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Abstract

We measure the reduction in realized portfolio risk that can be achieved by allowing

for volatility spillover in forecasts of equity covariance. The conditional second moment

matrix of equity returns for pairs of major European equity markets is estimated via two

asymmetric dynamic conditional correlation models (A-DCC): the unrestricted model

includes volatility spillover e¤ects and the restricted model does not. Data are daily

returns on the London, Frankfurt and Paris equity market price indices synchronized at

London 16:00 time. Covariance forecasts from the restricted and unrestricted models are

combined with assumed expected returns to compute e¢ cient three-asset portfolios (two

equity indices and the risk-free asset). The impact of expected return choice on out-

of-sample portfolio e¢ ciency is minimized via the polar co-ordinates method of Engel

and Colacito (2004), which allows expected equity returns to span all relatives. Out-

of-sample realized portfolio returns and variances from e¢ cient portfolios are computed

and tested. Allowing for volatility spillover e¤ects produces small, statistically signi�cant

reductions in portfolio risk. Portfolio standard deviations for the unrestricted model are

at most one per cent smaller than standard deviations for restricted models. Signi�cant

risk reductions persist across daily, weekly, and monthly rebalancing horizons. Tests for

second degree stochastic dominance indicate that realized returns from portfolios based

on the volatility spillover model would be preferred by risk averse agents.



1. Introduction

A key ingredient in successful portfolio selection is an accurate prediction of covariance

between asset returns. Better forecasts of second moments mean lower portfolio volatility,

which bene�ts investors. However volatility patterns in �nancial time series are complex,

and forecasters face the challenge of �nding parsimonious, positive de�nite and stationary

models of time-varying covariances, while still accounting for the salient features of the

data.

Empirical studies of time-varying second moments are plentiful but fewer studies

actually measure how much investors might pro�t from improved predictions. Whether

realized portfolio e¢ ciency is improved by a new approach to covariance forecasting seems

an obvious question, and also suggests a method of forecast evaluation. Consequently,

the aim of this study is to incorporate recent advances in volatility modelling into simple

portfolios, and quantify how much bene�t �ows to investors.

We focus on volatility spillover, that is the transmission of turbulence from market

to market. Volatility spillover occurs when changes in price volatility in one market

produce a lagged impact on volatility in other markets, over and above local e¤ects. Such

patterns appear to be widespread in �nancial markets. There is evidence for spillovers

between equity markets (see for example Hamao, Masulis and Ng 1990 and Lin, Engle and

Ito 1994), bond markets (Christiansen 2003), futures contracts (Abrhyankar 1995, Pan

and Hsueh 1998), exchange rates (Engle, Ito and Lin 1990, Baillie and Bollerslev 1990),

equities and exchange rates (Apergis and Rezitis 2001), various industries (Kaltenhauser

2002), size-sorted portfolios (Conrad, Gultekin and Kaul 1991), commodities (Apergis

and Rezitis 2003), and swaps (Eom, Subrahmanyam and Uno 2002). Despite the interest

that investors might have in these pervasive spillover e¤ects, we are not aware of any

study that explicitly measures their importance for e¢ cient asset allocation. It therefore

is natural to ask whether including spillover e¤ects in covariance forecasts will generate

signi�cantly lower realized portfolio variance.

An important �rst step towards answering this question is to construct covariance

models which comprehensively capture the data while isolating the impact of volatility
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spillover. In this study, investors hold mean-variance portfolios allocated among the risk-

free asset and equities in two major European stock markets.1 Consequently, portfolio

construction depends on forecasts of the bivariate conditional covariance matrix of stock

market returns. To isolate the impact of volatility spillover on portfolio e¢ ciency, we

estimate nested forecasting models of returns volatility via (scalar) versions of the Asym-

metric Dynamic Conditional Correlation (A-DCC) model (Cappiello, Engle and Sheppard

2004) over the �rst part of the data. The benchmark (restricted) model thus captures

time-varying volatility and correlation, including asymmetric e¤ects, but omits volatility

spillover terms, which are then added to the unrestricted model. 2

The second step is to make one�, �ve-, and twenty-step-ahead forecasts of condi-

tional covariances over remaining data and calculate optimal portfolio weights at each

forecast. Mean-variance portfolio weight calculations depend on expected returns as well

as expected covariances, and it is well known that out-of-sample portfolio performance

is often degraded by a poor choice of expected returns. A new approach, developed by

Engel and Colacito (2004), o¤ers a method for minimizing the impact of expected return

choice on out-of-sample portfolio e¢ ciency. In a two-asset portfolio, relative, rather than

absolute, returns matter to optimal portfolio weighting, thus by computing weights for

all possible returns ratios, one can identify the e¤ects of covariance forecasting separately

from returns forecasting. We employ the Engle and Colacito approach in order to better

isolate volatility spillover e¤ects from the in�uence of expected returns.

Finally, from optimal weights we compute realized portfolio returns and variances,

and then test any advantages of the volatility spillover formulation over the benchmark.

Section 5 below reports standard deviations of optimal portfolio returns, Diebold and

Mariano (1995) tests of forecasting performance, and gives evidence of signi�cant second

degree stochastic dominance among portfolios via a time-series adaptation of the Barrett

1Equity returns are proxied by the daily change in the FTSE 100 (London), DAX 30 (Frankfurt) and
CAC 40 (Paris) price indices, in US dollars (USD). All price indices are synchronized at London 16:00
time and the estimation sample runs from 2 June 1992 to 28 December 2001, with remaining observations
saved for forecasting. A fuller description is given in section 5.

2Volatility asymmetry was �rst introduced to the �nancial literature by Black (1976), and has since
become a well-documented feature of volatility patterns hence a failure to account for asymmetries may
result in distorted estimates of volatility spillover. See, for example, Nelson (1991), Koutmos (1992), and
Poon and Taylor, (1992).
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and Donald (2003) tests.

To summarize results, estimation of the benchmark and alternative A-DCC models

indicates signi�cant volatility spillover e¤ects from Paris and Frankfurt to London, and

from Frankfurt to Paris. Parameter estimates from London to the other markets are

positive, but have large standard errors. Tests of realized portfolio returns show that

accounting for volatility spillover makes a small but signi�cant di¤erence to portfolio

e¢ ciency, generating less portfolio risk for a given return than the benchmark model.

