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Package Sizes, Tariffs, Quantity Discount

and Premium

Abstract: We analyze nonlinear pricing problem under monopoly using two hidden

types of agents with linear demands and fully characterize all possible optimal solutions

for both ordered and non-ordered demands. We show that both optimal packages can

either contain Pareto-efficient quantities or one package can be undersized or oversized.

All these effects are non-degenerate and are expected to hold for nonlinear demands.

Surprisingly, the total output under nonlinear price discrimination with self-selection is

neither unambigously realted to efficiency nor to the degree of monopoly power (demand

elasticity). We also show that under limited range of parameters quantity premia can

occur only when demands are ordered.

Key Words: Principal-agent, self-selection, nonlinear pricing, package pricing, Pareto

efficiency
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Package Sizes, Tariffs, Quantity Discount and

Premium

I. Introduction

In this paper we analyze nonlinear pricing when a set of packages is used as self-

selection devices to identify hidden types of consumers by a monopolistic seller. Packages

are offered on take-it-or-leave-it basis. Hence, although consumers self-select the size

of their choice, the quantity contained in the package is non-negotiable. Because the

monopolist, a priori, cannot identify the hidden types of consumers, he must take into

consideration the so-called ‘incentive-compatibility’ and the ‘participation’ constraints in

designing the sizes and tariffs charged for different packages. Casual observation shows

that packages are quite prevalent for many types of goods and are offered in many sizes,

generally with differing tariffs, but sometimes the observed tariffs are the same.1

Broadly speaking, the pricing of packages is a nonlinear self-selection pricing problem.2

The problem of package pricing has been analyzed in the literature, but the analysis re-

mains mostly restricted to the case when consumer valuations (i.e., their monetary benefit

functions) are ordered. This assumption, sometimes named as Spence-Mirrlees-condition,

implies that the demand of one type of consumer is everywhere higher than the demand of

the other type. For this case the optimal package sizes can be obtained by using the ‘chain-

rule’ theorem (see Katz (1983)). Once the optimal sizes are determined, the tariffs can be

1Southwest Airlines occasionally runs a campaign, ‘companion flies free.’ Either a traveller can fly
alone or take a companion with her. The fares for both options are the same.

2For a recent comprehensive treatment of nonlinear pricing, see Wilson (1993). Tirole (1988) provides
some basic models of packages for both discrete and continuous types of consumers using mainly linear
demands.
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calculated from the respective demand curves. Chain-rule simplifies the solution struc-

ture considerably because each consumer ‘almost envies’ only his closest-lower-demand

neighbor and no one else and hence the incentive-compatibility constraints related only

to this neighbor’s package are binding. The standard result in this case is that, normally,

all low-demand consumers have too low consumption with zero consumer surplus, while

the highest demand consumer enjoys a positive consumer surplus by consuming a package

that is always Pareto-efficient (marginal valuation equals marginal cost).

Some seemingly counter-intuitive pricing strategies observed in real life cannot be

explained by the ordered valuations assumption. For example, in the airlines industry

in the US, frequently a round-trip ticket (a bigger package) is cheaper than one-way (a

smaller package). On the other hand, some foreign airlines often times offer one-way and

round-trip tickets at the same fare.3 In Japan soft-drink containers sold through vending

machines only are sometimes priced the same even though they contain different amounts

(different size packages). Actually different consumers do buy both smaller and larger

containers at the same price depending on their preferences. These observed, but not yet

explained, pricing practices have provided the main impetus to analyze this problem. Our

results provide some plausible economic rationale for such observed pricing practices.

We analyze package pricing in a more general setting and allow consumer-valuations to

be either non-ordered or ordered. Ordered valuations mean that the indifference curves of

consumers cross only once, the so-called “single-crossing property.” In terms of demand it

3The authors have personally encountered both situations. When the intended journey was only one-
way the authors bought the cheaper round-trip ticket in the US and did not use the return coupon of the
ticket. In the case of foreign travel when the fares were the same the authors bought only the one-way
ticket.
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is called the “non-crossing condition,” implying that the inverse demand functions do not

cross. In reality the demand functions would intersect; for instance, when the marginal

utility of consumers whose ‘choking price’ (the willingness-to-pay for an infinitesimal small

unit) is relatively high and decreases faster than that of another consumer whose choking

price is relatively smaller.4

In the non-ordered case, two different incentive-compatible and profit maximizing

packages offered to two types of consumers could simultaneously be Pareto-efficient and

first-best. This striking result shows that a monopolistic nonlinear price discrimination

practiced by using packages is compatible with allocative efficiency. In contrast, two-part

tariff and packages for all agents under ordered demands cannot contain quantities that are

all Pareto-efficient, except for some degenerate cases. Further, under a special condition

two different size packages containing Pareto-efficient quantities can have exactly the same

tariffs. This seemingly strange result is consistent with rational behavior of consumers

when they derive some disutility in buying additional quantity.

We also show that in a non-ordered case sometimes it may be profitable for the seller to

offer packages containing quantity exceeding the Pareto-efficient level (oversizing). This

seemingly odd result where the marginal cost exceeds the marginal payment is consistent

with optimizing behavior of the seller.5 When a package is oversized, the consumer

may choose not to buy the package. Thus, for an oversized package to be optimal for

4This seems to be the case with business and leisure travellers. The choking price for business travellers
is relatively high but their sensistivity to price is relatively low. On the other hand, the choking price for
leisure travellers is relatively low but they are more sensitive to price and their satiation level of quantity
is relatively higher. Thus the demand functions of these two types of consumers would interest at some
positive level of quantity. In real life one can find many situations where the two demands would cross.

5Katz (1984) also shows that some consumers may consume more than the first-best outcomes. How-
ever, his setting is different than ours in the sense that he allows consumer to purchase multiple packages.

