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Abstract. Many authors have documented that it is challenging to explain

exchange rate fluctuations with macroeconomic fundamentals: a random walk

forecasts future exchange rates better than existing macroeconomic models. This

paper applies newly developed tests for nested model that are robust to the

presence of parameter instability. The empirical evidence shows that for some

countries we can reject the hypothesis that exchange rates are random walks.

This raises the possibility that economic models were previously rejected not

because the fundamentals are completely unrelated to exchange rate fluctuations,

but because the relationship is unstable over time and, thus, difficult to capture

by Granger Causality tests or by forecast comparisons. We also analyze forecasts

that exploit the time variation in the parameters and find that, in some cases,

they can improve over the random walk.
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1. Introduction

Are exchange rates really random walks? It is well known that the proportion of exchange

rate fluctuations that current economic models can predict is essentially zero. This fact was

first noticed by Meese and Rogoff (1983a,b and 1988), who found that a random walk model

forecasts exchange rates better than economic models.1 Furthermore, the subsequent liter-

ature showed that the forecasting success of these models typically requires regular updates

of model specification and parameter estimates and the most successful set of explanatory

variables depends upon the sample period (see Meese (1990)). The conclusion drawn from

the literature was that economic models were completely useless for explaining exchange

rates dynamics. But is it really so?

An alternative explanation of this puzzling evidence is the presence of parameter insta-

bility. In fact, parameter stability is desirable in order to obtain good forecasts. Recent

research by Stock and Watson (1996, 1999, 2003) finds convincing evidence that parameter

instability is a widespread phenomenon in the empirical analysis of time series data, espe-

cially in monetary aggregates and interest rates. The result is robust to different choices of

tests and the good forecasting ability of some economic variables seems to be casual across

time periods and across countries.

The contribution of this paper is to address the problem of model selection between

economic models of exchange rate determination and the random walk in the presence of

parameter instability. Tests for model selection fail to detect parameter instability, and tests

for parameter instability are not designed to choose between nested models. Out-of-sample

tests, instead, are a robust method to choose between two models in the presence parameter

instability. However, if the issue is to test whether exchange rates are random walks, then

one could use optimal tests along the lines proposed by Rossi (2005), which provides optimal
1Meese and Rogoff compared out-of-sample forecasts, which are forecasts constructed on the basis of

actual (future) values of the explanatory variables, rather than forecasted values of the explanatory variables.

Rolling forecasts are forecasts made on the basis of the most recent fraction of the observations available in

the sample size. Thus, in order to make rolling forecast, one has to re-estimate (i.e. update the estimate of)

the parameter vector for every forecast.
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tests for nested model selection in the presence of parameter instability. The optimal tests

jointly test for both parameter instability and a null hypothesis on the parameters, and

apply to situations in which one is interested not only in whether the explanatory variables

proposed by some economic model are statistically significant in explaining the observed

data, but also in whether this relationship is stable over time.2

This paper provides empirical evidence on parameter instability in models of nominal

exchange rate determination. Interestingly, for some currencies, optimal tests that are robust

to parameter instability do reject the hypothesis that the random walk is the best description

of the data. This would explain why, although economic models exploits the information

contained in other economic series, they nevertheless do not forecast better than a random

walk. We also explore whether it is possible to improve the forecasts by explicitly taking

into account the presence of parameter instability. To this purpose, we compute forecasts

of both a random walk time-varying parameter model (as in Stock and Watson (1996)) and

those of Elliott’s (2005) forecast combination method in the presence of a single break. We

find that, in some cases, taking time-variation in the parameters into account is capable of

improving forecasts relative to the random walk.

In a recent and very much related paper, Clark and McCracken (2002) have also discussed

the issue of the relationship between model selection and forecasting in the presence of

parameter instability. They too note that in-sample predictive ability need not imply out of

sample predictive ability, and the cases in which they differ may be explained by the presence

of parameter instability. In fact, they examine the power properties of out of sample tests

relative to Granger Causality tests and conclude that out of sample predictive ability is

harder to find because it depends on the timing of the structural break, whereas in-sample

Granger Causality is easily found if predictive ability existed in any portion of the sample.

Their empirical results on interest rate spreads and stock prices for GDP growth nicely

complement the results in this paper, showing that structural breaks can account for out of
2Of course, forecasting tests are useful even if both models are mis-specified and are powerful in detecting

more general forms of mis-specification than those addressed in this paper. Thus, it must be kept in mind

that the tests proposed in this paper are useful within the model selection context for which they are designed.
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sample forecasting failure in other economic situations. It should also be stressed that the

use of in-sample and out of sample tests have different goals. Out of sample tests are likely to

be useful in situations where the researcher is interested in comparing forecasting ability and

dynamic mis-specification may be allowed under both the null and the alternative hypothesis

(see Corradi and Swanson (2001 and 2002) and Chao, Corradi and Swanson (2001)). In-

sample tests like those used in this paper may shed light on the causes of poor out-of-sample

forecasting ability of economic models. Another related paper is Inoue and Kilian (2002),

which analyzes instead the relationship between forecasting and Information Criteria in the

possible presence of structural breaks.