The e¢ ciency gains arising from modelling volatility spillover range from a 0.2 to 1 per

cent reduction in portfolio standard deviations. In terms of a portfolio returning 10

per cent per year, this represents a risk-adjusted improvement of at most 0.1 per cent.

However tests of forecasting performance con�rm that risk reductions are statistically

signi�cant at all forecasting horizons. In addition, stochastic dominance tests point to

signi�cant improvements in investor utility arising from volatility spillover predictions for

investors in two of the three possible equity pairings.

Overall, the impact of volatility spillover may not be large by commercial standards,

but it is statistically signi�cant, and since including volatility spillover e¤ects in the

portfolio selection process does not incur any additional transactions costs, even small

gains represent improvement to investors.

The next section (Section 2) reviews some of the relevant features of volatility spillover

literature. The benchmark and alternative models and estimation method are described

in Section 3. Portfolio construction is developed in Section 4. Section 5 presents an outline

of the data and estimated parameters, followed by tests comparing the performance of

portfolios constructed from the benchmark and volatility spillover models. Section 6

concludes.

2. Literature Review

Interest in volatility spillovers across international equity markets intensi�ed after the

October 19, 1987 stock market crash when a sharp drop in the US equity markets ap-
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peared to have a widespread �domino e¤ect�across international markets. In an attempt

to explain this, King and Wadhwani (1990) put forward a �market contagion�hypoth-

esis, arguing that stock price turbulence in one country is partly driven by turbulence

in other countries, beyond the in�uence of �fundamentals�. Identifying and testing the

transmission of turbulence between markets has been the focus of the volatility spillover

literature.

Early studies on volatility spillovers typically focus on developed country equity mar-

kets, and the transmission of volatility from larger to smaller country markets in partic-

ular. For example, unidirectional volatility spillovers from US markets to the UK and

Japan, and the UK to Japan, are found by Hamao, Masulis and Ng (1990), while Theo-

dossiou and Lee (1993) argue for additional transmissions from the US market to Canada

and Germany.

Further, the large-small country e¤ect appears to be mirrored within equity markets on

a �rm-size level. Studies document volatility spillover from large to small �rms (Conrad,

Gultekin and Kaul 1991, and Reyes 2001), although bad news may cause spillover in the

reverse direction as well (Pardo and Torro 2003).

More recent studies investigate spillover e¤ects between developed and emerging mar-

kets, and among emerging markets themselves. A typical �nding (see, for example, Wei

et al, 1995) is that volatility transmits from developed to emerging markets, and that the

smaller, less developed markets are likely to be more sensitive to transmitted shocks.

Geographic locality, regardless of market size, is also likely to be a factor in volatility

spillover. Bekaert and Harvey (1997) are able to distinguish between local and global

shocks, studying volatility spillovers across emerging stock markets. Regional factors are

important for Paci�c Basin markets, over and above the world-market e¤ects of spillovers

from the US (Ng 2000). In a related study, Miyakoshi (2003) goes further, arguing that

regional e¤ects are stronger than world market in�uence for markets in the Asian region.

Europe represents a particularly interesting geographic area for volatility spillover

studies since it encompasses a number of developed markets with common economic and

�nancial features, and overlapping trading hours. Thirteen European markets and the
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US are studied by Baele (2003), who decomposes volatility spillovers into country speci�c,

regional and world shocks. (The model also allows for regime switches in the spillover

e¤ects.) Both regional and world e¤ects are reported as signi�cant. Further, spillovers

appear to have intensi�ed over the 1980s and 1990s, with a more pronounced rise among

European Union (EU) markets. In a related study, Billio and Pelizzon (2003) �nd that

volatility spillovers to most European stock markets from both the world index and the

German index have increased since the European Monetary Union (EMU) came into

e¤ect.

The importance of regional spillovers for Europe is not restricted to equity markets.

Testing for volatility spillover e¤ects in European bond markets, Christiansen (2003) �nds

evidence of spillover from both the US and Europe to individual country�s bond markets.

The European volatility spillover e¤ects are stronger than the US volatility spillovers in

bond markets as in equity markets.

An important methodological issue for transmission studies is whether volatility spillovers

can be identi�ed separately from lags in information transfer due to non-overlapping trad-

ing hours between markets. For example, in the foreign exchange market Engle, Ito and

Lin (1990) investigate volatility spillovers across Tokyo and New York for the Yen/USD

exchange rate. Since these two markets trade a common security, but operate in di¤erent

time zones, the authors argue for a �Meteor Shower�e¤ect, whereby surprises in one mar-

ket while the other is closed show up as soon as the second market opens. In addition,

by studying open-to-close against close-to-open equity returns, Lin, Engle and Ito (1994)

�nd that shocks to New York daytime equity returns are correlated with overnight Tokyo

returns and vice versa. In the latter case they conclude that information revealed during

the trading hours of one market has a simultaneous impact on the returns of the other

market. Thus these two studies exemplify the need distinguish between contemporane-

ous shocks that appear lagged because of staggered trading hours, and real-time lead-lag

e¤ects between security markets (Martens and Poon 2001).

To summarize, existing empirical research provides ample evidence of volatility spillovers

both across and within equity markets. Our choice of markets (London, Frankfurt and
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Paris) facilitates investigation of larger-smaller market e¤ects,3 and the interesting intra-

regional in�uences which appear to be strengthening in Europe. In addition, we restrict

the study to synchronous price observations, avoiding the confusion which can arise from

trading lags. As well as estimating volatility spillover e¤ects in the A-DCC framework,

the remainder of this paper addresses the issue of how important these volatility spillovers

are for mean-variance investors. The next section describes the benchmark (no volatility

spillover) and alternative (volatility spillover) models used for forecasting volatilities and

computing optimal portfolios.

3. Model Speci�cation and Estimation

To e¤ectively identify volatility spillover e¤ects, other features of time-varying second

moments should be well modelled in both the restricted and unrestricted models, since

failure to properly capture other features may lead to biases in estimated coe¢ cients

and poor forecasts. The bivariate M-GARCH models set out in this section capture

time-varying volatility and asymmetric e¤ects while also allowing correlations between

security returns to vary over time. At the same time, the tendency to long-run stationarity

is captured via variance targeting. Models are built over pairs of equity market returns

series, London-Frankfurt, London-Paris, and Frankfurt-Paris.