4



the seller, an additional consideration whether a consumer has disutility or not becomes

quite important. Under linear pricing consumption is usually identified with the amount

purchased. Conceptually, this becomes questionable when a consumer buys a package on a

take-it-or-leave-it basis with some fixed quantity. For example, when a consumer’s demand

is satiable, (marginal valuation can either be zero or negative) but the fixed amount in the

package exceeds this satiation level, then whether or not a consumer can freely dispose

excess quantity bought becomes a crucial consideration. Oversizing of package happens

either for sufficiently large cost, or for no-free disposal situations.

Finally, there is a boundary case when the distinction between ordered and non-ordered

preferences disappears because most preferred (i.e., Pareto-efficient) quantities for both

types of consumers are exactly the same. For this boundary case, a single optimal package

offered to both types of consumers is Pareto-efficient. Obviously, the single tariff charged

will be the smaller of the two total willingness to pay.

These two effects, namely the efficiency effect and the same-tariff effect, arise only

under the non-ordered case. These new insights are contrary to the conventional wisdom

as they clearly demonstrate that the total output of an industry is neither unambiguously

related to its efficiency nor to its degree of monopolization. These effects are formally

shown for linear demands. But we show latter they are expected to hold even for broader

classes of nonlinear demand functions. The reason is that the domains of parameters yield-

ing these effects are solid sets. This convinces us that the domains of demand parameters

remain non-empty.

Generally, consumers who buy a larger package receive a quantity discount and pay a
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lower average price (total outlay divided by the total quantity). But it is also possible that

consumers buying a larger package also pay a quantity premium (higher average price).

Katz (1984), perhaps, was the first to show that quantity premia for ordered demands are

possible under nonlinear pricing. Gerstner and Hess (1987), using an inventory theoretic

approach reconfirm that quantity premia can exist, a result similar to Katz. They also

assume that consumer’s valuations are ordered (high and low). Can quantity premium

occur for non-ordered demands? We show that when demands cross, quantity premia

cannot exist. Moreover, even within ordered demands premia can occur only for a certain

range of parameters and we completely identify the range when two demands are linear.

By restricting our analysis to two types of consumers with linear or piece-wise-linear

demands, we are able to characterize completely all optimal solutions by deriving explicit

formulas under all possible combinations of exogenously given parameters. It turns out

that, depending on different assumptions, there could be as many as seven to ten different

types of solutions to the problem of package sizes. For each type of solution we derive the

corresponding domain of demand parameters.

The paper is organized as follows. Section 2 contains the problem formulation for

two-consumers with linear demands. In section 3, we present the main results followed by

a discussion of the results. Using graphical approach we further show that the qualitative

results are expected to hold under nonlinear demands as well. Section 4 focuses on

quantity discounts and premia. Section 5 summarizes the main findings. The Appendix

contains outlines of the proofs.6

6Detailed proofs can be obtained at www.math.nsc.ru/˜mathecon/kokovin.html
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II. Model

Consider a case when a monopolist sells a homogeneous good using two packages to

2 types of hidden consumers, who self-select the package of their choice. No consumer

can buy more than one package, and arbitrage is prevented. To simplify the analysis we

assume all consumers of a given type choose the same package.7 Under this setting it

is sufficient for the monopolist to design exactly 2 packages, though some of them may

be identical in size or contain quantity equal to zero. Let the total cost function C(x)

be linear (constant returns to scale) so that the marginal cost c is a constant. Let the

numbers of two types be m1 and m2 respectively; their ratio is denoted by γ = m2/m1.

We assume that the utility functions are quasi-linear and depend on quantity and tariff

(outlay), so no income effects are present. The valuation functions Vi(xi) of the two types

of consumers are quadratic (no-free disposal case) or piece-wise quadratic (free disposal

case). In the first case, the demand functions are linear everywhere; for the other case

they are piece-wise linear.

In the first case, valuation functions are: V1(x1) = a1x1 − b1x21/2, and V2(x2) =

a2x2 − b2x22/2 (with parameters ai, bi > 0). The corresponding inverse demand functions

are linear: p1 = a1 − b1x1 and p2 = a2 − b2x2. All possible situations depending on the

relative sizes of demands and cost can be characterized using seven parameters, namely

c, ai, bi,mi. But the same complete characterization can be obtained using only four

meaningful parameters as a result of simple normalization. In some cases, even only three

7This assumption simplifies matters, although, it may rule out some unusual optimal pricing policies.
Following another common convention, we suppose that among equivalent options, an agent chooses the
package preferred by the principal. It is reasonable because the principal may offer a small reward to the
consumer for such a behavior.
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parameters are sufficient. It is easy to see that in most cases only the triangles of the

two inverse demand functions that are above marginal cost are relevant for the optimal

solutions. Using this observation we normalize demands by converting one consumer’s

above-marginal-cost-demand-triangle into a standard simplex described below.

Denote α = (a2− c)/(a1− c) (when a2 ≤ a1 then α ≤ 1), and β = [(a2− c)/b2]/[(a1−

c)/b1]. Set the normalized net valuations as v1(x1) = x1−x21/2− c̄x1, and v2(x2) = αx2−

αx22/(2β)− c̄x2 and normalized cost c̄ = 0. If we normalize the first consumer’s choking-

price to be 1, then the corresponding first-best quantity for this consumer also becomes

1. Actually, the normalization (α, β), (1, 1) simply changes the units of measurements.

Net tariffs are denoted by ti and are related to initial gross tariff Ti = ti + cxi. One can

see that optimization in terms of normalized parameters is equivalent to the optimization

under the initial terms.8 Therefore, without any loss of generality and for notational

simplicity, from the very beginning we can assume net valuations as v1(x1) = x1 − x21/2,

and v2(x2) = αx2 − αx22/(2β). Further among different cases relating (α, β) to (1, 1) we

consider only those cases when α ≤ 1. The opposite case when α > 1 can be considered

by simply renumbering consumers and renormalizing.

