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Abstract 

The effect that investment lags has on the uncertainty-investment relationship is 

studied by modifying the Bar-Ilan and Strange (1996) model in a manner that enables 

analytical solution. It turns out that: (i) If the time lag is sufficiently small, uncertainty 

affects investment negatively; (ii) A sufficiently large time lag engenders an inverse 

u-shape relationship between the degree of uncertainty and the profit level that 

triggers investment; (iii) When such an inverse u-shape exists, the higher is the length 

of the time lag (or the degree of profit convexity) the wider is the range of a positive 

uncertainty-investment relationship. 
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Introduction 

Hartman (1972) has shown that output price uncertainty exerts a positive effect on 

investment when the profit is a convex function of the output price. Bernanke (1983), 

McDonald and Siegel (1986), Dixit (1989) and others have shown that despite this 

convexity uncertainty affects investment negatively if the firm can choose the 

investment timing optimally.1,2 In the most recent swing of this pendulum Bar-Ilan 

and Strange (1996) have shown that introducing time-to-build (in the form of a time 

lag between the moment of investment and the moment in which profits starts to 

accrue) into Dixit’s (1989) model enables a positive effect of uncertainty on 

investment.  

 The explanation for the result of Bar-Ilan and Strange (1996) is that the 

introduction of this time lag pulls the rug from under Bernanke’s Bad News Principle 

that underlies the negative effect uncertainty has on investment. According to this 

principle “Good News” regarding the investment are irrelevant to the investment 

timing. Thus, increased uncertainty, which makes the “Bad News” worse and the 

“Good News” better, affects investment timing only via the worsening of the “Bad 

News”. The reason why “Good News” is irrelevant for the timing of investment is 

that in the absence of time-to-build the proceeds attached to them can be collected the 

minute they are realized and therefore are collected both in the case of early 

investment and in the case when investment is postponed until the arrival of these 

“Good News”. Introducing time-to-build makes it impossible for the firm to receive 

                                                 
1 For detailed surveys of this literature see Pindyck (1991) or Dixit and Pindyck (1994). 
2 Caballero (1991) have shown a positive uncertainty-investment relationship in a two-period model 
where delaying investment is possible. His results, however, rely strongly on the assumption that the 
firm operates for a finite number of periods known in advance. 



the proceeds of “Good News” the minute they are realized and therefore restores their 

relevancy to the investment timing decision.  

 Note that introducing an investment lag to the model is not sufficient for 

uncertainty to have a positive effect on investment unless the profit is a convex 

function of the output price. In Bar-Ilan and Strange (1996), as in Dixit (1989), the 

option the firm has to abandon the investment when the output price is too low 

generates this convexity.  

 Since Bar-Ilan and Strange (1996) can only solve their model numerically, 

their analysis is limited to showing that for some parameter values uncertainty affects 

investment positively. The purpose of this paper is to broaden our understanding of 

how time-to-build affects the uncertainty-investment relationship beyond that. In 

order to do that I use here a version of the Bar-Ilan and Strange (1996) model 

modified as follows. First, the exit option is deleted in order to enable an analytical 

solution. Second, in order to restore the convexity of the profit function in the output 

price, their assumption that the production process generates a flow of fixed quantity 

is replaced by the weaker assumption that production is done under a decreasing 

marginal labor productivity function where the labor input, and therefore output, are 

flexible. With these modifications, the model now yields the following results:  

• For a sufficiently small time lag, uncertainty affects investment negatively. 

• For a sufficiently large time lag there is an inverse u-shape relationship between 

the degree of uncertainty and the profit level that triggers investment.  

• When such an inverse u-shape exists, the longer the time lag (or the degree of 

profit convexity) the wider the range of positive uncertainty-investment 

relationship.  

 



The following Section presents the model and its analysis. Some of the more 

technical proofs where relegated to an appendix. 

 

2. The Model 

Time in the model is continuous. Consider an infinitely lived, risk-neutral firm that 

can enter a project in which it produces output according to: 

 

(1)  Qt = ALt
α 

 

Where Qt and Lt are, respectively, the instantaneous output and labor input of the 

production process and A and α are constants satisfying A >0 and 0 ≤ α < 1.3 There is 

no cost for adjusting the amount of labor the firm employs. 