Initially, two variance equations are formulated for each market return series in

Glosten Jagannathan and Runkle (GJR) (1,1,1) form, one with, and one without, volatil-

ity spillover e¤ects. Hence the variance equations are similar to GARCH (1,1) processes

with the addition of an asymmetry term. (Asymmetry refers to the observed tendency of

�nancial markets to respond more to negative than positive price shocks, with volatility

more likely to increase in the face of bad news.) Estimates of conditional standard devia-

tions generated by these variance equations are then used to standardize the (demeaned)

data and then to estimate conditional correlation matrices,4 as scalar asymmetric gener-

alizations of the Dynamic Conditional Correlation (DCC) model of Engle (2002). DCC

3The percentages of the world stock market capitalization attributed to the UK, France and Germany
as of January 1998 were 10.5%, 3.8% and 4.7% respectively, MSCI (1998).

4As in the two-step method of Engle and Sheppard (2001).
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models allow time-varying conditional correlations. The Asymmetric-DCC formulation

(described and applied recently in Cappiello Engle and Sheppard, 2004) goes a step fur-

ther by not only capturing symmetric responses of conditional correlation to volatility

shocks, but also increases in conditional correlations during periods of negative returns.

Finally variances and correlation estimates are combined to compute a multi-variate con-

ditional covariance matrix.

3.1 Model

Consider a vector of returns for two equity markets, rt = [r1t r2t]
0 such that

rt = c+ ut (1)

ut = Dt"t; (2)

where c is the unconditional mean vector of rt, Dt contains conditional standard devia-

tions on the main diagonal and zeros elsewhere, "t are the innovations standardized by

their conditional standard deviations, and 	t�1 represents the conditioning information

set at time t such that

"tj	t�1 � (0;Rt): (3)

Observe that the conditional correlation matrix of the standardized innovations isEt�1 ("t"0t) =

Rt:

The conditional covariance matrix for the returns vector rt can therefore be speci�ed

as

V ar(rtj	t�1) = V art�1(rt) = Et�1
�
(rt � c) (rt � c)0

�
= Et�1

�
Dt"t (Dt"t)

0�
= Et�1 [Dt"t"

0
tDt] ;

and since Dt is a function only of information at t � 1, one can write the conditional
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covariance matrix as

Ht � V art�1(rt)

= DtEt�1 ("t"
0
t)Dt (4)

= DtRtDt: (5)

With this structure in mind we turn to the elements of the Dt matrix, the conditional

standard deviations, where

Dt =

264 ph11;t 0

0
p
h22;t

375 : (6)

As outlined above, we use two di¤erent speci�cations of conditional variances to capture

the e¤ects of asymmetric dynamics and volatility spillover separately:.

1. Asymmetric GJR(1,1,1):

hii;t = ! + (�+ �It�1)u
2
ii;t�1 + �hii;t�1 (7)

where It =

8><>: 1 j ut < 0

0 j ut > 0
:

2. Asymmetric GJR(1,1,1) with volatility spillover:

hii;t = ! + (�+ �It�1)u
2
ii;t�1 + �hii;t�1 + 
u2jj;t�1 (8)

where It =

8><>: 1 j ut < 0

0 j ut > 0
and ii 6= jj:5

Next we model the conditional correlation matrix Rt following Cappiello, Engle and

Sheppard (2004). From (1) and (2) above, one can see that the standardized residuals

5Engle (2002) shows that a Bollerslev-Wooldridge (1992) covariance matrix gives consistent standard
errors for the estimates.
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can be calculated as

D�1
t ut = "t; (9)

where the elements of D�1
t have been derived from estimated equations for each of the

formulations for hii;t above. By using these standardized residuals we are able to estimate

a conditional correlation matrix of the form:

Rt = Q��1
t Qt Q

��1
t (10)

Qt = �Q(1� �� �)� ' �m+ �"t�1"
0
t�1 + 'mt�1m

0
t�1 + �Qt�1

where �; ' and � are scalar parameters. Q�
t =

�
q�ii;t
�
=
�p
qii;t
�
is a diagonal matrix

with the square root of the ith diagonal element of Qt on its ith diagonal position. The

vectormt = I ["t < 0]�"t (where � is the Hadamard product) isolates observations where

standardized residuals are negative. Notice thatQt resembles a GJR(1,1,1) process in the

standardized volatilities. Finally, we implement variance targeting, where �Q = 1
T

P
"t"

0
t

and �m = 1
T

P
mtm

0
t to enforce stationarity.

Combining estimates for (6) and (10) results in a conditional covariance matrix for the

returns vector rt which can be used, along with a vector of expected returns, to predict

optimal portfolio weights t periods ahead:

Ht = DtRtDt: (11)

3.2 Estimation Method

The model is estimated in two steps following Engle (2002). Assuming that the stan-

dardized residuals "t are conditionally normally distributed so that "tj	t�1 � N(0;Rt),

the log likelihood function for the vector of returns rt; can be expressed as

L = �1
2

TX
t=1

�
n log (2�) + log jHtj+ u0tH�1

t ut
�
: (12)

Now let the mean parameters, c; and the univariate GARCH parameters in Dt be

9



represented by  ; and the conditional correlation parameters inRt by �: The log likelihood

can be written as the sum of a volatility part and a correlation part:

L ( ; �) = LV ( ) + LC (�j ) ; (13)

where the volatility term is

LV ( ) = �
1

2

TX
t=1

�
n log (2�) + 2 log jDtj+ u0tD�2

t ut
�
; (14)

and the correlation component is

LC (�j ) = �
1

2

TX
t=1

�
�"0t"t + log jRtj+ "0tR�1

t "t
�
: (15)

The procedure is further simpli�ed by recognizing that the volatility part of the log

likelihood is just the sum of the individual univariate GARCH likelihoods:

LV ( ) = �
1

2

TX
t=1

nX
i=1

�
log (2�) + log (hi;t) +

u2it
hi;t

�
:

The two-step estimation method involves maximizing each univariate GARCH term

separately, standardizing the returns by estimated standard deviations and then jointly

estimating elements of Rt by maximizing the correlation component of the log likelihood

LC ( ; �) : We maximize log likelihoods numerically using the Max SQP procedure in

OX 3.4. This procedure implements a sequential quadratic programming technique to

maximise a non-linear function subject to non-linear constraints.6

Although the assumption of normality in "t is convenient for estimation, it is not nec-

essary for consistency, since quasi-maximum likelihood arguments apply as long as the

conditional mean and variance equations are correctly speci�ed ( Hamilton, 1994, p.126).