Formally, in terms of net tariffs the package-optimization problem for two consumers

can be formulated as follows.9

π(x, t)/m1 = t1 + γt2 → max
x,t

s.t. (1)

v1(x1)− t1 ≥ 0; x1 ≥ 0
8Optimization with respect to gross and net tariffs is equivalent. For a formal proof see our paper

(2001)
9Gross tariffs Ti = ti + cxi and can be easily obtained from the solution.
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v2(x2)− t2 ≥ 0; x2 ≥ 0

v1(x1)− t1 − v1(x2) + t2 ≥ 0; t1 ≥ 0

v2(x2)− t2 − v2(x1) + t1 ≥ 0; t2 ≥ 0 (2)

The above formulation has four constraints: two incentive-compatibility and two par-

ticipation constraints. When an incentive-compatibility constraint vi(xi)−ti ≥ vk(xk)−tk,

is active, then, following Wilson (1993), it can be interpreted as consumer i almost ‘en-

vying’ consumer k’choice (i→ k), implying that if her tariff were to be raised she would

switch. The second type of constraints vi(xi)−ti ≥ 0, usually named as participation con-

straints, state that any consumer has an option not to buy any package. In another paper

(2001) we prove that one consumer will always buy a package containing Pareto-efficient

quantity, so at the optimal solution, at most, three constraints can be binding.

III. Main Results

We now present the results for both no-free and free disposal cases. In explaining

some special cases our analysis assumes that there is at least an infinitesimally small

transaction cost to the seller. Our immediate goal is to characterize the domain of four

crucial parameters (α, β, γ, c) ≥ 0 that yield different optimal solution structures.

In presenting results, if a package contains a quantity larger than an agent’s locally

Pareto-efficient level (EQ) we label it oversized (> EQ).When the seller finds it optimal

to offer a package to only one type of consumers and ignore the other type (i.e., xi = 0),

then the solution is labeled as ignoring solution.

For the sake of the expositional clarity, the no-free disposal case is considered first.
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A. No-free Disposal

Conceptually, no-free disposal implies that a consumer derives disutility from buying

additional quantities beyond her satiation level. For example, a consumer may not like

to buy and carry a big bottle of soft-drink when she is not very thirsty. This may also

be the case when a person taking a short vacation do not want to carry larger packages

of toothpaste, shaving cream, etc. due to storage considerations and hence because of

disutility smaller packages may be preferred.

For no-free disposal case, as well as for large c, Proposition 1 below characterizes all

optimal solutions.

PROPOSITION 1. For two consumers each having a linear demand and no-free dis-

posal or c ≥ 1, all possible optimal solutions to the package pricing problem lie within

the seven regions defined by the parameters in Table 1 and depicted in Figure 1.

[Table 1 and Figure 1 here]
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Table 1. Optimal Solution Structures for No-Free Disposal Case

Regions Active consraints Package Sizes

A: 1
γ+1
≤ α ≤ 1,β ≤ 1 1→2→0 x1 = 1, x2 =

γα−1+α
γα−β+αβ < EQ

B: 1 ≤ β ≤ 2γα+α−γα2−α2
1−α+γα 1→2→0 x1 = 1, x2 =

γα−1+α
γα−β+αβ > EQ

I1: 0 < α ≤ 1
γ+1
, β ≤ 1 1→2=0, 1→0 x1 = 1, x2 = 0 (Ignoring)

D: max{1, 2γα+α−γα2−α2
1−α+γα } ≤ β, 1→2→0, 1→0 x1 = 1, x2 = 2β

1−α
β−α > EQ

β ≤ 2− α

E: 2− β ≤ α ≤ β
2β−1 1→0, 2→0 x1 = 1, x2 = β

F: β
2β−1 ≤ α ≤ ᾱ(γ,β) 2→1→0, 2→0 x1 = 2β

1−α
β−α < EQ, x2 = β

G: ᾱ(γ, β) ≤ α < 1 2→1→0 x1 = β (γ+1−γα)
β(1+γ)−γα < EQ, x2 = β

Where,

ᾱ(γ, β) =

³
γ+γβ+2β−1−

√
(γ2−2γ2β−2γβ−2γ+γ2β2+4γβ2+4β2−4β+1)

´
2γ

.

In regions A and B, the formulas for the two net tariffs are exactly the same.10

t2 = βα (γα−1+α)(γα−2β+α+1)
2(γα−β+α)2 ,

t1 = αβα2−2βγ2α−2αβ−αβ2+2γα+α−β−4βγα+αβ2γ2+βγ2α2+2βγα2+γ2α+2β2
2(β−γα−α)2 .

For regions I1, D, E t1 =
1
2
, and it is the same for all three regions. For other regions

the tariffs are:

t2I = 0, t2D = 2β (1− α)α β−1
(−β+α)2 , and t2E = αβ/2

t1F = 2β (1− α)α β−1
(β−α)2 , and t2F = αβ/2.

t1G = β (γ+1−γα)(β+βγ−2γα+βγα)
2(−β−βγ+γα)2 ,

t̂2G = β β+α−2βγ2α−4βγα−βγ2α2+2αβ2γ+αβ2γ2−2αβ+2βγ+2γ2α2+αβ2+βγ2−γ2α
2(β+βγ−γα)2 .

10Recall that gross tariffs are obtained from these net tariffs as Ti = ti + cxi.

11



Proof. We only give the outline of the proof in the Appendix. Detailed derivations

are available (see footnote 6).