 By standard optimization, if the firm enters the project its instantaneous profit 

(πt), given the output price (Pt) and the labor wage (x), satisfy: 

 

(2)  πt = γ
tCP  

 

Where C and γ are constants defined by:  

 

  γ ≡ 
α−1

1   C  ≡ ( )γαγ
γ

α αα −







w
A .  

 

                                                 
3The case analyzed by Bar-Ilan and Strange (1996) and Dixit (1989) is that of fixed quantity, which 
corresponds to α = 0. 



Note that γ ≥ 1 since 0 ≤ α < 1. Also note that γ’(α) > 0 implying that the higher α the 

higher the convexity of π in P. Finally note that C ≥ 0 since γ ≥ 1 and 0 ≤ α < 1. 

   To enter the project the firm must incur the cost k > 0. A lag of length h ≥ 0 

exists between the time in which the firm pays the entry cost and the time in which 

the project becomes active, where the term “active” means that profits start to accrue. 

The firm’s discount rate is denoted by ρ. After the firm enters the project it cannot 

exit it. ρ, k and x are constants. The uncertainty arises from the output price, Pt, which 

evolves exogenously over time according to the rule: 

 

(3)  dPt = µPtdt + σPtdz, 

 

where σ > 0 and dz is the increment of a standard Wiener process, uncorrelated across 

time and at any one instant satisfying E(dz) = 0 and E(dz2) = dt. This means that Pt is a 

geometric Brownian Motion. By Itô’s lemma, πt is a geometric Brownian motion too, 

with the constant parameters: 

 

(4)  µπ = γ [µ + ½ (γ - 1)σ 2]  σπ = γσ 

 

Convergence of the firm’s expected net present value requires the assumption µπ < ρ, 

which means that σ must satisfy: 

 

(5)  σ  < ( )1
2

−
−

≡
γγ

γµρσ  

 



 Thus constructed, the model closely resembles the model solved by Bar-Ilan 

and Strange (1996). The three differences between these models are: (i) Their model 

contains an option to exit the project by paying a fixed exit cost denoted by l. The no 

exit case analyzed here corresponds to their analysis of the specific case where l 

approaches infinity; (ii) Their model contains a flow of a production cost with 

constant magnitude that they denote as w. The model analyzed here corresponds with 

the specific case in their model where w = 0; (iii) In their model the instantaneous 

output is assumed constant at unity and therefore the instantaneous profit is Pt – w. 

Assuming w = 0 renders the profit flow in both models (Pt in theirs and πt here) a 

geometric Brownian Motion. Since the only property of Pt relevant to their solution 

procedure is its being a geometric Brownian Motion, it is possible to use their analysis 

in pages 612 – 615 by replacing P, µ and σ by π, µπ and σπ, respectively, and 

assuming that w = 0 and that l approaches infinity. The results are that the optimal 

policy is to enter once the profit process, πt, reaches a certain threshold level denoted 

by h
Hπ  and given by:4 

 

(6)  h
Hπ  = ( ) ke hπµ

πµρ
β

β −−
−1

  

 

where β is the single positive root of the quadratic: 

 

(7)  ½σπ
2β 2 + (µπ - ½σπ 

2)β - ρ = 0 

 

                                                 
4 Equation (6) here is in fact equation (12) in Bar-Ilan and Strange (1996). 



Applying the values of 0 and 1 in this quadratic reveals that one of its roots is 

negative and the other, β, exceeds unity. For brevity of notations, β ’ and β ” denote 

the first and second derivatives of β with respect to σ 2. 

 

2.1 With no time lag 

In this section the case of no time lag between paying the entry cost and the start of 

production exists, i.e., h = 0, is analyzed. Based on (6) the entry threshold in that case 

is:  

 

(8)  πH = ( )kπµρ
β

β
−

−1
     

 

Differentiating with respect to σ 2 yields: 

 

(9)  
( )

( ) kH


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1
 = πH ⋅ f(µ, σ 2,  ρ, γ) 

where:  

 

(10)  f(µ,σ2, ρ, γ) ≡ ( )
( )

( )πµρ
γγ

ββ
β

−
−

−
−

−
2

1
1
'   

 

The following proposition presents some properties of f(µ, σ 2, ρ, γ).  

