 Enter Enter
56 5 3 Enter Enter 4 4 Enter Enter 4 2 Enter Exit
57 4 3 Enter Enter 1 4 Enter Enter 2 4 Enter Enter
58 1 1 Exit Exit 3 2 Enter Exit 1 3 Exit Enter
59 2 4 Enter Enter 3 1 Enter Exit 3 3 Enter Enter
60 4 4 Enter Enter 1 5 Exit Enter 1 2 Enter Exit
61 3 5 Exit Enter 5 5 Enter Enter 1 3 Exit Enter
62 4 4 Enter Enter 5 2 Enter Exit 4 4 Enter Enter
63 1 4 Exit Enter 3 1 Enter Exit 1 5 Enter Enter
64 3 2 Enter Enter 3 2 Enter Exit 2 2 Enter Enter
65 3 1 Exit Exit 5 4 Enter Enter 2 1 Exit Exit
66 1 5 Exit Enter 4 2 Enter Exit 4 2 Enter Exit
67 5 5 Enter Enter 4 4 Enter Enter 2 2 Enter Enter
68 5 2 Enter Enter 3 4 Enter Enter 1 5 Exit Enter
69 3 1 Exit Exit 3 3 Enter Enter 5 2 Enter Enter
70 3 2 Enter Exit 5 5 Enter Enter 2 4 Enter Enter
71 5 4 Enter Enter 1 2 Exit Exit 1 3 Exit Enter
72 4 2 Enter Enter 3 2 Enter Exit 3 4 Enter Enter
73 4 4 Enter Enter 4 4 Enter Enter 4 4 Enter Enter
74 3 4 Enter Enter 4 4 Enter Enter 4 4 Enter Enter
75 3 3 Enter Enter 5 4 Enter Enter 5 4 Enter Enter
76 5 5 Enter Enter 2 5 Exit Enter 2 5 Enter Enter
77 1 2 Enter Enter 1 5 Exit Enter 1 5 Enter Enter
78 3 2 Enter Enter 2 3 Enter Enter 2 3 Enter Enter
79 1 1 Enter Enter 1 3 Enter Enter 1 3 Enter Enter
80 5 4 Enter Enter 4 1 Enter Enter 4 1 Enter Enter

(rounds 11-70)
c=0.5 23 16 12 19 13
c=1.5 11 8 9 12 6
c=2.5 10 5 16 2 9
c=3.5 15 18 26 14 21
c=4.5 26 32 34 30 33
c=5.5 37 44 48 41 47
Enter Odd rounds 37 28 26 21 29
Enter Even rounds 23 32 34 39 31
minimum errors 10 5 9 2 6

The entry and exit decisions for one pair of subjects in each of the treatments. For each of the cutoff
and alternating strategies, the number of incorrectly classified decisions are displayed at the bottom,
with the number of errors for the best-fit strategy in boldface. The column "OppB" represents the
decisions of subject 8A's randomly changing opponents in the AfterRandom  treatment. 

errors by strategy