We explain Table 1, and Fig. 1. There are seven formulas for different solutions

related to different sizes of (α, β) demand triangle (α is the height and β is the length).

The related regions are labeled anti-clockwise A through G. Each region is identified by

the active constraints, i.e., those constraints becoming equalities. For instance, notation

1→ 2→ 0 means that the first consumer is almost-envying the second one, who is almost

inclined not to buy, while 2 = 0 would mean she actually does not buy. In regions A and

I1, β ≤ 1. Therefore these two regions represent the ordered case. The other five regions

where β ≥ 1 represent the non-ordered case. As identified in Table 1, all boundaries

separating one region from the other are supposed to belong to both regions. In particular,

the border point [β = 1, α = 1/(1 + γ)] belongs to all four neighboring regions, namely

A, I1, B, D.11 Since the consumers can be renumbered and renormalized, the line [β > 1,

α = 1] is equivalent to line [β < 1, α = 1], and therefore is excluded from our results.

The line [α = 0] and points [α = 1, β = 1] are also excluded as pathological cases as they

pertain only to one type of consumers. Within each region, we also include figures of the

two demand triangles that approximate the related areas of two demand triangles for the

two types of consumer. White triangle, with height 1 and length 1, relates to the first

consumer, while the grey triangle with height and length α, β respectively is related to

the second consumer.

11For the line α = 1
γ+1 and line β = 1,α <

1
γ+1 only one package can be expected in practice. The

reason being that the seller prefers pne package over a more complicated two-package scheme, though
formally both strategies are optimal, giving the same profit.
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Note that the regions with respect to active constraints follow a logical order. The

Pareto efficiency region E occupies the central position. It relates to participation con-

straints 1→ 0, 2→ 0 which are active at the solution. None of the incentive-compatibility

constraints are active in region E. This implies that the demand parameters are such that

the two demand triangles, shown within the region E, are more or less equal in areas.12

In particular, the curve αβ = 1, which is approximately in the middle of this region,

implies that the areas of two triangles are exactly the same. Since incentive-compatibility

constraints are not active, no consumer envies each other’s package. In this case, two

different size packages can be sold for the same net tariffs. Either disutility, or zero utility

from larger than the desired packages ensures this result. The more different the demand

triangles, the less likely would be such an outcome.

Let us move clockwise around the point (α, β) = (1, 1). By decreasing α and β we

reduce the area of the grey triangle and get the regionD which is to the left and below the

Paretian region E. Here the incentive-compatibility constraint 1→ 2, the first consumer

envies the second, (i.e., temptation to switch to second consumer’s package becomes

stronger) becomes active and the participation constraint 1 → 0 remains active. So a

solution satisfying constraints 1→ 2→ 0, 1→ 0 results. Farther to the left, in region B,

the incentive-compatibility constraint 1→ 2 becomes so strong that the other constraints

become redundant, giving the solution 1→ 2→ 0. Similar logic works to the right of the

Paretian region. In region F, the area of the white triangle becomes sufficiently less than

the area of the grey triangle, and for the second consumer the temptation to switch to

12Gross tariff T1 includes the area of the white triangle (net tariff) and the costs cx1. Similarly, gross
tariff T2 includes the area of grey triangle and costs cx2.
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first consumer’s package becomes stronger, making the incentive-compatibility constraint

2 → 1 active, while the participation constraint 2 → 0 remains active. In region G the

incentive-compatibility constraint 2 → 1 becomes so strong that it is the only one that

is active. When the areas of the demand triangles are very different, as it is the case in

region G, only one type of consumers matters. Thus in essence, the result in region G,

is very similar to the ordered demands case A.

B. Free-disposal case

In many situations free disposal may be more typical.13 Although most results shown

for the no-free disposal case above also hold under free disposal, for the sake of complete-

ness we analyze this case separately. The formulation is modeled with piece-wise linear

demands with a kink at the satiation point. At the kink (zero price) the inverse demand

function becomes horizontal.

In the no-free disposal case we normalized marginal cost to zero, though our formulas

do work for positive cost c > 0 as well. However, to formally incorporate free disposal we

need to make some modifications by considering costs explicitly.

From intuitive reasoning it is clear that the initial non-normalized linear demand

functions for the two consumers with free disposal are:

p2(x) = max{0, (α+c)−x(α+c)/β}. p1(x) = max{0, (1+c)−x(1+c)}.14 The related

valuation functions,revealed from demands, become piece-wise quadratic.

13The obvious example is when a consumer does not derive any disutility by not using the return-flight
coupon of a round-trip airline ticket. Many other examples from real life can be given.
14These statements simply states that there cannot be any disutility. Compare it with no-free disposal

function p2(x) = (α+c)−x(α+c)/β where marginal utility can be negative. Note that as before, (α+c)
is the chocking price, that is, the price at which an infinitesimally small quantity will be bought.
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V1(x) = [
(1 + c)x− x2/2 when x ≤ 1 + c

(1 + c)2/2 when x ≥ 1 + c

V2(x) = [
(α+ c)x− αx2/(2β) when x ≤ β α+c

α

(α+c)2

2α
β when x ≥ β α+c

α
.

For the statement of the proposition 2, it is convenient to reformulate the package

problem in terms of net valuation functions vi and net revenues. This reformulation simply

amounts to subtracting cx from the valuation functions and tariffs: vi(x) := Vi(x) − cx,

ti(x) := Ti(x)− cx.

We state the main results for the free disposal case in terms of vi(x), ti(x) in the

following proposition. As before, all formulas are in terms of net tariffs.

PROPOSITION 2. Under free disposal all possible optimal solutions to package

pricing problem lie in ten regions depicted in Figure 2. Four regions A, I1, F, G as

stated in Table 1 remain the same, and six regions B, C, D, E, H, I2 are stated in Table

2.