 

 



Proposition 1: f(µ, σ 2, ρ, γ) satisfies: 

(a)  ( ) 0,,,
2

2

<
∂

∂
σ

γρσµf    

(b) ( )γρσµ
σ

,,, 2

0
fLim

→
 = ( )

( )








≤
−
−

−

>

0
22

0
2

µ
µρµ

µργ

µ
µ

γ

if

If
 ≡  f*(µ, ρ, γ) > 0 

(c) ( )γρσµ
σσ

,,, 2fLim
→

 = ( )( )
( )22

3

22

1

ρµγγρ

µργγ

−−

−−  ≡ f**(µ, ρ, γ) ≥ 0 

 (d) ( ) 0,,, 2
<

∂
∂

γ
γρσµf  

  

Proof: in the appendix. 

 

Figure 1 below depicts f(µ, σ 2, ρ, γ) based on Proposition 1. 

 

 

 

 

 

 

 

 

Figure 1: 2σ
π

∂
∂ H ≡ f(µ, σ 2, ρ, γ) as a function of σ 2. 
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The immediate corollary from proposition 1 is that 2σ
π

∂
∂ H > 0 throughout the 

relevant range. Thus, in the absence of a time lag uncertainty has a negative effect on 

entry, despite the “a-la Hartman” convexity of the profit function in the stochastic 

price.  

 

 

2.2 With a time lag 

Returning to the case of a time lag and applying (8) in (6) enables presenting the entry 

threshold as: 

(11)  h
Hπ  = 

( )

H

h
e π

σγ
µγ 









 −
+−

2
1 2

  

 

where πH  is the value of h
Hπ when h = 0 given by (8). Differentiating with respect to 

σ 2 yields: 

 

(12)  ( )
H

hHh
h
H ehe πγγ

σ
π

σ
π

ππ µµ −− −
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= ( ) ( )
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where the second equality follows from (9). The following two propositions show that 

2σ
π

∂

∂ h
H might be negative, provided that π is convex in P, i.e., that γ > 1. They also 



show that the range of values of σ2 in which 2σ
π

∂

∂ h
H < 0 is an increasing function of h 

and γ, i.e., that a positive relation between entry and uncertainty becomes more likely 

as the investment lag or the degree of convexity rise.  

 

Proposition 2: If γ = 1 then 2σ
π

∂

∂ h
H > 0. 

Proof: If γ = 1 then, by part (c) of Proposition 1, ( )γρσµ
σσ

,,, 2fLim
→

 = 0. Therefore, 

by part (a) of Proposition 1, f(µ, σ, ρ, γ) > 0 for all σ in the relevant range. Thus, by 

(12), 2σ
π

∂

∂ h
H > 0.                                                                                                               �  

 

For brevity, the following proposition makes use of the definitions:  

 

(13)  h**(µ, ρ, γ) ≡ ( )
( )1

,,2
**

−γγ
γρµf    h*(µ, ρ, γ) ≡ ( )

( )1
,,2

*

−γγ
γρµf . 

 

Proposition 3: If γ > 1 then:  

(a) If h ≤ h**(µ, ρ, γ) then h
Hπ is increasing in σ2 throughout the relevant range.  

(b) If h**(µ, ρ, γ) < h < h*(µ, ρ, γ) then there is a single value of σ, denoted by 

σ*(µ, ρ, γ, h), which brings h
Hπ to a maximum.  

(c) If h > h*(µ, ρ, γ) then h
Hπ is decreasing in σ 2 in all the relevant range. 

(d) σ*(µ, ρ, γ, h) is decreasing in h and in γ. 

 



Proof: follows directly from proposition 1.                                                                   �  

 

Note that (d) implies that σ*(µ, ρ, γ, h) = 0 when h > h*(µ, ρ, γ). Figure 2 

below shows σ * as a function of h. 

 

 

 

 

 

 

 

 

 
 
Figure 2: σ* as a function of h. The higher the investment lag, the lower the level of 
σ2 from which πH decreases in σ2. The larger the convexity of the profit function in 
output prices the more to the left this function. 
 