However the standard errors need to be adjusted according to the method described for

the univariate GARCH volatility equations. Standard errors for the correlation parame-

ters require a more complicated process explained in Engle (2002).

6See OX documentation for more information.

10



4. Portfolio Allocation

This study aims to measure the value of information on volatility spillover using simple

mean-variance portfolios. The individual variance formulations described by equations

(7) and (8), in combination with the A-DCC correlation estimates, generate two sets

of conditional covariance matrices for each pair of market returns,fH i
tg
2
i=1, where model

i = 2 includes volatility spillover e¤ects and model i = 1 does not. While these alternative

characterizations of volatility dynamics may be interesting in themselves, the economic

value of any covariance forecast ultimately shows up in better investment outcomes.

In the past, portfolio-performance-based tests have been constrained by the need

to simultaneously choose expected returns and variances, so that researchers have been

unable to isolate the impact of covariance prediction from mean prediction. However

recent work by Engle and Colacito (2004) outlines a method for �xing a range of assumed

returns (for a two-asset portfolio) which can isolate the value of covariance prediction

from return prediction. By applying their method to create portfolios from the A-DCC

models, we can test for the impact of volatility spillover on portfolio e¢ ciency without

jointly testing a hypothesis about expected returns.

This section outlines the portfolio allocation problem and the method for �xing port-

folio returns.

4.1 Minimum Variance Portfolios

The key feature of the original Markowitz (1959) model is a recognition that covariance

between security returns can be exploited to optimally reduce portfolio risk. The (myopic)

investor will choose portfolio weightings for each asset to minimize variance subject to a

required return.

min
wt
w0
tHtwt (16)

s:t: w0
t� = �o (17)
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which produces an optimal weighting vector of the form:

wt =
H�1
t �

�0H�1
t �

�o; (18)

where � is an assumed vector of expected returns to be described below, and �o is the

required rate of return to the portfolio, here set to unity. Ht is the expected (forecasted)

covariance matrix of returns. We forecast Ht and rebalance the portfolio on daily, weekly

(5 days) and monthly (20 days) basis, using the A-DCC models described above, testing

to see if the impact of volatility spillover tapers o¤ over longer rebalancing horizons.

Notice that (following Engle and Colacito 2004) we do not impose full investment

or short-sales constraints. Omitting these constraints implies, �rstly, that any wealth

not accounted for by wt will be invested in the risk-free (assumed zero return) asset,

and, secondly, that the weight vector may include negative values. A useful feature

of this choice of optimal weighting vector is that the required return is held �xed in

every portfolio, allowing direct comparison between alternative covariance predictions.

Consider the contrast between (18) and wT
t =

H�1
t �

�0H�1
t �

; the �tangency� portfolio. The

tangency portfolio is fully invested in risky assets, but does not hold required return

constant, so that comparisons between tangency portfolios depend on return to risk ratios.

By contrast, the weight vector in (18) allows us to compare portfolio standard deviations

without comparing returns.

It can be shown that, for a given required rate of return, the portfolio with the smallest

realized standard deviation will be the portfolio constructed from the most accurate

covariance forecast (Engle and Colacito 2004). So that if �� is the portfolio standard

deviation achieved using the true covariance matrix, and �̂ is the standard deviation

from an ine¢ ciently estimated covariance matrix, then �� will be less than for �̂; such

that
��

�o
<

�̂

�o
: (19)

Consequently, if including volatility spillover e¤ects improves conditional covariance fore-

casts then portfolios constructed from the better forecasts will have lower realized stan-
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dard deviations.

4.2 Expected Returns

Performance tests of mean-variance portfolios are typically joint tests of both expected

returns and variances,7 but our aim is to test the e¤ects of volatility spillover in isolation

from choices of expected returns. To get around the problem of jointly testing a speci�c

return prediction, we calculate portfolios for each A-DCC model over a complete range

of expected returns pairs. In a two-asset portfolio what matters to allocation is the

relative size of the elements of the expected returns vector. In fact, one can span all

possible relatives by choosing pairs of expected returns �=
�
sin �j

20
; cos �j

20

�
; where j 2

f0; :::; 10g : The resulting values (listed in Table 1 ) range from zero to one for each asset,

including a mid-point where the expected return of assets are equal. The next step is to

compute optimal portfolio weights for each of these eleven expected return pairs
�
�kt
	11
k=1

in combination with forecast covariance matrices, fH i
tg
2
i=1. If one conditional covariance

model performs better for all eleven expected returns relatives, we can be con�dent that

it is a better model for any choice of return.

7Earliest studies of mean-variance portfolio allocations use historical sample means as expected re-
turns, despite the fact that, for most �nancial data, they are measured with low precision. The �nely-
tuned optimisation process implied by (16) and (17) is, however, sensitive to small changes in input
vectors, and will amplify any measurement errors in predicted returns. Common responses to this prob-
lem include either imposing ad hoc constraints on the weights vector, or Bayesian adjustment of the
means and/or covariances according to a plausible prior (See Jorion 1985 and Connor 1997 for exam-
ples). Adjustments which moderate the di¤erences between individual asset returns tend to improve the
out-of-sample performance of optimized portfolios.
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Table 1: Pairs of Expected Returns

j µ(1) µ(2) θ

0 0.000 1.000 0
1 0.156 0.988 0.1
2 0.309 0.951 0.2
3 0.454 0.891 0.3
4 0.588 0.809 0.4
5 0.707 0.707 0.5
6 0.809 0.588 0.6
7 0.891 0.454 0.7
8 0.951 0.309 0.8
9 0.988 0.156 0.9

10 1.000 0.000 1

Nevertheless, a single summary measure is always useful. We create a single point

estimate of portfolio risk across all returns by combining these eleven di¤erent standard

deviations using the empirical Bayesian approach set out in Engle and Colacito (2004).

Brie�y, non-overlapping sample means (using 40 observations)
�
��l1; ��

l
2

	L
l=1

; are calculated

from the sample data for each market pairing. Any mean pair where either value is

negative is dropped, leaving a subset of size d = 1; :::D: From this sample we back out

D values of �d = 2
�
a cos

�
��2;dp

��22;d+��
2
1;d

�
and use these values of � to calculate maximum

likelihood parameters of the Beta distribution â and b̂. Finally, the empirical probability

of each pair of the eleven polar co-ordinate returns �k=
�
sin �j

20
; cos �j

20

�
can be inferred

by computing the value

Pr (� = �j) =
1

�

�â�1j (1� �j)
b̂�1R 1

0
tâ�1(t)b̂�1dt

:8 (20)

(where 1
�
is a normalizing constant) for each pair of markets.

