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Abstract

The aim of this paper is to provide evidence on the nature of the
relationship between the terms of trade and the trade balance for US on
a scale-by-scale basis using wavelet analysis. Thus, after decomposing
the two variables into their time-scale components using the maximum
overlap discrete wavelet transform (MODWT)we analyze the time scale
relationships between the terms of trade and the trade balance through
the wavelet correlation analysis, and nonparametric regression models
(GAMs). Wavelet correlation analysis indicates that, if the association
between the trade balance and the terms of trade depends mainly on
the elasticity of substitution between foreign and domestic goods, the
Armington elasticities may be different across scales, and in particular,
tend to get larger as the time horizon of the agents increases. Moreover,
the long-run relationship between the trade balance and the terms of
trade from the nonparametric fitted functions seems to provide support
to the existence of the Harberger-Laursen-Metzler effect .
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1 Introduction

The role of changes in the terms of trade has been widely analyzed in the
trade theory literature, and most of this literature aims to test what is known
as the Harberger-Laursen-Metzler effect which states that an improvement
in the terms of trade improves, via country’s real income, the trade balance
(Harberger, 1950, Laursen and Metzler, 1950). International trade models
states that the relation between the terms of trade and the trade balance de-
pends on the elasticity of substitution between foreign and domestic goods,
i.e. the Armington elasticity (Armington, 1969), but the two main frame-
works, international real business cycle models and static applied general
equilibrium models, have very different views about the value that the Arm-
ington elasticity should take (low and high values, respectively). A way
to reconcile these opposite views is to consider the nature of the shocks to
the terms of trade and to distinguish them according to their permanent
or transitory nature, because if the agents react differently to permanent
and temporary changes in the terms of trade, the values of the Armington
elasticities will differ (Ruhl, 2003).

A potential shortcoming of conventional empirical analyses among trade
variables and ouput may concern the fact that the nature of the relation-
ship may change at different time horizons. Economic analysis has usually
been restricted to at most two time horizons, that is the short run and the
long run; this not because economic decisions can be referred only to these
two scales, but mainly due to the lack of analytical tools that could decom-
pose economic time series into more than just two time scales. International
trade provides an example of markets in which, as the agents involved, firms
and consumers, interact at different time horizons, the relationships among
trade variables may well vary across time scales. In such a context, a useful
analytical tool may be wavelet analysis. Wavelets are particular types of
function f(x) that are localized both in time and frequency domain and
used to decompose a function f(x), i.e. a signal, a surface, a series, etc..) in
more elementary functions which include information about the same f(x).
The main advantage of wavelet analysis is its ability to decompose macroe-
conomic time series, and data in general, into their time scale components.
Several applications of wavelet analysis in economics and finance have been
recently provided by Ramsey and Lampart (1998a, 1998b), Ramsey (2002),
Kim and In (2003) and Crivellini et al. (2005) among the others, but no
attempts have been made to apply this methodology to the analysis of trade
variables.

The objective of this paper is to provide evidence on the nature of the
relationship between the terms of trade and the trade balance for US on
a scale-by-scale basis, as it may help to isolate some key features of the
data and thereby may provide building blocks for theoretical models of the
dynamics of international trade. Thus, after decomposing the trade bal-
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ance (defined as the natural logharitm of the ratio of exports to imports
values) and the terms of trade (defined as the relative price of imports to
exports) into their time-scale components using to the maximum overlap
discrete wavelet transform (MODWT), we analyze the relationship among
these variables at the different time scales using i) wavelet correlation anal-
ysis, as it may provide a lead/lag relationship between the two processes,
and ii) generalized additive model (GAM), as this framework may enable
us to characterize the dynamic relationships among these variables with-
out making any a priori explicit or implicit assumption about the shape of
the relationship. The paper is organized as follows: section 2 presents the
data and the methodology, while section 3 is devoted to the analysis of the
relationship between the trade balance and the terms of trade using corss-
correlation functions in the frequency and time scale domains. In section 4
we analyze the shape and the significance of the relationship using general-
ized additive model, and section 5 concludes the paper (the main properties
of the wavelets as well as the method for calculating the wavelet correlation
coefficient are dealt with in the Appendix).