This paper is organized as follows. The next section discusses the motivation of the paper,

Section 3 presents the tests considered in this paper, Section 4 presents the empirical results,

Section 5 explores whether time-variation in the parameter can be used for forecasting, and

Section 6 concludes.

2. Motivation

The question of whether existing models of nominal exchange rate determination are

a good description of the empirical data is of considerable practical and policy interest.

Notwithstanding the huge literature, reviewed by Frankel and Rose (1995) and Meese (1990),

the issue is far from settled, although the prevailing view is that the answer is no. A

related problem of models of nominal exchange rate determination is their embarrassing

poor forecasting ability in out-of-sample forecasting experiments, especially relative to the

random walk model (see Meese and Rogoff, 1983(a,b)). In fact, the random walk model is

not an economic model and, thus, it is worrisome that it forecasts better than economic

models. The question addressed in this paper, then, is whether the presence of parameter

instability can explain the poor out of sample forecasts of the economic models.

To be concrete, let a researcher be interested in testing whether the exchange rate is a

random walk (and thus its rate of growth, call it x1,t, is unpredictable) against the possibility

that x1,t can be explained by the lagged values of the rates of growth of some fundamentals,

x2,t−1. For example, Meese and Rogoff (1988) consider the Real Interest Rate Parity Con-

4



dition (RIPC),3 according to which the real bilateral exchange rate between two countries

should be explained by the lagged value of the real interest rate differential. Since a unit

root could not be rejected at conventional significance levels in any of the variables, Meese

and Rogoff (1988) estimated the regression in first-difference form. In their analysis, thus,

x1,t is the rate of growth of the real exchange rate and x2,t−1 is the rate of growth of the

interest rate differential lagged one period. These authors then were interested in comparing

the following two models:

Model 1 : x1,t = ²t

Model 2 : x1,t = x2,t−1β + ²t

where ²t is unforecastable, “Model 1” is the random walk and “Model 2” is the economic

model (the RIPC in this example).

Testing in-sample whether the exchange rate in levels is a random walk, then, implies

testing whether β equals zero versus the alternative that the parameters are different from

zero.4 An in-sample likelihood ratio test could then be used. But if the test does not reject

the null hypothesis, so that β is not significantly different from zero, can we conclude that

the random walk is really the best description of the data?

Looking more carefully into Meese and Rogoff’s (1988) results, we find overwhelming

evidence of parameter instability. In fact, a Chow test for a structural break at the time

of the Reagan election widely rejects the null hypothesis of no structural break (see Meese

and Rogoff (1988), Table II). Motivated by the presence of parameter instability, Meese and

Rogoff (1988) conclude that the in-sample tests are not reliable, and use instead out-of-

sample forecast comparisons. In fact, it is commonly argued that out of sample tests are

robust to the presence of parameter instability, as the parameters are re-estimated over time.
3The reason why the example is in terms of real exchange rates whereas the rest of the paper is about

nominal exchange rates is the following. Meese and Rogoff (1988) contains an illuminating discussion about

why out-of-sample tests are used rather than in-sample tests, and it is nicely linked to parameter instability.

This provides an intuitive motivation for this paper. However, the most famous Meese and Rogoff puzzle

deals with nominal exchange rates, so the present paper is about nominal exchange rates.
4Recall that x1,t is the rate of growth of the exchange rate, so that if β = 0 then the rate of growth is

unpredictable and, thus, the exchange rate in levels is a random walk.
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The out of sample forecast comparison, however, still turns out to favor the random walk.

In no case the economic models do better than the random walk in terms of point forecasts,

and the random walk is also significantly better in some cases. The same results occur in

Meese and Rogoff (1983a,b).

However, since the data suggest that the relationship between the real exchange rate and

the fundamentals is very unstable over time, the true comparison that the researcher should

be doing is between the following two models:

Model 1 : x1,t = ²t

Model 2 ’ : x1,t = x2,t−1βt + ²t

where the notation βt emphasizes that the parameter is time-varying. Thus, the random

walk model really imposes two restrictions, namely that the parameters are constant over

time (βt = β∗, say) and that they equal zero (β∗ = 0). Rossi (2005) proposes an in-sample

test for this joint hypothesis that has optimal properties and that can be used in this context.

The next section describes this test more in detail, along with the other tests used in this

paper to shed some light on the relationship between exchange rates and fundamentals.

3. The tests considered in this paper

In this paper, we are concerned about testing an hypothesis on a parameter vector as

well as testing parameter instability. When the alternative hypothesis of interest are either

the former or the latter, then optimal tests are available. In the latter case, optimal tests

for parameter instability that can be used when the break date is unknown are the tests

proposed by Andrews and Ploberger (1994), Andrews (1993) and Nyblom (1989). In the

former case, a Likelihood Ratio test on the parameter vector is optimal.