[Table 2, Figure 2 here]

15



TABLE 2. New Solution Structures for Free Disposal Case

Regions Active constraints Package sizes

B: 1 ≤ β ≤ min{2γα+α−γα2−α2
1−α+γα , 1→ 2→ 0 x1 = 1, x2 < EQ

α γ+1+cγ+c
c+γα+α

}

C: αign(β, c, γ) ≤ α, 1→ 2→ 0 x1 = 1, x2 > EQ

αγ+1+cγ+c
c+γα+α

≤ β ≤ α(1+c)2

(c2(1−( γ
1+γ

)2)+2αc+α2)

I2: α ≤ αign(γ, β, c),
(1+c)2

4c
≥ β ≥ 1 1→ 2 = 0 x1 = 1, x2 = 0

D: β ≥ 2γα+α−γα2−α2
1−α+γα , 1→ 2→ 0, 1→ 0 x1 = 1, x2 > EQ

max{2−β
1
, (1+c)

2−2cβ
β

} ≥ α ≥ β(1−c)
2β−1−c

H: 0 < α ≤ max{2− β, (1+c)
2−2cβ
β

}, 1→ 2→ 0, 1→ 0 x1 = 1, x2 > EQ

except α,β in B, C, I2, D

E: β
2β−1 ≥ α,β ≥ 1 1→ 0, 2→ 0 x1 = 1, x2 = β

α ≥ max{2− β, (1+c)
2−2cβ
β

}

Here ᾱ(γ,β) :=

³
γ+γβ+2β−1−

√
(γ2−2γ2β−2γβ−2γ+γ2β2+4γβ2+4β2−4β+1)

´
2γ

,

αign(γ,β, c) =
−2βc+1+2c+c2+

√
(c2+2c−4βc+1)+

√
(c2+2c−4βc+1)c

2(1+γ)β
,

All sizes and tariffs for Table 2 are the same as in Table 1, except for the two new

regions C and H which are given below.

Region C: x1 = 1, x2 =
β(γα−1+α)
γα−β+α , t2C =

β(c+α+αγ)(α+αγ−c)
2α(1+γ)2

,

t1C =
4cβαγ+2cβαγ2+βα2+c2β−4αcγ−2αc−αc2+βα2γ2+2βα2γ+2cβα+2c2βγ−αc2γ2−2αc2γ−2αcγ2

2α(1+γ)2
,

Region H: x1 = 1, x̂2 =
1
α
β
µ
c+ α −

r³
βc2+2βcα+βα2−α−2cα−αc2

β

´¶
, t1 = 1/2,

t̂2C =
(c+α−

√
(βc2+2βcα+βα2−α−2cα−αc2)/β)∗(αβ−βc+

√
β
√
(βc2+2βcα+βα2−α−2cα−αc2))

2α
.
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Proof. We give the outline of the proof in Appendix. Detailed derivations are available

(see footnote 6).

We briefly explain Table 2 and Figure 2. Instead of seven regions under no-free disposal

case we now have ten regions. Comparison with Fig.1 shows that regions A, I1, F, G

remain unchanged. The reason is that since there are no oversized packages in these

regions, they are not affected by free disposal. Pareto-efficient regionE becomes somewhat

smaller; its lower bound is slightly higher, for β > 1 + c.

The logical order of regions around the Paretian region E remains essentially the same

as in the no-free disposal case discussed earlier. It can be added that the region D now

is split into two regions, D and H, having the same active constraints 1→ 2→ 0, 1→ 2,

but different formulas for package sizes. Now instead of one region, B, with constraint

1→ 2→ 0, there are two regions, B and C. In some sense, region B can also be viewed

as an extension of region A because it has the same active constraint 1 → 2 → 0 and

formulas. New region I2 is just an extension of region I1 emerging due to similar reasons.

Few observations about how changes in parameters affect the results are worth men-

tioning. For large marginal cost c ≥ 1, Fig.2 converges to Fig.1 of the no-free disposal

case. In another case, as c→ 0, the lower border of the efficiency region E converges to the

same-net-tariff line (α = 1/β), and the ignoring solution region I2 takes up most of the

space below this line, replacing parts of regions E, H, C, D, and B. In contrast, changing

the ratio γ keeps the number of regions intact but changes their areas significantly. For

instance, as expected, large γ decreases the area of region I2 (ignoring solution), while

for a smaller γ this region becomes relatively larger. These observations are also true for
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the no-free disposal case.

C. Discussion of the results

We discuss results in terms of net valuation function vi(x) = (Vi(x) − cx) which

represents the consumer surplus had the consumer paid the price equal to marginal cost

c for the quantity x. This net valuation can also be viewed as the potential profit from

this consumer. In the case of zero marginal cost, it is exactly the consumer’s valuation.

We discuss Pareto efficiency and same-net-tariff effect first. The main reason why

efficiency occurs is due to the equality or approximate equality of net valuations for the

efficient quantities x∗i ( i.e., quantities which satisfy the equality MRSi = MRT ) of the

two types of consumers. For linear demands, such equality holds when x∗2 = β and x∗1 = 1.

In the parameters space the equality of net-valuations is represented by the same-net-tariff

line, v2(x∗2) = αβ/2 = 1/2 = v1(x∗1), that goes through the middle of the Paretian region

E. A consumer decides which package to buy by comparing the net tariff with her net

valuation. On the ‘same-net-tariff line’ the net tariffs are the same for two consumers and

they also equal to their net valuations. As a result switching to another package is not

desirable. Although two consumers have the choice between two different packages at the

same (net) tariff, each consumer will self-select her most-preferred quantity x∗i that results

in Pareto-efficiency. This provides a plausible explanation for pricing different soft-drink

bottles in Japan at the same price and foreign airlines charging one-way and round-trip

the same fare. In both cases, marginal costs are small, so the gross tariffs do not seriously

differ from the net tariffs.