2 Data and methodology

The series were filtered using a relatively new (at least for economists) sta-
tistical tool, the discrete wavelet transform, that, roughly speaking, decom-
poses a given series in orthogonal components, as in the Fourier approach,
but according to scale (time components) instead of frequencies. The com-
parison with the Fourier analysis is useful first because wavelets use a similar
strategy: find some orthogonal objects (wavelets functions instead of sines
and cosines) and use them to decompose the series. Second, since Fourier
analysis is a common tool in economics, it may be useful in understanding
the methodology and also in the interpretation of results. Saying that, we
have to stress the main difference between the two tools. Wavelet analysis
does not need stationary assumption in order to decompose the series. This
is because Fourier approach decomposes in frequency space that may be in-
terpreted as events of time-period T (where T is the number of observations).
Put differently, spectral decomposition methods perform a global analysis
whereas, on the other hand, wavelets methods act locally in time and so do
not need stationary cyclical components. Recently, to relax the stationary
frequencies assumption it has been developed a windowing Fourier decompo-
sition that essentially use, for frequencies estimation, a time-period M (the
window) event less than the number of observations T. The problem with
this approach is the right choice of the window and, more important, its
constancy over time. Many economic and financial time series are nonsta-
tionary and, moreover, exhibits changing frequencies over time. Much of the
usefulness of wavelet analysis has to do with its flexibility in handling a vari-
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ety of nonstationary signals. Indeed, as wavelets are constructed over finite
intervals of time and are not necessarily homogeneous over time, they are
localized in both time and scale. Thus, two interesting features of wavelet
time scale decomposition for economic variables will be that, i) since the
base scale includes any non-stationary components, the data need not be
detrended or differenced, and ii) the nonparametric nature of wavelets takes
care of potential nonlinear relationships without losing detail (Schleicher,
2002).

Figure 1 about here
Figure 1 shows the time series plots of the raw time series. The data for

the terms of trade and the trade balance refers to the US between 1947:1 and
2004:2 and are from the Federal Reserve Bank of St. Louis (FRED II). We
measure the terms of trade as the relative price of imports to exports using
implicit price deflators, and the trade balance as the natural logharitm of
the ratio of exports to imports values.1 We perform a J-level decomposition
of the quarterly series of the terms of trade and trade balance for US using
the maximal overlap discrete wavelet transform (MODWT ) which is a non-
orthogonal variant of the classical discrete wavelet transform that, unlike
the orthogonal discrete wavelet transform, is translation invariant, as shifts
in the signal do not change the pattern of coefficients. The wavelet filter
used in the decomposition is the Daubechies least asymmetric (LA) wavelet
filter of lenght L = 8, that is LA(8), based on eight non-zero coefficients
(Daubechies, 1992), with periodic boundary conditions. The application of
the translation invariant wavelet transform with a number of scales J =
5 produces six wavelet and scaling filter coefficients v5, w5, w4, w3, w2, w1

which, translated back into the time domain, gives the smooth V5 and detail
W5 ,W4 ,W3 ,W2 , W1 signals. Since we use quarterly data scale 1 represents
2-4 quarters period dynamics, while scales 2, 3, 4 and 5 correpond to 4-8,
8-16, 16-32 and 32-64 quarters period dynamics, respectively.

3 Correlation analysis in the time scale domain

In this section we investigate the relationship between the trade balance
and the terms of trade over different time scales using wavelet correlation
analysis, as a scale-by-scale analysis may provide further insight into the
contemporaneous and lead/lag relationship between the trade balance and
the terms of trade. A useful reference for this analysis may be represented
by the results in Backus et al. (1994). According to Backus et al. ”the most
important parameter for the trade balance - terms of trade relationship is