However, when both hypothesis are of interest then considering separately tests for para-

meter instability and Likelihood Ratio tests is not sufficient anymore. Out-of-sample tests

have been used in the empirical literature to deal with the problem of testing whether a

given theoretical model is a good description of the observed data when there is an under-

lying problem of parameter instability. These tests can be robust to parameter instability
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because they use rolling or sequential methods to recursively estimate the parameters. They

also can detect model mis-specification because they compare the average squared forecast

errors of the unrestricted model with that of the restricted model.

Even if out-of-sample tests can potentially detect both model mis-specification and para-

meter instability, their asymptotic local power is not the highest for the joint null hypothesis

of interest. Rossi (2005), instead, identifies a class of tests that are optimal, in the sense

of having the highest asymptotic local power against both parameter instability and a null

hypothesis on the parameters.

In this paper we will thus consider the following tests, each of which focuses on a well-

specified null hypothesis discussed here below. Let β be the parameter vector, and βj denote

a subset of the parameters.

A. Likelihood Ratio Test (LR): βj = 0 for some (or all) parameters (forgetting about

possible time-variation in the parameters).

If all the coefficients are statistically insignificantly different from zero then the funda-

mentals are not good explanatory variables for the exchange rate. The LR test is the main

model specification test usually considered in the literature for comparing nested models.

The p-values are obtained by the asymptotic distribution of the test, which is χ2p, where p

(the numbers of degrees of freedom) corresponds to the number of restrictions.5

B. Tests for time-varying parameters (TVP test): βtj constant over time (i.e. βtj = β∗j ,

for some β∗j constant but unknown and unspecified) for some (or all) βtj

The tests for time-varying parameters are the Quandt (1960) Likelihood Ratio (QLR)

test developed by Andrews (1993), denoted by QLRT , the Andrews and Ploberger (1994)

Exponential-Wald and Mean-Wald tests, respectively denoted by Exp-W T and Mean-W T ,

and the Nyblom (1989) test, denoted by NyblomT . The p-values reported for these tests are

obtained by linear interpolation from a simulation of 5,000 Monte Carlo replications over a

dense grid.

C. Optimal tests for model specification and time-varying parameters: βtj = 0 for some
5P-values are obtained by a linear interpolation from existing tables.
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(or all) βtj.

These tests are the optimal tests discussed in Rossi (2005): the optimal Andrews and

Ploberger (1994) Exponential and Mean Wald tests, Exp−W ∗
T andMean−W ∗

T , the optimal

Andrews’ QLR test, denoted by QLR∗T , and the optimal Nyblom (1989) test, denoted by

Nyblom∗T . The p-values reported for these tests are obtained by linear interpolation from a

simulation of 5,000 Monte Carlo replications over a dense grid.

D. Out-of-sample tests: E (MSFEm −MSFErw) = 0
Out of sample (hereafter oos) tests are constructed in two stages. In the first stage, the

parameters of the model are estimated in a fraction of the sample; in the second stage, the

estimates are used to forecast the value of the dependent variable (the nominal exchange

rate) one period ahead into the future in the remaining part of the sample. To evaluate the

relative forecasting performance of two models, we use their Mean Square Forecast Errors

(MSFE). The MSFE is the average of the squares of the difference between the forecast and

the true value of the dependent variable over the forecasting sample. This paper focuses on

whether the fundamentals (plus the constant and possibly lagged values of the dependent

variable) are useful predictive variables for the dependent variable. Hence, the test compares

the MSFE of the unrestricted estimated model (MSFEm) to the MSFE of the restricted

model under the null hypothesis that all (or a subset of) the coefficients are equal to zero

(MSFErw). The out-of-sample tests considered here are the Diebold and Mariano (1995)

test and the Clark and McCracken (2001) ENC-NEW test, denoted respectively byDMT and

ENCT . The first one is provided here because it is commonly used in the literature, but it

is not appropriate in our case since the models are nested (see McCracken (1999) and Clark

and McCracken (2001)). The ENC-NEW test is designed specifically for nested models.

Depending on whether the parameters are (i) estimated only once and then held fixed for all

subsequent forecasts; (ii) estimated recursively by using all the available data at the time of

the forecast; (iii) estimated recursively by using only the most recent observations; then the

out-of-sample tests will be called: (i) split, (ii) recursive or (iii) rolling. The p-values reported

for the DMT test are obtained by noting that, according to Diebold and Mariano (1995), the

squared statistic is asymptotically χ21. However, unless very special circumstances occur (e.g.
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the fraction of the sample used for forecast validation is very small relative to the fraction

used for parameter estimation, and forecasts are one-step ahead), the correct test statistic

when models are nested is ENCT ; since the ENCT test has non-standard critical values (see

Clark and McCracken (2001)), we do not report its p-value but instead use superscript to

denote whether it is significant at conventional (10%, 5% and 1%) critical values.6

4. The empirical application to models of nominal exchange
rates

We use monthly data from Datastream, from March 1973 to December 1998.7 The

Appendix contains a complete description of the data. The model is the simple monetary

model considered by Meese and Rogoff (1983a). It explains the bilateral nominal exchange

rate fluctuations between two countries by the difference between their real outputs, nominal

money supplies and nominal short-term interest rates. All the variables have stochastic

trends (according to the Phillips-Perron test for unit root). To ensure stationarity, we will

consider the rate of growth of these variables, calculated as first differences of logarithms.