 

Concluding Remarks 

In this paper I have studied the effect of time-to-build on the uncertainty-investment 

relationship in a model when investment can be delayed. It was shown that if the time 

lag between the moment of investment and the moment when profits start to accrue is 

sufficiently small then uncertainty affects investment negatively, as the related 

literature usually shows. However, when this time lag is sufficiently long, an inverse 

u-shape relationship exits between uncertainty and investment.  

h 

σ  

h*(µ, ρ, γ) h**(µ, ρ, γ) 

σ * 



 A thorough analytical understanding of the effect of time-to-build on the 

uncertainty-investment relationship should be helpful to future empirical work. As 

this paper has shown, empirical models of investment under uncertainty should not 

analyze the effect of time-to-build in separation from other factors, but rather in 

interaction with the qualitative nature of the uncertainty-investment relationship. 
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Appendix  
A. Properties of β 

Applying (4) in (7) yields that β is the positive root of: 

 

(a.1)  ½γ2σ 2β 2 + (γµ - ½γσ 2)β - ρ = 0 

 

Lemma 1: β satisfies the following: 

(a) β ’< 0    

(b) β ” > 0   

(c) β
σσ →

Lim = 1 

(d) β
σ 0→
Lim = 







≤∞

>

0

0

µ

µ
γµ
ρ

f

if
  

(e) 'β
σσ →
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2

22
1
−−

−
−  

(f) '
0

β
σ →
Lim  =  
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






≤∞−

>
−

−

0

0
2 3

µ

µ
γµ

µρρ

f
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Note that (a) and (c) imply that if µ > 0 then β < 
γµ
ρ . 

 

Proof : The proof of (c) and (d) follows directly from (a.1). Implicit derivation of (a.1) 

yields: 

 



(a.2)  β ’ = 2
2
122

2
122

2
1

γσγµβσγ

γββγ

−+

−
−  = ( )βσµγρ

γβγβ 2
2
1

2
2
1

2
1

−−

−
−  < 0 

where the second equality follows from (a.1).  β ’ < 0 follows from the first equality 

for the case of 2µ ≥ σ2 and from second equality for the case of 2µ < σ2, taking into 

account in both cases that β > 1. This proves (a).  

Based on (a.2): 

 

(a.3)  β ” = 
( ) ( ) ( )[ ]
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where the second equality follows from (a.2) and the third equality follows from 

tedious, yet straightforward algebra. If µ ≤ 0 then all terms in numerator are positive 

and therefore β ” > 0. If µ > 0 then the numerator depends negatively on β and 

therefore, since β  < 
γµ
ρ , in that case:   

 

(a.4)  β ” > 
( )22

2
12

2

2

226
'

σµβγσ

σµµ
γµ
ργ

β
−+

+−−
−

r
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( )22
2
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2
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24'2
σµβγσ

σµρβ
−+

+−
− > 0 



where the inequality follows from ρ > µπ and from β ’ < 0. This proves (b). The proof 

of (e) follows directly from (a.2) and from (c). The proof of (f) follows from the 

second equality of (a.2) together with (d).                               �  

 

B. Proof of proposition 1 

Based on (10): 

 

(a.5)  ( )
2

2 ,,
σ

γρσµ
∂

,∂f   = ( ) ( )
( )

( )
( )222 2

1
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12'1"
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−−−
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where the inequality follows from parts (a) and (b) of lemma 1 together with the 

results that β > 1 and γ ≥ 1. Thus (a) is proved. The proof of (b) for the case of µ > 0 

stems from applying parts (a) and (d) of lemma 1 in (10). For the case of µ ≤ 0 the 

proof of (b) requires applying (a.2) in (10) and then using L’Hôpital’s rule. In order to 

prove (c) it is useful to present (10) as: 

 

(a.6)   f(µ, σ2 , ρ, γ) ≡ 

( )

1

1
2

1'

−
−
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β
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βγγ
β
β
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As σ approaches σ  both numerator and denominator of 
πµρ

β
−
−1 approach 0 since β 

approaches 1. Using L’Hôpital’s rule yields that in that case both the numerator and 

the denominator of f(µ, σ 2 , ρ, γ) approach 0. Thus, by using L’Hôpital’s rule again: 
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Since both numerator and denominator of the second term in the main numerator 

approach zero a repeated use of L’Hôpital’s rule is needed: 
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Where the third equality springs from (a.3) together with part (e) of lemma 1 and the 

inequality follows from the assumption that ρ > 2µ + σ2. This proves (c). 

 To prove (d) first note by implicit derivation of (a.1) that: 

 

(a.9)  β ’(γ) = 
γ
β

−  

 

and therefore: 

 



(a.10)  
γ
β

∂
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'

σ
γβ

∂
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γ
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Applying (a.10) in a differentiation of f(µ, σ 2, ρ, γ), as captured by (10), with respect 

to γ  yields after tedious, yet straightforward, simplifications: 
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where the inequality follows from β ’ < 0 and from ρ > µπ > γµ.            � 