Now consider situations below the same-tariff line αβ/2 = 1/2 where net valuations
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as well as net tariffs differ in the sense that t2 < t1 but not by too much. Here the seller

must take into account the possibility of switching by the first consumer (who is buying

a smaller package) to a larger package . The consumer will not switch under no-free

disposal assumption, because although tariffs differ slightly, disutility may be significant.

On the other hand, when the costs are positive, the total tariff becomes larger because of

larger quantity. Hence the costs play the same role as disutility in discouraging the first

consumer from buying a larger than the desired package. Thus for situations below the

same-net-tariff line αβ/2 = 1/2, but α ≥ 2 − β, either disutility or large costs, or both,

are enough for Pareto-efficiency. In the absence of significant costs or disutility, the region

below the same-net-tariff line cannot be Pareto-efficient. As c → 0, the lower border of

the efficiency region coincides with the same-tariff line .

In contrast, the existence of Pareto efficiency for the region above the same-tariff line

does not depend upon costs or free disposal, because switching from the most-preferred

quantity to a smaller package at the same price can never be desirable. Thus, the region

of Pareto efficiency is rather broad, always having a non-zero measure; therefore, it is not

a pathological case.

At least at the Paretian solution the seller captures the whole surplus as profit for

linear demands (it is likely to hold for non-linear demands also). Thus the first-best

solution is attainable in spite of the fact that the consumer types are hidden. Asymmetric

information does not result in any efficiency loss!

Oversizing effect is more likely to occur when the choking price of the second consumer

is sufficiently lower than that of the first consumer, and at the same time the area under
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her demand curve is not too large (see regions B, C, D, H). When this is the case, the

first consumer buys a smaller package but pays a larger net tariff. For this case, to prevent

the first consumer from switching to a larger and cheaper (in terms of net tariff) package,

the seller must choose between two alternatives. Either ignore the second consumer

altogether or make her package oversized. When there is no-free disposal or large costs,

and the demand of the first consumer is steeper (it holds for linear demands, but may

also hold for non-linear demands), then oversizing the package becomes more profitable.

Indeed, there exists a sufficiently large quantity x2 at which the second consumer’s net

valuation of the package size still remains positive, but because of disutility or costs, the

net valuation of the first consumer for x2 is reduced to zero. This prevents switching by

the first consumer to the oversized package x2, and at the same time the seller earns some

positive profit from the second consumer by not ignoring her. This can be explained by

Figure 3. Here the lightly shaded area S1 is what the first consumer gains if she switches

from x1 = 0 to another package S2 ≥ β while the darker area S2 is what she looses. The

equality S1 = S2 represents the optimality condition for the package sizes for the seller.

Note that x2 is high enough to prevent switching, but it is not too high. The upper part

of S1 shows the gain in consumer surplus from switching if optimal size for the second

package were to be x2 = β.

Why do no-free disposal assumption and large costs have similar effects on optimal

packages? Essentially, the difference between free-disposal and no-free disposal cases lies

in whether the demand function switches to zero or not at the zero-price line. When costs

are high enough then the optimal quantities are relatively smaller than the corresponding
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quantities representing the switching points. In this case, free-disposal or not makes no

difference for solutions; thus high costs work the same way as no-free disposal. In contrast,

free disposal with (almost) zero cost prevents oversizing. Because in this case it is more

profitable to ignore one consumer altogether. Except for the oversizing issue, free disposal

assumption essentially plays no major role.

It is important to stress that the demand parameters α, β affect the qualitative features

of solutions in Table 1 quite differently than parameter γ.15 Parameters α, β are the sole

determinants of the basic tree-structure of the solution as well as oversizing or undersizing.

In contrast, γ do not influence basic solution structure or oversizing, but it adds only

additional arcs to the tree in some cases. It means that basic features of solution remain

independent by the numbers of any consumer type and do not vary when population of a

particular type increases or decreases. At the same time, the size of packages, and amount

of tariffs, discounts and premiums are determined by all three parameters α, β, γ.

Our results mentioned above provide some plausible economic rationale or lack of

it for some pricing strategies mentioned earlier. In particular, the US airlines industry,

where a round-trip ticket is cheaper than one-way, does not represent a standard optimal

solution, because free disposal is possible. Such price-quantity bundles can be rational

on two grounds. It seems probable that very few consumers are buying one-way ticket

and they are not well informed. Then in essence this pricing policy represents the “ig-

noring” solution (region I1 or I2 in Table 2). The seller, in principle, offers only one

optimal package, namely round-trip; the one-way-high-price option is exercised only by

15More detailed derivation of comparative statics of solution w.r.t. γ see the Appendix.
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the uninformed customers.

D. Nonlinear demands

We have derived our results using linear demands. The linearity assumption was useful

in deriving exact formulas that explicitly characterize all regions. However, qualitatively

all these results also hold even when the demands are nonlinear. Figure 4 demonstrates

this fact. Consider the quantity-tariff curves Vi(x) − ti = 0 related to net valuations (or

zero costs) so that the maximal point is partially efficient. On the first consumer’s (thick)

indifference curve V1(x) − t1 = x1 − x21/2 − t1 = 0, the maximum point is at x1 = 1,

t1 = 1/2. Let us draw the second consumer’s (dotted) indifference curve, V2(x) − t2 =