In particular, the regression functions considered involve the following variables: (a) the

first difference of the logarithm of the bilateral, end of period, nominal exchange rate; the

bilateral exchange rates considered are those of Canada, France, Germany, Italy and Japan

versus the United States; (b) the first difference of the logarithms of the money (and output)

ratios of the two countries considered, with the convention that the US variable is in the

denominator; (c) the first difference of the difference between contemporaneous short term

interest rates of each country relative to the United States.

Let’s introduce some notation in order to describe the models considered in this section.
6Note that the Diebold and Mariano test does not take parameter estimation error into account whereas

West (1996) does. We do not report the latter, as its validity, like that of the Diebold and Mariano test, is

restricted to non-nested models. There are many other “out of sample” tests, such as Chao, Corradi and

Swanson (2001) and Corradi and Swanson (2002) that are not investigated here.

7Results for the sub-sample considered by Meese and Rogoff (1983a), that is from March 1973 to June

1981, lead to similar conclusions.
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Let et denote the rate of growth of the nominal exchange rate, mt denote the rate of growth

of the money ratio, yt denote the rate of growth of the real output ratio and it denote the

first difference of the difference between the two countries nominal, short-term interest rates.

Let’s call “fundamentals” all the variables (in growth rates) that, according to the monetary

model, are explanatory variables for the exchange rate, that is mt, yt, and it collectively

considered.

In this paper we consider the relationship between the nominal exchange rate and lagged

fundamentals. This is different fromMeese and Rogoff (1983a), who analyzed the relationship

between the nominal exchange rate and contemporaneous fundamentals, but closer in spirit

to Stock and Watson (2003) and the recent forecasting literature (Clark and McCracken

(2002)). The regressions are the following:

et = β1t−1 + β2tet−1 + β3tmt−1 + β4tyt−1 + (ARX(1))

+β5tit−1 + ²t

et = β1t + β2tet−1 + β3tet−2 + β4tmt−1 + β5tyt−1 + (ARX(2))

+β6tit−1 + β7tmt−2 + β8tyt−2 + β9tit−2 + ²t

et = β1t + β2tet−1 + ²t (AR(1))

et = β1t + β2tet−1 + β3tet−2 + ²t (AR(2))

where the parameters are possibly time-varying and thus are indexed by t. The models

“AR(1)” and “AR(2)” are univariate, respectively first and second order, autoregressive

models for the rate of growth of the nominal exchange rate. The models “ARX(1)” and

“ARX(2)” (where “X” means that the autoregression is augmented with exogenous variables)

analyze the relationship between the rate of growth of the exchange rate and the rate of

growth of its lagged fundamentals, adding also lagged values of the dependent variable in

order to deal with possible serial correlation of the error term. The first considers only

one lag, the second two lags. Since there is empirical evidence that exchange rates are

conditionally heteroskedastic, all tests use robust estimates of covariance matrices.
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INSERT TABLE 1

Table 1 shows the results for the autoregressive models. According to the LRT test, the

lagged values are significant in some cases. Overall, there is no evidence of parameter insta-

bility and the optimal tests do not reject the random walk model even if, in some instances,

the out of sample ENCT tests find that the random walk model forecasts significantly better

than the autoregressive models.

Tables 2 and 3 show the results for the ARX(1) and ARX(2) models. Notice that the

in-sample Likelihood Ratio test, LRT , here compares the economic model with the random

walk (because the exchange rate is in first difference). For most currencies, the likelihood

ratio test does not reject the null hypothesis that all the parameters in the model are jointly

equal to zero at 5% significance level, especially if only one lag is selected. That is, this

test does not reject the random walk model. Independent tests for parameter instability

find some evidence of parameter instability, especially if one considers the ARX(2) model,

or the QLR test. So the economic model should have poor forecasting ability and, in fact,

the out of sample rolling test results show that the economic model’s forecasts are not better

than those of the random walk, and sometimes significantly worse. However, the optimal

tests reject the random walk model for some currencies at the 10% significance level for the

ARX(1) model and especially for the ARX(2) model. This means that, even if in-sample

the random walk model is not rejected, the random walk model is not a good description of

the data.

However, notice also that, when the optimal tests reject the null hypothesis, this does

not mean that the economic model is a better description of the data than the random

walk. It is only possible to conclude that there is some relationship between the exchange

rate and its fundamentals, but it is not stable over time. This is especially evident if one

looks at the optimal tests on fundamentals only, reported in the right panel of the tables,

which compare the ARX(1) and ARX(2) economic models with, respectively, univariate

autoregressive processes of order one and two for the exchange rate. The results uncover the

time-varying relationship and attribute it to the relationship between the fundamentals and

the exchange rate. The temporal evolution of the parameter values on lagged fundamentals
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for the ARX(2) case (estimated recursively on a rolling window of about half of the sample

size) is depicted in Figure 1. Similar, unreported tests on the parameters on the lagged

exchange rate only do not find evidence of a time-varying relationship.