1One reason for its use is that the ratio is not sensitive to the unit of measurement
and can be interpreted both as nominal or real trade balance (Bahamani-Oskooee, 1991).
Other studies (Backus et al., 1994, among the others) use the ratio of the net exports to
output.
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the elasticity of substitution between foreign and domestic goods” (Backus
et al. 1994, p.94). Indeed, the experiments conducted to document the
properties of their theoretical economy suggest that the parameter of the
elasticity of substitution affects signficantly the contemporaneous correlation
between net exports and the terms of trade, as this correlation is negative for
small elasticities and positive for large elasticities. In figure 1 we report the
wavelet correlation coefficients at lag 0 against the wavelet scales between
the trade balance and the terms of trade. The correlation between the
two series is negative at the finest crystals, that is from d1 to d3 , and
positive at the coarsest crystals, that is d4 and d5 , that, according to Backus
et al. interpretation, may be interpreted as evidence that the elasticity
of substitution between foreign and domestic goods, i.e. the Armington
elasticity, tends to increase as the time scale increases.
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Figure 1: Wavelet correlation between terms of trade and trade balance for
US

The dynamic relationship between the trade balance and the terms of
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trade may be examined through wavelet cross-correlation analysis. The
cross-correlation function considers the relationship between two series shifted
by a positive or negative time lag and plotted against the lag value. Figure
2 shows the properties of the cross-correlation functions both in the fre-
quency and time scale domain. In the top left panel of figure 1 we graph the
cross-correlation functions for the trade balance and the terms of trade for
leads and lags up to three years, with both variables filtered according to
the Baxter-King (1995) approximate band-pass filter based on the Fourier
transform.2 In particular, as suggested by Baxter and King, we pass fre-
quencies between 6 and 32 periods as it corresponds to the typical business
cycle frequency range with quarterly data (see Stock and Watson, 1998).
The cross-correlation function between the two band-pass filtered series dis-
plays an asymmetric S-shape, a pattern that Backus et al. (1994) labeled as
the S-curve.3 Indeed, the cross-correlation function between ttt and tbt+k,4

for -12 ¡ k ¡12 is negative for negative values of k up to -4, positive for values
of k between -4 and 9, and finally negative again for values of k greater than
9, thus indicating the tendency for the trade balance to be positively cor-
related in the short and medium run with past movements in the terms of
trade, but negatively correlated in the long term. In this way a deterioration
of the terms of trade (increase in our terminology) is generally associated
with an increase in the trade balance in the following quarters,5 reaching a
peak after one year and then becoming negative after two years.

In Figure 3 we report the wavelet cross-correlation functions for the
different time scales from d4 , in the top left panel, to d1 , in the bottom
right panel, as they can provide an estimate of the lead/lag relationship
between the trade balance and the terms of trade on a scale-by-scale basis.
The horizontal S pattern evidenced first in Backus et al. (1994) seems to
be a characteristic common to all scales, but with differences linked to the
time horizons of the scales.

In the top left panel the cross-correlation function for wavelet scale d4,
corresponding to 16-32 quarters period dynamics, displays the typical asym-
metric shape of the S-curve Backus et al. (1994) with the function crossing

2The approximate band-pass filter permits decomposition of a series between specified
frequency bands corresponding to the low, business cycle and high frequencies of the
spectrum. The filter, designed to make the filtered series stationary if the raw series is
integrated of order one or two, employs a centered moving average method using up to 12
weighted leads and lags.

3In particular, our cross-correlation function displays a larger similarity with the shape
of the post-72 rather than with the shape of the pre-72 Backus et al. cross-correlation
function.

4Trade balance and the terms of trade are labeled tb and tt, respectively.
5A deterioration of the terms of trade improve competitiveness, as the price of imports

increases relatively to the price of exports, and thus the balance of trade tends to increase
as exports increase and imports diminish (the so-called J-curve effect).
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Figure 2: Wavelet cross-correlation between terms of trade and trade balance
for US

the axis to the left of k=0 and a large positive peak at lag four.6 For wavelet
scales d4 and d3 these peaks represent the largest positive cross-correlation
and thus, for these wavelet scales, we conclude that the balance of trade lags
the terms of trade by four quarters. The cross-correlation function reported
in the bottom panels depicts a strong contemporaneous negative relation-
ship between the two variables at the shortest scales, that is d2 and d1, as
the largest cross-correlation occurs at lag zero and is negative. Finally, the
magnitude of the wavelet cross-correlation coefficients tends to decrease and
do not exhibit cross-correlations significantly different from zero as the lags
get larger when the wavelet scale decreases.