Probability density functions for � computed from this procedure are graphed in

Figure 1, with all showing some skewness. Skewness in the distribution for the London-

Paris distribution, for examples, indicates that returns are likely to be higher in London

than in Paris. A similar observation applies to Frankfurt and Paris, with the London-

8Recall that Z 1

0

ta�1(t)b�1dt =
�(a)�(b)

�(a+ b)
:
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Frankfurt pair likely to be more equal. In each case, a most probable value for �, and

hence most probable expected returns relative is given by the maximum of the density

function. However, all but the most extreme values of � have some weight in the density,

and focusing on the most likely value may be misleading.

Figure 1: Probability Density Functions

0
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0.25
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uk-de uk-fr de-fr

Notes: Empirical Bayesian estimate of the probability of assumed expected returns such that
each pair is sin(�

2
�) and cos(�

2
�). Numerical values are listed in Table 1.

5. Empirical Results

In this section we report the main empirical results: �rstly the data and model estima-

tion results, then realized standard deviations for optimal portfolios over each market

pairing and speci�cation, forecasting one, �ve, and 20 days ahead. We go on to com-

pare the relative e¢ ciency of the volatility spillover model for each rebalancing horizon

by calculating portfolio standard deviations and testing for improvement using Diebold

and Mariano (1995) tests. Finally we extract portfolio returns for the one step ahead

forecasts and search for second degree stochastic dominance relations of the volatility

spillover speci�cation against the benchmark.

5.1 Data and Estimation

The data are daily returns computed from three major European stock market price in-

dices: FTSE 100 for London; DAX 30 from Frankfurt; and CAC 40 from Paris. Returns

are calculated as log di¤erences and do not include dividends. Trading hours for the Lon-
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don, Frankfurt and Paris stock exchanges overlap imperfectly, so to ensure synchronous

prices we take index values at London 16:00 time.9 The sample runs from 2 June 1992

to 4 February 2005.

The importance of synchronous data for studies of daily conditional correlation and

volatility spillover was pointed out by Martens and Poon (2001). Substantial mises-

timation of returns correlation and spillovers can result from a failure to account for

timing di¤erences at the daily level. Martens and Poon (2001) show that correlations

will be under-estimated, and estimated spillover patterns changed, if non-synchronous

daily data are used in correlation models. By synchronizing prices we ensure that esti-

mated spillovers and correlations more accurately expose real-time interactions, rather

than representing lags in information �ows, misalignments in trading, or mismatched

data collection.

In addition we assume that our investor uses a single currency to value portfolio

returns and take all values in US dollars. No currency hedging is implemented.

Key features of the data sample are reported in Table 2. Average returns are highest

for the DAX 30 index, which also displays the largest standard deviation and degree of

skewness. The FTSE 100 has annualized returns around two per cent lower than the

DAX 30 and the least variance of the three markets. All three daily returns series show

considerable non-normality manifested in negative skewness and excess kurtosis. Average

skewness is -0.11, and kurtosis, 5.35.

9Datastream supplies London 16:00 data for a group of major markets. Codes for the series described
here are FOOTC16(PI) , DAXIN16(PI), and CAC4016(PI).
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Table 2: Summary Statistics- Daily Stock Index Returns, % p.a.

FTSE 100 DAX 30 CAC 40

Mean 5.10 7.64 5.92
Median 6.71 21.25 12.28
Std. Dev. 18.35 25.23 23.02
Skewness -0.01 -0.23 -0.08
Kurtosis 5.42 5.70 4.92

Jarque-Bera 807.99 1031.18 512.68

Observations 3310 3310 3310

Notes: Daily returns calculated from price indices synchronized at London 16:00 time, 1 June
1992 to 4 February 2005. All indices are in USD, unhedged. Data supplied by Datastream.

Correlations shown in Table 3 are above 0.65, with the greatest correlation between

the two continental markets, Frankfurt and Paris, at 0.77.

Table 3: Sample Correlations - Daily Stock Index Returns

FTSE 100 DAX 30 CAC 40

FTSE 100 1.00
DAX 30 0.66 1.00
CAC 40 0.69 0.77 1.00

A graph of the daily returns in Figure 2 clearly shows clusters of volatility, where

groups of large or small changes persist for a number of periods. More frequent periods

of turbulence are evident since 1998 and volatility patterns are clearly related, as might

be expected among such closely-aligned equity markets.
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Figure 2: Daily Stock Index Returns, 2 June 1992 �4 February 2005.

1/06/1992 1/06/1994 1/06/1996 1/06/1998 1/06/2000 1/06/2002 1/06/2004

FTSE 100 DAX 30 CAC 40

Table 4 presents autocorrelation functions of squared returns series. One can see

that all three squared series are strongly autocorrelated with statistically signi�cant Q

statistics, calculated up to the �fth lag. Dependence in squared residuals is indicative

of autocorrelated volatilities and lends support to our earlier remarks about volatility

clustering.

Table 4: Autocorrelation Functions of Squared Daily Returns

ρ(1) ρ (2) ρ (3) ρ (4) ρ (5) Q(5)

Sqr(FTSE 100) 0.157 0.286 0.248 0.160 0.249 847.67
 Sqr(CAC 40) 0.151 0.230 0.146 0.175 0.128 478.33
Sqr(DAX 30) 0.164 0.241 0.195 0.174 0.158 589.19

Daily returns to the London, Frankfurt and Paris equity markets are highly correlated

and non-normal, exhibiting time-varying and inter-related volatility patterns.

5.2 Estimated Parameters

Table 5 reports estimates for a total of six bivariate A-DCC models: for each of the three

pairs of returns series (London-Frankfurt, London-Paris and Frankfurt-Paris) we compute

a benchmark without volatility spillover and an alternative with volatility spillover. The

models were estimated using the �rst 2500 observations of the 3310 size sample, leaving
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the remaining 810 observations for testing. The estimation period runs from 2 June 1992

to 28 December 2001, and predictive power for portfolio formation is tested over the three

years from 2002.