INSERT TABLES 2 AND 3, AND FIGURE 1

In conclusion, the empirical analysis shows that there does not seem to be a stable

Granger Causality relationship between the rate of growth of the exchange rate and its

fundamentals, and this shows up in bad forecasts if one uses economic models to infer

future values of the exchange rate. In general, the oos tests show that the economic model

does not deliver significantly better forecasts than the simple random walk model (or the

univariate autoregressive models). However, in some cases, the optimal tests do reject the

null hypothesis that the random walk is a better description of the data than the economic

model, and these correspond the situations in which there is parameter instability in the

data.

5. Forecasting in the presence of time-varying parameters

In the previous section, we found that there does not seem to be a stable relationship

between the exchange rate and the fundamentals. An interesting question is then whether it

is possible to improve the out-of-sample forecasting performance of the monetary model by

using time-varying parameter estimation techniques. Existing results in the literature show

that regime-switching models are still unable to beat a random walk (cfr. Engel (1994) and

Marsh (2000)), whereas time-varying parameter models have been shown to outperform the

random walk (cfr. Wolff (1987) and Schinasi and Swami (1989)). Additional evidence comes

from Wright (2004), who finds that combining model’s information may, in some circum-

stances, provide better forecasts than a random walk. As discussed in Timmermann (2005),

one of the possible reasons why forecast combinations work is the presence of structural

breaks. Related to this point, Elliott (2005) proposes a new forecast combination method

which explicitly takes into account the presence of parameter breaks.
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In what follows, we will thus consider whether taking into account the possibility that

parameters may be time-varying or the existence of possible breaks in the parameters is

capable of improving forecasts relative to the random walk. As in Stock and Watson (1996),

we will consider a random walk coefficient time-varying parameter model with various degree

of coefficient evolution:8

et = βtft + ²t,

βt = βt−1 + ηt,

where ηt ∼ iid(0,λ2σ2Q), E(ηt²t) = 0 ∀t, k and Q = E (ftf
0
t)
−1. We estimate the model

by using the Kalman filter, initializing the models by using a diffuse prior (β0 = 0 and a

state covariance matrix set to vI where v is large). Also, as in Stock and Watson (1996),

we consider various possible values for λ (0.0025, 0.005, 0.0075, 0.01, 0.015, 0.02), and select

both the value of λ and the lag length (for a maximum lag length of 2) that maximizes the

conditional predictive least square criterion.9

We also consider Elliott’s (2005) method, which explicitly takes into account the existence

of breaks in the forecasting procedure. Since the time of the break is unknown, he proposes

to compute forecasts at every possible break date, and then average them by using some

weighting function. The weighting functions considered here are either equal weights, or

weights like those proposed by Andrews and Ploberger (1994), that are the smallest for each

end of the sample and largest in the center.

The results are reported in Table 4. The table reports, for each country, the Root

Mean Squared forecast Error (RMSE) of the random walk (RMSErw) along with that of

the sequential, rolling and split-sample recursive estimation techniques (respectively labeled

RMSEseq, RMSEroll, RMSEsplit), that of Elliott’s (2005) averaging technique (with ei-

ther Andrews and Ploberger’s (1994) weights, labeled RMSEAPw , or equal weights, labeled

RMSEEQw ), and that of the random walk TVP model (labeled RMSEtvp). In parentheses,

we report p-values of the Diebold and Mariano’s (1995) test for equal predictive ability, and

superscripts “1”, “5” and “10” denote rejections at 1%, 5% and 10% when using the Clark
8See also Stock and Watson (1998).
9We checked the robustness of the results to a larger grid of values for λ.
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and McCracken’s (2001) ENC-NEW test. In this exercise we consider the AR(1), AR(2),

ARX(1) and ARX(2) models described in Section 4 for all the estimation methods above

except for the random walk TVP model, whose specification and lag length is recursively

chosen over time according to the conditional predictive least square criterion.

A few interesting conclusions emerge from the analysis. While, overall, the random walk

still performs better the other estimation procedures, still the random walk TVP estimation

method is better for Japan in all models, and Elliott’s (2005) method is at least as good

or even outperforms it for Canada, Germany and Japan in the AR(1) case, and Japan in

the AR(2) case. However, this difference is rarely statistically significant according to the

Diebold and Mariano (1995) test, although it is sometimes significant if one uses Clark and

McCracken’s (2001) ENC-NEW statistic (which is more appropriate since the models are

nested). We thus conclude that there is some room for improvement over a random walk

by using methods that estimate the evolution of the parameters over time, especially for the

Japanese data.

INSERT TABLE 4

6. Conclusions

Two models can be compared from the point of view of their in-sample fit or from

their forecasting performance. It is quite common, especially in empirical international

finance, that even if models fit reasonably well in-sample, their forecasting performance

is disappointing. Since Meese and Rogoff (1983a,b), many authors have documented that

it is challenging to explain exchange rate fluctuations with macroeconomic fundamentals:

a random walk model forecasts future exchange rates better than existing macroeconomic

models. Are the economic models useless then?