Figure 4 about here
6We say that a variable x lags (leads) another variable y by k quarters if the maximum

correlation value verifies at yt,xt+k (yt,xt−k).
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4 Nonparametric analysis

When the crystals v5, w5,......, w1 are translated back into the time domain
we may obtain the smooth V5 and detail W5,......, W1 signals which repre-
sent the multiresolution decomposition of the original signal (or time series).
As the smooth and details signals represent components of the original signal
at different resolution levels we may analyze the characteristics of the rela-
tionship between the trade balance and the terms of trade at the different
time horizons.

In a parametric framework the response of the trade balance to terms
of trade (or exchange rate) movements may be explored within the context
of vector autoregression (VAR) model through the analysis of the impulse
response function, as it provides the response of the VARs variables follow-
ing an i.i.d. shock. As VARs are reduced-form model, the interpretation
of such shocks as structural shocks requires a clear understanding of the
causal relationship among the variables of the model, 7 as these identifying
assumptions are crucial for identification of the structural shocks.

In what follows we apply a methodology that allows us exploring the
issues related to the relashionship between the trade balance and the terms
of trade for US without making any a priori explicit or implicit assumption
about the form of the relationship, that is nonparametric regression. Indeed,
nonparametric regressions can capture the shape of a relationship between
variables without us prejudging the issue, as they estimate the regression
function f(.) linking the dependent to the independent variables directly,
without providing any parameters estimate. 8 There are several approaches
available to estimate nonparametric regression models,9 and most of these
methods assume that the nonlinear functions of the independent variables
to be estimated by the procedures are smooth continuos functions. One such
model is the generalized additive regression model (GAM),10

yi = α+
k∑

j=1

fj (xij) + εi (1)

where the functions fj(.) are smooth regression functions to be estimated
from the data, and the estimates of fj(xij) for every value of xij , written

7The ordering of the variables in the Choleski decomposition.
8The traditional nonlinear regression model introduce nonlinear functions of dependent

variables using a limited range of transformed variables to the model (quadratic terms,
cubic terms or piecewise constant function). An example of a methodology testing for
nonlinearity without imposing any a priori assumption about the shape of the relationship
is the smooth transition regression used in Eliasson (2001).

9See Fox (2000a, 2000b) for a discussion on nonparametric regression methods.
10GAMs were introduced by Hastie and Tibshirani (1986) and are described in detail

in Hastie and Tibshirani (1990).
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as f̂j(xij), are obtained using a fitting alghoritm known as backfitting.11

Such a model allows us to gain more flexibility, as it replaces the linear-
ity assumtpion with some univariate smooth functions in a nonparametric
setting, but retain the additivity assumption. Moreover, an important ad-
vantage of GAMs is the possibility to evaluate the statistical significance of
the smooth nonparametric components. Two smoothing functions are avail-
able to estimate these partial-regression functions fj(.), that is spline and
locally-weighted regression smoothers. Both smoothers have similar fits with
the same equivalent number of parameters, but the local regression (loess)
method developed by Cleveland (1979) provides robust fitting when there
are outliers in the data, support multiple dependent variables and computes
confidence limits for predictions when the error distribution is symmetric,
but not necessarily normal. In the loess method the regression function is
evaluated at each particular value of the independent variable, xi, using a
local neighborhood of each point and the fitted values are connected in a
nonparametric regression curve. In fitting such a local regression, a fixed
proportion of the data is included in each given local neighborhood, called
the span of the local regression smoother (or the smoothing parameter), and
the data points are weighted by a smooth function whose weights decrease
as the distance from the center of the window increases.

Thus, we estimate, for each time scale component, a simple additive
model of the balance of trade on the terms of trade (and an intercept α),

TBt = α+ lo (TTt) + εt (2)

where TBt is trade balance, TTt the terms of trade and lo(.) is the
locally weighted regression smoother (loess). The solid lines in figure 4
show the nonparametric estimate of the regression function evaluated at
the longest scale, V5, as well as at all other scales, from W5 to W1, for
the terms of trade using a span=0.6.12 These smooth plots are drawn by
connecting the points in plots of the fitted values for each function against
its regressor, while the dashed lines above and below the smooth curves
are constructed, at each of the fitted values, by adding and subtracting
two pointwise standard-error.13 Thus, the plot of TT versus l̂o (TT ) will
reveal the nature of the estimated relationship between the dependent (trade
balance) and the dependent variables (terms of trade), other things in the

11A full description of how the alghoritm works in GAMs is available in Hastie and
Tibshirani (1990).