Parameter estimates and standard errors for the variance equations are reported in

the top portion of Table 5, and estimates of the parameters of the correlation matrices

in the lower portion.

Table 5: Parameter Estimates, A-DCC Models.

Parameter London-Frankfurt London-Paris Frankfurt-Paris

GJR (1,1,1) GJR (1,1,1)
Volatility
spillover

GJR (1,1,1) GJR (1,1,1)
Volatility
spillover

GJR (1,1,1) GJR (1,1,1)
Volatility
spillover

UK DE UK DE UK FR UK FR DE FR DE FR

ω 0.0261
(0.0141)

0.0256
(0.0125)

0.0272
(0.0125)

0.0253
(0.0146)

0.0261
(0.0141)

0.0243
(0.0156)

0.0228
(0.0116)

0.0263
(0.0236)

0.0256
(0.0125)

0.0243
(0.0156)

0.0256
(0.0138)

0.0286
(0.0179)

α 0.0196
(0.0136)

0.0466
(0.0148)

0.0001
(0.0155)

0.0476
(0.0163)

0.0196
(0.0136)

0.0240
(0.0083)

0.0047
(0.0126)

0.0209
(0.0109)

0.0466
(0.0148)

0.0240
(0.0083)

0.0466
(0.0169)

0.0032
(0.0092)

β 0.9237
(0.0263)

0.9189
(0.0188)

0.9082
(0.0292)

0.9158
(0.0206)

0.9237
(0.0263)

0.9409
(0.0188)

0.9163
(0.0257)

0.9366
(0.0278)

0.9189
(0.0188)

0.9409
(0.0188)

0.9189
(0.0189)

0.9328
(0.0226)

δ 0.0567
(0.0118)

0.0348
(0.0183)

0.0644
(0.0208)

0.0292
(0.0184)

0.0567
(0.0182)

0.0351
(0.0148)

0.0643
(0.0197)

0.0311
(0.0145)

0.0348
(0.0183)

0.0351
(0.0148)

0.0344
(0.0183)

0.0442
(0.0151)

γ 0.0186
(0.0076)

0.0074
(0.0184)

0.0147
(0.0083)

0.0114
(0.0105)

0.0001
(0.0092)

0.0198
(0.0088)

φ 0.0263 0.0255 0.0272 0.0270 0.0317 0.0336

η 0.9360 0.9363 0.9407 0.9417 0.9575 0.9552
ϕ 0.0178 0.0204 0.0060 0.0065 0.0192 0.0201

Notes: Standard errors in brackets. Estimated over 2500 daily returns, sampling 2/6/1992 �
28/12/2001.

All parameters have the (expected) positive sign. High levels of volatility persistence

are evident in all models with parameters on lagged variables summing to just below

one. Estimates from the benchmark model (GJR (1,1,1)) show asymmetry e¤ects (�) in

London and Paris but not Frankfurt. Furthermore, the asymmetric e¤ect is strongest

for the UK market, dominating the symmetric volatility shock component. In terms

of volatility spillover (
), we �nd signi�cant transmission from Frankfurt and Paris to

London, and from Frankfurt to Paris, so we observe that Frankfurt is una¤ected by lagged

news shocks from the other markets. Although all volatility spillover coe¢ cients are small

in magnitude, Frankfurt to Paris shocks are strongest. Estimates of volatility spillover

e¤ects from London to the continental markets are positive, but smaller and poorly

19



estimated. Graphs of estimated conditional variance series for the volatility spillover

model are presented in Figure 3.

Figure 3: Daily Conditional Variances, 2 June 1992 �28 December 2001.
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Notes: Conditional variances generated from Model 2, GJR(1,1,1) A-DCC.

Conditional variances con�rm earlier observations (Figure 2) that the three markets

have become increasingly volatile since early 1997, possibly in connection with the begin-

ning of the Asian crisis. The German market shows the most, and the UK market, the

least, volatility over the whole sample.10

Conditional correlation parameter estimates (�; �; ') for the benchmark and alterna-

tive models di¤er only slightly. This result should help us isolate the e¤ects of volatility

spillovers on the portfolio selection process. The Frankfurt-Paris combination displays the

most persistence in conditional correlations, con�rming our earlier observation that un-

conditional correlation is highest for this market pair. Asymmetric e¤ects in conditional

correlations are smaller than their symmetric counterparts in all three combinations, with

the London-Frankfurt pair exhibiting the largest asymmetric e¤ect and London-Paris the

smallest. Figure 4 below graphs the three estimated conditional correlation series.

10We note that daily returns to the DAX 30 have the largest unconditional variance of the three
indices.
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Figure 4: Daily Conditional Correlations, 2 June 1992 �28 December 2001.
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Daily conditional correlations generated from Model 2, GJR (1,1,1) A-DCC.

In preparation for computing optimal portfolios, these sub-sample models were fore-

cast forward over the remaining data. Predictions of covariances were made at one-step,

�ve-step and 20-step horizons to line up with daily, weekly and monthly forecasts. This

generates time series of two covariance matrices for each pair of markets
�
Hj
t

	2
j=1
at the

three forecasting horizons. In the next section we apply these predictions in computing

optimal portfolio weights and use a number of performance measures to compare the

volatility spillover formulation with the benchmark.

5.3 Portfolio Standard Deviations

Optimal portfolio weights
n
wi;k
t

o
; are based on predicted covariances fH i

tg
2
i=1 from the

benchmark and volatility spillover models and computed as the solution to the optimiza-

tion problem set out in (16) and (17) for two equity markets and the risk-free asset.

Portfolio returns at each forecasting horizon can be simulated using the remaining (810)

observations of the data set, where realized portfolio return is:

�i;kt = wi;k0
t rt: (21)

where i = 1; 2 corresponds to the benchmark and alternative portfolios and k indicates

the vector of expected returns.
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As outlined in Section 4, we expect the more e¢ cient covariance model to produce

a lower portfolio risk for the any speci�ed required return. (Here, �o = 1:) Standard

deviations for the benchmark and volatility spillover models are set out in Table 6 for

London-Frankfurt, Table 7 for London-Paris and Table 8 for Frankfurt and Paris. To

make comparison easier, we re-weight standard deviations so that the smallest standard

deviation at each value of k is set to 100. Less e¢ cient forecasts generate a higher portfolio

standard deviation and hence a value greater than 100. The �nal row in each table reports

a weighted average of the values in the column, where the weights are derived from the

relevant Bayesian distribution for theta. ( See Figure 1.) On a weighted average basis, the

volatility spillover model performs better than the benchmark at every forecast horizon,

and for all market pairs.