Interestingly, Meese and Rogoff (1988) also noticed the presence of widespread parameter

instability. This justifies their forecast-based model comparisons based on rolling out-of-

sample tests, which continuously update the estimates of the parameters. This paper revisits

the problem of comparing the monetary model of nominal exchange rate determination with
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the random walk in the presence of parameter instability. In some cases, even if out of sample

tests do not reject that the random walk forecasts better, the optimal tests do reject the

hypothesis that the random walk is the best description of the data. However, this does not

mean that the economic model is a better description of the data than the random walk. In

fact, these situations correspond to those in which there is parameter instability in the data.

This raises the possibility that, by carefully investigating the nature of parameter instability

and exploiting it, it may be possible to find that economic models may forecast better than a

random walk. We also analyzed whether this is the case in our database by estimating both

a random walk time-varying parameter model and a forecast combination method designed

to improve forecasts in the presence of a structural break, and we found that, in some cases,

the latter methods are capable of improving forecasts relative to the random walk.
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Table 1 : AR(1) and AR(2) models

AR(1), p=2 AR(2), p=3

Can. Fr. Ger. It. Jap. Can. Fr. Ger. It. Jap.

LRT 5.15 0.20 1.07 5.42 2.67 5.32 1.64 1.82 6.35 3.45

(0.07) (0.90) (0.58) (0.06) (0.26) (0.13) (0.65) (0.61) (0.07) (0.32)

TVP tests:

QLRT 4.07 6.96 5.51 8.90 1.62 6.55 9.05 7.76 10.03 3.86

(0.87) (0.46) (0.67) (0.25) (1.00) (0.73) (0.42) (0.58) (0.31) (1.00)

Exp-WT 0.63 1.18 0.73 1.82 0.26 1.86 2.45 1.99 2.26 0.77

(1.00) (0.73) (1.00) (0.44) (1.00) (0.68) (0.47) (0.63) (0.53) (1.00)

NyblomT 0.23 0.35 0.23 0.50 0.10 0.65 0.85 0.60 0.76 0.25

(1.00) (0.79) (1.00) (0.57) (1.00) (0.63) (0.41) (0.69) (0.49) (1.00)

Optimal tests:

Exp-W∗
T 3.29 1.32 1.56 5.35 1.71 4.51 2.95 3.10 5.99 2.40

(0.46) (1.00) (1.00) (0.12) (0.88) (0.45) (0.80) (0.77) (0.20) (1.00)

Mean-W∗
T 6.24 1.83 2.65 8.41 3.31 8.32 5.04 5.01 10.61 4.58

(0.39) (1.00) (1.00) (0.19) (0.84) (0.40) (0.81) (0.82) (0.19) (0.86)

Nyblom∗T 1.68 0.38 0.59 2.52 1.11 2.20 1.68 1.37 3.17 1.23

(0.33) (1.00) (0.85) (0.14) (0.56) (0.35) (0.53) (0.65) (0.15) (0.71)

QLR∗T 10.03 7.23 7.48 16.49 6.10 11.91 9.88 10.78 16.96 7.63

(0.45) (0.76) (0.73) (0.08) (0.86) (0.53) (0.73) (0.64) (0.16) (1.00)

Oos tests:

DMT split 0.87 1.38 -0.89 0.80 -0.53 1.97 1.91 -0.03 0.72 -0.64

(0.38) (0.16) (0.37) (0.42) (0.60) (0.04) (0.05) (0.95) (0.47) (0.52)

DMT recur 1.16 2.24 0.14 0.77 0.00 1.94 1.71 0.37 0.73 0.04

(0.24) (0.03) (0.90) (0.44) (0.95) (0.05) (0.07) (0.71) (0.47) (0.95)

DMT roll 2.15 1.77 0.93 0.60 0.39 2.29 1.74 0.79 0.75 0.41

(0.03) (0.07) (0.35) (0.54) (0.70) (0.02) (0.07) (0.43) (0.45) (0.68)

ENCT split 4.411 3.375 -0.30 10.551 10.171 -6.84 -2.29 -0.97 3.015 11.131

ENCT recur -0.48 -0.72 -3.44 2.855 9.551 -7.42 -5.52 -4.19 -4.14 10.361

ENCT roll -4.44 -1.70 -4.68 0.31 10.511 -10.23 -7.48 -5.33 -6.79 10.93120



Table 2 : ARIMA(1,1,0) model

All coeff.: p=5 Subsets: p=4

Can. Fr. Ger. It. Jap. Can. Fr. Ger. It. Jap.