αx2 − αx22/(2β)− t2 w.r.t (α,β) so that its maximum is at x2 = β, t2 = αβ/2. When the

maximum given by the dark circle is above t = x−x2/2 and below t = x2/(2x−1) then we

have the Pareto efficient solution depicted in region E. This is so because both consumers

almost envy to 0. For this case the seller can behave as if he has full information and

information asymmetry does not prevent in obtaining the first-best solution. However,

when the maximum (β, αβ/2) goes below the thick indifference curve, such efficient

solution becomes impossible because the first consumer would switch to second consumer’s

package (x2 = β, t2 = αβ/2) and would derive more utility. Similarly, when the maximum

(β, αβ/2) happens to be above the curve t = x2/(2x − 1) one can see that reverse envy

occurs: the first consumer’s maximum x1 = 1, t1 = 1/2 lies below the second consumer’s

indifference curve and hence the second consumer would switch to first consumer’s package

(1, 1/2) because it gives more surplus. Following this logic we can conclude that any two

net valuation functions Vi(x) would result in Pareto efficient packages if and only if each
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maximum (xi, ti) of the normalized indifference curve Vi(x)− ti = 0 is not below the other

curve.

Similarly four other parameter zones, separated by the solid line and labeled in accor-

dance with Fig. 1, show the cases of undersizing, oversizing and ignoring solutions. Thus

qualitatively our results can be generalized for non-linear demands.

Figure 4 helps us to demonstrate that the qualitative effects namely efficiency, over-

sizing and undersizing are quite general and do not depend on the linearity assumption

of demands. Indeed, when one transforms the V1 and V2 curves in such a way that both

maxima remain in similar position (above or below) with respect to other curve then the

qualitative effects mentioned in the paper would remain intact.

IV. Quantity Discounts and Premiums

In this section we present the results related to quantity discount or premium.

Definition. For two packages i, j with total tariffs Ti, Tj and quantities xi, xj quantity

premium (discount) is defined by relation Ti/xi > Tj/xj (Ti/xi < Tj/xj) for xi > xj.

Under the ordered demands case, Katz (1984), in a different setting than ours, shows

the existence of quantity premia.

For linear demands we characterize the entire region of parameters yielding premium.

Note that the region for premium also has a non-zero measure and the existence of a

premium is not a pathological case. The region of premium happens to belong to ordered

demands case only.

PROPOSITION 3. For two consumers with linear demands all optimal solutions to

package pricing problem giving discounts or premiums are stated in Table 3.
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Table 3.

Regions Results

in A: α < β−βγ+γ
1+γ

, 1 > α > 1
1+γ
, β ≤ 1, γ > 1 Premiums

in A: α = β−βγ+γ
1+γ

Same price

All other cases Discounts

I1,I2: 0 < α ≤ 1
γ+1
, β ≤ 1 and β = 1 One package∗

∗For the line α = 1
γ+1

one package actually occurs when the seller prefers it to a more

complicated two-package scheme, though formally both strategies are optimal giving the

same profit.

Proof Available from authors (see footnote 6).

In Fig.1 and Fig.2 the regions for premium are the dark triangles shown within the

region A. The horizontal line is 1/(1 + γ). The sloped line is β−βγ+γ
1+γ

. Note that this

domain of parameters α, β yielding premia is non-empty if and only if γ is greater than

1 (m2 > m1). Furthermore, as γ increases the area of domain of parameters α, β yielding

premium also increases. Therefore, for a very large γ, the probability of premium for

ordered demands is almost 1/2 under a uniform distribution.

The intuition behind only discounts for the non-ordered case can be explained graphi-

cally in terms of demand triangles. For region E the average price (in terms of net tariffs,

which gives the same discount index as gross tariffs, see proof in the appendix) is the av-

erage height of the triangle. Consequently, the lower triangle must have a smaller average

price, yielding discount. Similarly for all lower regions D, B, C, and H the average price

is even less than the average height of a triangle, yielding discount. Similar arguments

apply to regions G, and F. Note that for x1 the average price is the average height of a
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trapezoid which is more than 1/2, while for x2, because α < 1, the average height of a

triangle is less than 1/2.

V. Conclusions

For two types of consumers with linear-demands we have presented a complete analysis

for both non-ordered, and ordered demands. Our analysis provides several new insights.

First, in spite of asymmetric information, Pareto efficiency can exist under monopoly with

hidden types of agents and socially optimal output could be produced . This usually never

is the case with most other nonlinear pricing strategies and normally it is also not the case

when demands do not cross. Second, the consumption level of one type of consumer can be

inefficiently high due to oversized package. Third, under non-ordered demands consumers

always enjoy quantity discounts. Quantity premia can occur only when the demands are

ordered and low-demand consumers are more numerous. Finally, the qualitative effects

also hold for non-linear demands.
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Appendix

Outline of the proof for Proposition 1.

We provide the basic steps in deriving optimal solutions for the regions in Table 1.

From a general ‘tree-theorem’ established in our other paper (2001), it follows that it

is sufficient to study only three logically possible systems of active constraints namely

[1→ 2 → 0], [2 → 0, 1 → 0] and [2 → 1→ 0], including also their subcases [2→ 1 → 0,

2→ 0], [1→ 0, 1→ 2→ 0]. For each system we first derive expressions for xi, ti from the

constraints that are supposed to be active. By the same ‘tree-theorem’ the non-envied

consumer must consume Pareto-efficient quantity, i.e., x1 = 1 for [1 → 2 → 0], and

x2 = β for [2 → 1 → 0]. Then substitute these expressions into the remaining (non-

active) constraints and into the objective function. After this substitution there remains

only one variable to optimize, namely x1 for [2 → 1 → 0], and x2 for [2 → 1 → 0]. The

non-active constraints (or, more precisely, the constraints not included into the system)

can all be expressed in terms of admissible intervals for the optimizing variable.