Table 6: Portfolio Standard Deviations, London - Frankfurt

One-step-ahead
forecasts

Five-steps-ahead
forecasts

20-steps-ahead
forecasts

j
GJR(1,1,1)

GJR(1,1,1)
VOLATILITY
SPILLOVER

GJR(1,1,1)
GJR(1,1,1)

VOLATILITY
SPILLOVER

GJR(1,1)
GJR(1,1,1)

VOLATILITY
SPILLOVER

0 100.00 100.26 101.53 100.00 100.00 100.15
1 100.00 100.29 100.62 100.00 100.00 101.15
2 100.50 100.00 100.00 100.26 100.04 100.00
3 100.80 100.00 101.37 100.00 100.32 100.00
4 100.10 100.00 100.29 100.00 100.19 100.00
5 100.01 100.00 100.53 100.00 100.70 100.00
6 100.15 100.00 100.56 100.00 100.02 100.00
7 100.31 100.00 100.34 100.00 100.39 100.00
8 100.55 100.00 100.43 100.00 100.89 100.00
9 100.79 100.00 101.67 100.00 100.20 100.00
10 100.99 100.00 101.98 100.00 100.33 100.00

100.28 100.00 100.98 100.00 100.57 100.00

Notes: Smallest portfolio standard deviation for each pair of expected returns is scaled to 100.
Values over 100 represent proportional increases in standard deviations. The �nal row is a
weighted average of the preceding rows where weights are the Bayesian probabilities reported

in Figure 1.
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Table 7: Portfolio Standard Deviations, London - Paris

One-step-ahead forecasts Five-steps-ahead forecasts 20-steps-ahead forecasts
j GJR(1,1,1) GJR(1,1,1)

VOLATILITY
SPILLOVER

GJR(1,1,1) GJR (1,1,1)
VOLATILITY
SPILLOVER

GJR(1,1,1) GJR(1,1,1)
VOLATILITY
SPILLOVER

0 100.09 100.00 105.54 100.00 103.08 100.00
1 100.00 100.07 103.49 100.00 101.89 100.00
2 100.21 100.00 100.03 100.00 100.06 100.00
3 100.74 100.00 100.00 101.97 100.00 100.77
4 100.44 100.00 100.19 100.00 100.41 100.00
5 100.18 100.00 100.60 100.00 101.28 100.00
6 100.34 100.00 100.09 100.00 101.14 100.00
7 100.41 100.00 100.00 100.01 100.40 100.00
8 100.54 100.00 100.00 102.01 100.00 100.57
9 100.74 100.00 100.00 103.27 100.00 101.40
10 100.94 100.00 100.00 103.75 100.00 101.93

100.41 100.00 100.35 100.00 100.36 100.00

Table 8: Portfolio Standard Deviations, Frankfurt-Paris

One-step-ahead forecasts Five-steps-ahead forecasts 20-steps-ahead forecasts
j GJR(1,1,1) GJR(1,1,1)

VOLATILITY
SPILLOVER

GJR(1,1,1) GJR(1,1,1)
VOLATILITY
SPILLOVER

GJR(1,1,1) GJR(1,1,1)
VOLATILITY
SPILLOVER

0 100.60 100.00 100.98 100.00 101.91 100.00
1 100.59 100.00 100.95 100.00 101.89 100.00
2 100.52 100.00 100.83 100.00 101.69 100.00
3 100.34 100.00 100.54 100.00 101.08 100.00
4 100.00 100.08 100.01 100.26 100.09 100.00
5 100.00 100.12 100.14 100.00 101.78 100.00
6 100.87 100.00 100.72 100.00 100.32 100.00
7 100.03 100.00 100.00 100.16 100.00 100.23
8 100.22 100.00 100.00 100.23 100.00 100.09
9 100.36 100.00 100.01 100.00 100.28 100.00
10 100.43 100.00 100.23 100.00 100.61 100.00

100.27 100.00 100.21 100.00 100.42 100.00

In terms of economic value the relative e¢ ciency gains are not large, but can be gotten

without additional transactions costs or rebalancing costs. The greatest e¢ ciency gain for

the volatility spillover model on a weighted average basis is for the 5-step ahead forecast

model for London-Frankfurt, where the benchmark model standard deviation is 100.98,

meaning that neglecting volatility spillover e¤ects increases portfolio risk by about one

per cent of standard deviation. Or, in terms of risk-adjusted returns, if investors who

allow for volatility spillover (��) are receiving 10 per cent returns (�� = 10), then investors

who forecast using the benchmark (�̂) would need to get �̂ = 10:098 per cent returns to
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equalize the return to risk ratio such that ��

�� =
�̂
�̂
. In other words, the e¢ ciency gains

to predicting covariance using the volatility spillover model represent risk-free return

improvements around 10 basis points on a ten per cent return portfolio. Nevertheless

these small e¢ ciency improvements do not disappear at longer forecast horizons, as can

be seen from weekly and monthly portfolio standard deviations.

5.4 Diebold-Mariano Tests

Tests of the statistical signi�cance of the e¢ ciency improvements attributable to mod-

elling volatility spillover con�rm the value of the alternative model over the benchmark.

To implement a test of forecasting accuracy, we calculate a series of di¤erences in port-

folio variances, subtracting the volatility spillover portfolio variance from the benchmark

portfolio variance so that

ukt =
�
�1;kt

�2
�
�
�2;kt

�2
; (22)

forming 11 series for each market pairing,
�
ukt
	K
k=1

: Following Engle and Colacito (2004),

we note that the null hypothesis in this test is that the mean of each u series is zero. We

conduct a joint test of this null hypothesis using a GMM estimate of the parameter �

from the regression Ut = �� + �t: We use k = 11 moment conditions, one for each
�
ukt
	
,

restricting the system to a single estimate of �: We report t-tests of the null hypothesis

that � = 0; using the robust Newey-West standard errors from the GMM estimation.