LRT 10.0 3.19 8 10.5 4.28 8.1 3.02 6.99 10.99 3.41

(0.06) (0.67) (0.16) (0.06) (0.51) (0.07) (0.55) (0.12) (0.03) (0.49)

TVP tests:

QLRT 12.9 19.9 16.3 12.2 11.9 12.9 19.6 17.1 11.7 12.3

(0.34) (0.04) (0.13) (0.4) (0.43) (0.23) (0.02) (0.06) (0.31) (0.26)

Exp-WT 3.03 6.55 4.36 3.31 3.88 2.98 6.43 4.3 3.41 4

(0.66) (0.07) (0.32) (0.58) (0.43) (0.5) (0.04) (0.21) (0.38) (0.25)

NyblomT 0.7 1.5 1.44 0.92 1.3 0.66 1.39 1.31 0.89 1.32

(1) (0.27) (0.3) (0.74) (0.41) (0.82) (0.2) (0.25) (0.58) (0.24)

Optimal tests:

Exp-W∗
T 8.24 7.45 9.97 9.87 5.4 7.35 7.3 9.1 9.92 5.12

(0.25) (0.36) (0.1) (0.11) (0.71) (0.22) (0.22) (0.08) (0.05) (0.56)

Mean-W∗
T 13.2 9.57 17.2 15.5 9.6 11.1 8.9 14.5 15.3 8.87

(0.36) (0.71) (0.12) (0.2) (0.71) (0.35) (0.57) (0.13) (0.11) (0.57)

Nyblom∗T 3.58 2.15 4.09 4.14 1.42 3.05 1.95 3.7 4.32 1.08

(0.3) (0.7) (0.2) (0.19) (1) (0.29) (0.61) (0.18) (0.11) (1)

QLR∗T 23.9 21.6 26.4 29.0 14.0 22.3 21.1 26.8 25.6 13.9

(0.12) (0.22) (0.07) (0.03) (0.76) (0.09) (0.13) (0.02) (0.04) (0.58)

Oos tests:

DMT split 1.14 1.91 0.47 0.29 0.57

(0.25) (0.05) (0.63) (0.77) (0.57)

DMT recur 1.37 1.31 0.73 0.41 0.12

(0.16) (0.18) (0.46) (0.68) (0.91)

DMT roll 2.08 1.13 0.25 0.47 0

(0.03) (0.26) (0.79) (0.63) (0.95)

ENCT split 6.181 -7.07 7.681 2.15 6.291

ENCT recur -0.22 -11.27 1.18 -3.26 11.44

ENCT roll -4.66 -12.52 0.26 -4.93 27.5721



Table 3 : ARIMA(2,1,0) model

All coeff.: p=9 Subsets: p=7

Can. Fr. Ger. It. Jap. Can. Fr. Ger. It. Jap.

LRT 16.3 7.11 12.3 11.9 16.5 14.0 5.53 10.7 11.1 14.3

(0.06) (0.63) (0.19) (0.22) (0.06) (0.05) (0.59) (0.15) (0.12) (0.04)

TVP tests:

QLRT 17.5 26.9 26.3 17.6 12.5 16.1 25.6 28.0 18.1 11.8

(0.45) (0.04) (0.05) (0.44) (0.86) (0.33) (0.02) (0.00) (0.19) (0.72)

Exp-WT 5.80 10.5 10.2 6.16 4.32 5.17 9.60 9.96 6.31 3.84

(0.56) (0.04) (0.05) (0.48) (0.85) (0.43) (0.02) (0.02) (0.23) (0.73)

NyblomT 2.02 3.18 3.65 2.03 1.46 1.65 2.37 3.22 1.69 1.38

(0.51) (0.07) (0.02) (0.50) (0.85) (0.46) (0.12) (0.02) (0.44) (0.66)

Optimal tests:

Exp-W∗
T 18.2 13.5 23.6 14.4 13.4 16.0 12.0 24.8 15.8 12.2

(0.03) (0.22) (0.00) (0.15) (0.23) (0.02) (0.15) (0.00) (0.02) (0.14)

Mean-W∗
T 30.0 21.4 33.1 24.0 24.4 25.0 16.7 27.6 21.2 22.1

(0.05) (0.38) (0.02) (0.22) (0.21) (0.06) (0.42) (0.02) (0.16) (0.12)

Nyblom∗T 5.93 5.29 6.33 5.03 5.53 5.45 3.68 4.83 4.92 5.51

(0.28) (0.39) (0.22) (0.44) (0.34) (0.20) (0.53) (0.29) (0.27) (0.19)

QLR∗T 44.9 32.8 56.7 35.8 31.10 41.0 30.2 60.3 38.6 28.0

(0.01) (0.19) (0.00) (0.11) (0.26) (0.00) (0.11) (0.00) (0.01) (0.18)

Oos tests:

DMT split 2.52 2.60 1.05 1.34 -0.62

(0.01) (0.00) (0.28) (0.17) (0.53)

DMT recur 2.10 1.89 0.93 1.29 -0.53

(0.03) (0.06) (0.35) (0.18) (0.59)

DMT roll 2.36 1.94 0.53 1.45 -0.26

(0.01) (0.05) (0.59) (0.13) (0.78)

ENCT split -9.76 -15.1 5.595 -11.2 6.765

ENCT recur -9.44 -15.4 -0.86 -13.9 10.51

ENCT roll -9.53 -12.9 2.21 -17.7 23.8122



Table 4: Forecasting with parameter evolution techniques

AR(1) AR(2)

Can. Fr. Ger. It. Jap. Can. Fr. Ger. It. Jap.