For example, for [1 → 2 → 0] the objective function is π = γt2 + t1 = (γx2(α −

x2α/(2β)) +
β−2x2β+x22β+2x2αβ−x22α

2β
and the admissible intervals are [0 ≤ x2 ≤ α+β−2αβ

β−α or

1 ≤ x2 ≤ 2β(1−α)
β−α ]. This domain can be shown to be non-empty only for parameters

(α ≤ β/(2β − 1)) below regions F, and G. By maximizing the objective function on this

domain we obtain either unconstrained solutions related to regions A and B, or border

solutions related to some not-in-system constraint becoming active. For ordered demands

(β ≤ 1), it turns out that this new active constraint can only be the positivity constraint

(left border of the domain) resulting in region I1 (ignoring solution). For the non-ordered
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demands (β > 1), it turns out that the not-in-system constraint becoming active can only

be the constraint [1→ 0] (the right border of the domain). This results in region D and

solutions of the type [1→ 0, 2→ 1→ 0].

For [2→ 1→ 0] the steps are exactly the same, giving regions F, G.

For [1→ 0, 2→ 0] the quantities x1, x2 must be Pareto-efficient because no consumer

envies other consumer’s package: x1 = 1, x2 = β. Substituting these values into the

incentive-compatibility constraints we obtain the region E of parameters α, β and make

sure that incentive-compatibility constraints are satisfied. In this region other bundles

may also be admissible, as shown in analyzing systems [1 → 2 → 0], [2 → 1 → 0].

However, because Paretian solution is the first-best solution, the other possible bundles

need not be considered in this region. ||

Outline of the proof of Proposition 2.

The proof is long and tedious requiring symbolic-algebra software to handle high-

degree polynomials. Very briefly the idea is as follows.

The initial optimization problem has two threshold functions V1(x1), V2(x2) or switches

applicable to all constraints. Both functions switch from a parabola to a line. First

one at point x1 = 1 + c, while the second switches at x2 = β α+c
α
. By normalizing the

functions to net valuations and using other transformations, the problem is reduced to

some other equivalent optimization problem having only one switch point x1 = 1 + c.

Then optima can be studied separately both to the left and to the right from this switch

point for the same three systems of constraints as in the no-free disposal case. Finally,

solutions to the left and to the right from x1 = 1+ c can be compared to find the highest
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profit solution. However, direct comparison results in excessively tedious polynomials. To

compare different solutions, some indirect ways based on the concavity or convexity of

the objective function on the admissible intervals (revealed from non-active constraints)

are used.

Outline of the proof of Proposition 3 (for premium only).

We can focus on net revenues ti only because actual tariffs Ti(x) = ti(x) + cxi,

have the same discounts (or premiums) index: ∆[region](α,β) = t2/x2 − t1/x1 < 0 ⇔

T2/x2 − T1/x1 < 0. This index means discount when x2 ≥ x1, and it means premium

in the opposite case. To obtain parameters yielding either discount or premium, we just

take formulas of optimal quantity-tariff packages from Tables 1 and 2 and directly sub-

stitute them into this discounts/premiums index. We do this for all described regions of

parameters α,β, for both the no-free disposal and free-disposal cases.

Premium can exist only in region A [1 > α > 1
γ+1
, 1 ≥ β ].

From Table 1 we have,

x2 =
γα−1+α
γα−β+αβ and x1 = 1 so x2 ≤ x1. The tariffs are

t2 = x2(α− x2α/(2β)) = βα (γα−1+α)(γα−2β+α+1)
2(γα−β+α)2 and

t1 =
1
2β
(β − 2x2β + x22β + 2x2αβ − x22α) =

= αβα2+2βγα2+βγ2α2+β2γ2α−4γαβ−2βγ2α−β+2γα+γ2α+α−2βα+2β2−β2α
2(γα−β+α)2 .

The difference between the average price that determines the discount or premium can

be written as

∆[A](α, β) =
t2
x2
− t1

x1
=

= 1
2
α2−(−γ

2α−βγ−2γα+β−α+γ+βα+2γαβ+βγ2α+β2γ2−2βγ2+γ2−β2)
(γα−β+α)2 .
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The numerator is negative when (α(1 + γ)− (β − βγ + γ)) < 0⇔ α < β−βγ+γ
1+γ

.

We are studying interval α > 1
1+γ
. These two inequalities are consistent iff 1 < β −

βγ + γ giving the solution {signum (γ − 1) β < signum (γ − 1)}.

Note that when (γ − 1) < 0 and β ≤ 1 we have a contradiction. Thus, for the case

[γ < 1,α > 1
1+γ
] we have t2

x2
− t1

x1
> 0, that means quantity discount everywhere. In the

opposite case when γ > 1 and β ≤ 1, the inequality gives us the region for premium as

[α < β−βγ+γ
1+γ

,α > 1
1+γ
]. In the remaining part of region A we have only discount.

All other regions of parameters can be analyzed the same way, or one can use the

geometric reasoning given above. It turns out that, except for region A, all other regions

have discount. Only for some boundary cases average price paid by the two consumers is

the same (i.e., zero discount).
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FIG.1.Regions of different solutions with large costs or without free disposal, � = 2, c > 1.  

 



 
 

0.8 1.2 1.4 1.6 1.8 2 Beta 

0.2 

0.4 

0.6 

0.8 

1 

Alpha            

I2   . 

B    
D ? 
  A   

C    H  
E  

F  

G  

I1    
1?c

Prem. 

 
 
 
FIG.2. Regions of different solutions with free disposal and small costs � = 2, c = 0.5. 



 

S1 

 

0.25 0.5 0.75 1.5 
quan-
tity 

-0.4 

-0.2 

0.2 

0.4 

0.6 

0.8 

1 
price

    =α 

=c=Margin. Cost x1=1

x2β

Disutility region

S1 

S2
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FIG 4.   Efficient-quantity/tariff zones yielding different outcomes. 
 