Results are given in Table 10 for each market pairing and forecast horizon. All reject the

null hypothesis and con�rm that portfolio variances are signi�cantly lower (since � > 0

in every case) when volatility spillover is modelled in the conditional covariance matrix.
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Table 10: Diebold Mariano Tests for Di¤erence in Portfolio Variance

1 step ahead 5 steps ahead 20 steps ahead
London-Frankfurt 0.0023

(2.2068)
0.1045

(5.1615)
0.2618

(10.0068)
London-Paris 0.0023

(2.2068)
0.0262

(3.6656)
0.0967

(3.7609)
Frankfurt-Paris 0.0042

(3.2277)
0.0079

(1.9606)
0.2293

(3.6127)

Notes: Table reports estimated values of � with t-statistics in brackets.

5.5 SD2 Tests

Here we implement tests for second-degree stochastic dominance to compare the perfor-

mance of benchmark and alternative models. Our aim is to assess whether improvements

measured by standard deviations are likely to matter to a risk averse investor.

Stochastic dominance tests o¤er a general, non-parametric addition to the set of per-

formance tests. Speci�cally, following Barrett and Donald (2003), consider two samples

of portfolio returns fYIgMI=1 and fXIgMI=1with cumulative distributions (CDFs) G and

F . Second degree stochastic dominance (SD2) establishes the conditions under which

any risk averse agent prefers one portfolio to another. Portfolio Y will be preferred to

portfolio X by any agent whose utility over returns U(r) obeys U 0(r) � 0, U 00(r) � 0

when
R r
o
G(t)dt �

R r
o
F (t)dt for all r.

Barrett and Donald derive a Kolmogorov-Smirnov style test for stochastic dominance

of any degree, evaluating the CDFs at all points in the support. This technique avoids

the problem of choosing an arbitrary set of comparison points which can result in incon-

sistency.11

The null hypothesis to be tested is that G (weakly) dominates F to the second degree,

against the alternative that it does not. From random samples of equal size, the test

statistic is given by:

Ŝ2 = (
M

2
)1=2 sup

r
(I2(r; ĜM)� I2(r; F̂M)); (23)

11To make the test tractable, each pairing of returns distributions was shifted to the right by the same
�xed positive amount, su¢ cient to ensure a lower bound of zero for a support r[0; ~r] where ~r <1:
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where

I2(r; ĜM) =
1

M

MX
i=1

1(Yi � r)(r � Yi); I2(r; F̂M) =
1

M

MX
i=1

1(Xi � r)(r �Xi);

and 1(�) is the indicator function, returning the value 1 when (Xi � r) and zero otherwise.

Under the null hypothesis, the test statistic is no greater than zero. Bald comparisons

between CDFs or their integrals are subject to non-trivial sampling error when the popu-

lation density is unknown, so we need some approximation to the sampling distribution,

here derived by block bootstrapping.

We follow Linton, Maasoumi and Whang (2002), and Lim, Maasoumi and Martin

(2004), and adjust the bootstrapping method to keep underlying serial dependence intact.

Block size is set at B = 28 where B = �
p
T ; � is a positive constant and T is sample

size, here 810.12 Each set of portfolio returns is divided into overlapping blocks of size B;

then a random selection is made, choosing su¢ cient (contemporaneous) blocks to create

a distribution of size T: Bootstrap samples are used to build an empirical distribution of

the test statistic.

Test results are reported only for the 1-step ahead forecasts since 5 and 20 step

forecasting generate samples too small for reliable testing. Of the k possible portfolios,

we select realized returns for the portfolios where expected returns to the two markets

were assumed to be equal, � = 5. Results in Table 11 show that the null hypothesis

that the benchmark model dominates the volatility spillover model can be rejected for

London-Paris and Frankfurt-Paris. In the London-Frankfurt case, no clear second degree

dominance ordering can be identi�ed. SD2 tests favour the volatility spillover model in

two out of three cases.
12Before forming the blocks, the returns from each portfolio are weighted to adjust for the number of

times they are sampled in the overlapping blocks. The weights follow the rule:

!t =

8<: t=B : t < B
1 : B � t � T �B + 1

(T � t+ 1)=B : T �B + 2 � t � T
;

where !t is the weight and B is block size.
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Table 11: Stochastic Dominance Relations, One-Step-Ahead Forecasts.

Null Hypothesis

Market
pairing

Volatility
Spillover

dominates
GARCH (1,1)

GARCH (1,1)
dominates
Volatility
Spillover

London
Frankfurt 0.82 0.11

London
Paris 0.95 0.06*

Frankfurt
Paris 0.72 0.03**

Notes: Bootstrapped P-values for tests of second degree stochastic dominance relations
between pairs of portfolio returns based benchmark and volatility spillover models, assuming
most probable expected returns. An asterisk indicates rejection at the 5 % (**) or 10 % (*)
level when the reverse null is not rejected. Failure to reject both nulls is inconclusive. Grey

shaded cells indicate pairings where the volatility spillover model is dominant.

6. Conclusions

Models of time-varying volatility have been introduced to the empirical �nance literature

over the past few decades with considerable success. While many of these models have

been shown to be succinct descriptions of second moments, their economic value to in-

vestors has sometimes been glossed over. This study presents a valuation of one aspect of

time-varying volatility, volatility spillover, from the perspective of an investor choosing a

two-asset equity portfolio from among equity markets in London, Frankfurt and Paris.

By studying the conditional second moments of the London, Frankfurt and Paris

equity markets in an A-DCC set-up, we isolate portfolio risk reductions that can be

attributed to correct modelling of volatility spillovers between these markets. Signi�cant

spillovers are estimated from Paris and Frankfurt to London, and from Frankfurt to Paris.

Frankfurt appears to be una¤ected by lagged volatility from the other markets.

Although relatively small in magnitude, volatility spillover estimation improves the

out-of-sample covariance forecasts and, consequently, portfolio performance. Standard
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deviations of realized portfolio returns are lower for volatility spillover models, across

all market choices and forecast horizons. Further, estimates of lower portfolio risk are

con�rmed by Diebold-Mariano tests, which show that reductions in portfolio risk in the

volatility spillover model are statistically signi�cant and do not disappear as the forecast-

ing horizon increases from daily to monthly. In addition, for London-Paris and Frankfurt-

Paris the distribution of realized portfolio returns from the volatility spillover model sto-

chastically dominate returns from the benchmark model according to Barrett-Donald

tests.

Failing to incorporate volatility spillover e¤ects in variance equations makes portfolio

standard deviations about one per cent higher. While such losses are not dramatic, they

could be eliminated without incurring higher rebalancing costs and without additional

portfolio risk.
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