RMSErw .0129 .031 .0324 .0317 .0358 .0129 .031 .0324 .0323 .0358

RMSEseq .0131 .0313 .0324 .0318 .0358 .0133 .0315 .0325 .0327 .0358

(0.23) (0.02) (0.90) (0.855) (0.951) (0.05) (0.06) (0.71) (0.46) (0.941)

RMSEroll .0132 .0314 .0326 .0317 .036 .0135 .0317 .0327 .0327 .0361

(0.02) (0.06) (0.35) (0.90) (0.691) (0.01) (0.06) (0.42) (0.45) (0.681)

RMSEsplit .0131 .0314 .0323 .0319 .0356 .0136 .0317 .0324 .0327 .0356

(0.371) (0.165) (0.37) (0.631) (0.591) (0.03) (0.05) (0.94) (0.475) (0.511)

RMSEAPw .0129 .0311 .0324 .0319 .0355 .013 .0312 .0326 .0326 .0356

(0.911) (0.80) (0.94) (0.56) (0.361) (0.4710) (0.20) (0.42) (0.37) (0.591)

RMSEeqw .0129 .0311 .0324 .0319 .0355 .013 .0312 .0326 .0326 .0356

(0.911) (0.80) (0.94) (0.56) (0.361) (0.4710) (0.20) (0.42) (0.37) (0.591)

RMSEtvp .0131 .0318 .0326 .0322 .0357 .0131 .0318 .0326 .0327 .0357

(0.38) (0.01) (0.22) (0.21) (0.851) (0.38) (0.01) (0.22) (0.27) (0.855)

23



Table 4 (continued)

ARIMA(1,1,0) ARIMA(2,1,0)

Can. Fr. Ger. It. Jap. Can. Fr. Ger. It. Jap.

RMSErw .0129 .031 .0324 .0323 .0358 .0129 .031 .0324 .0323 .0358

RMSEseq .0132 .0316 .0327 .0325 .0359 .0136 .0322 .0329 .0329 .0355

(0.16) (0.17) (0.46) (0.63) (0.911) (0.03) (0.05) (0.35) (0.38) (0.591)

RMSEroll .0134 .0317 .0325 .0326 .0358 .0138 .0326 .0327 .0331 .0356

(0.03) (0.25) (0.78) (0.33) (0.951) (0.01) (0.05) (0.59) (0.21) (0.771)

RMSEsplit .0132 .0318 .0326 .0324 .0361 .0141 .0327 .033 .0328 .0355

(0.251) (0.05) (0.621) (0.81) (0.561) (0.01) (0) (0.285) (0.45) (0.525)

RMSEAPw .0131 .0315 .0326 .0324 .0367 .0132 .0319 .0327 .0324 .0373

(0.20) (0.43) (0.38) (0.76) (0.22) (0.10) (0.17) (0.425) (0.85) (0.06)

RMSEeqw .0131 .0315 .0326 .0324 .0367 .0132 .0319 .0327 .0324 .0373

(0.20) (0.43) (0.38) (0.76) (0.22) (0.10) (0.17) (0.425) (0.85) (0.06)

RMSEtvp .0131 .0318 .0326 .0327 .0357 .0131 .0318 .0326 .0327 .0357

(0.38) (0.01) (0.22) (0.27) (0.855) (0.38) (0.01) (0.22) (0.27) (0.8510)
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Notes to the tables.
Notes to Table 1. The table reports tests on all coefficients of an AR(1) (on the left) and

of an AR(2) (on the right) for bilateral nominal exchange rates (Canada (Can.), France (Fr.),

Germany (Ger.), Italy (It.) and Japan (Jap.) versus the U.S.). P-values in parentheses. For

the ENC-NEW test, superscripts 1, 5, 10 denote significance at 1, 5, 10%.

Notes to Table 2. The table reports tests on all coefficients (on the left) and those on

fundamentals (on the right) for bilateral nominal exchange rates (Canada (Can.), France

(Fr.), Germany (Ger.), Italy (It.) and Japan (Jap.) versus the U.S.). P-values are in

parentheses. For the ENC-NEW test, superscripts 1, 5, 10 denote significance at 1, 5, 10%.

Notes to Table 3. As per Table 2.

Note to Table 4. The table reports, for each country, the RMSE for the: random walk

(RMSErw), sequential (RMSEseq), rolling (RMSEroll), split-sample (RMSEsplit), Elliott’s

(2005) averaging with either Andrews and Ploberger’s (1994) weights (RMSEAPw ) or equal

weights (RMSEEQw ), and the random walk TVP model (RMSEtvp). P-values of the Diebold

and Mariano’s (1995) test are in parentheses, and superscripts “1”, “5” and “10” denote

rejections at 1%, 5% and 10% when using the Clark and McCracken’s (2001) ENC-NEW

test.
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