12We use different smoothing parameters in estimating equation [2], but our main find-
ings do not show excess sensitivity to the choice of the span in the loess function within
what appear to be reasonable ranges of smoothness ( i.e. between 0.3 and 0.8).

13Under additional assumptions of no bias these upper and lower curves can be viewed
as approximate 95% pointwise confidence intervals bands.
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model being constant. Three main results emerge from the analysis of the
nonparametric fitted functions in figure 4. First, at the longest scale a long-
run negative relationship emerges between the trade balance and the terms of
trade, a relationship that strenghtens for the terms of trade in the 2nd half of
the sample. Second, at the scales (with the exception of the finest scale, W1)
the nonparametric fitted functions of the independent variables exhibit very
different patterns across scales. Indeed, while the relationship between the
terms of trade and the trade balance is positive (negative) at the medium-
time horizon (W5, W4 scales), it is negative (absent) at a short-time horizon
(W3, W2 scales). In this way, unfavorable movements in terms of trade (due,
for example, to a devaluation) will deteriorate the trade balance at a short-
time horizon and improve it at a medium-time horizon. Thus, the time-
scale evidence about the effects of the terms of trade on the trade balance
seem to be compatible with a J-curve pattern of the trade balance with the
”import value effect” prevailing at the shortest scales W2,W3 (worsening the
trade balance first) and the ”volume effect” prevailing at the coarsest scales
W4,W5 (improving the trade balance later).14

Table 1 about here
Finally, in order to evaluate the statistical significance of the nonpara-

metric fitted functions at the different time scales we report in Table 1 the
results of a type of score test from the additive regression model estimated
in equation (6). The column headed ”Nonpar d.f.” contains the nonpara-
metric degrees of freedom used up by the fit. They are related to the com-
plexity of the nonparametric curve fitted, as the more complex the curve,
the higher the peanlty for complexity and the more the degrees of freedom
lost (there are no exact degrees of freedom as, due to the nonparametric na-
ture of GAMs, no parameters estimate are obtained). The column headed
”Nonpar χ2” contains an approximate χ2-statistic (see Bowman and Azza-
lini, 1997, p.163) and represents a type of score test to evaluate, through
the p-values reported in the last column, the nonlinear contribution of each
nonparametric term in the additive regression model. The F-values for non-
parametric effects reported in Table 1 indicate that the significance of the
nonparametric terms gets larger as the wavelet scale increases, while the
nonparametric terms of the finest scales, W2 and W1, are not significant at
the usual signficance levels.

Table 1: F-values for nonparametric effects for TBt = α +
lo (TTt) + εt

14The terms ”import value effect” and ”volume effect” are from Krugman and Obstfeld
(2001).

10



Nonpar. d.f. Nonpar. χ2 P(χ2)
V5 1.3 22.879 0.000
W5 2.2 12.454 0.000
W4 3.3 5.638 0.001
W3 3.7 2.545 0.045
W2 4 0.780 0.540
W1 3.4 0.5112 0.695

The results from the analysis of the nonparametric fitted functions and
of the F-values for nonparametric effects suggest that the response of trade
balance to terms of trade changes is not uniform across scales: the rela-
tionship appears to be negative at the finest scales, W2 and W3, positive at
the coarsest scales, W4 and W5, and negative at the longest possible scale,
V5, while as regards the significance of the nonparametric terms the results
indicate that it tends to increase as the wavelet scale increases.

5 Conclusions

In this paper we apply a relatively new statistical tool, wavelet analysis, to
investigate the relationship between the trade balance and the terms of trade
at the different time scales. Thus, after decomposing the trade balance (de-
fined as the ratio of net exports to output) and the terms of trade (defined
as the relative price of imports to exports) into their time-scale components
using to the maximum overlap discrete wavelet transform (MODWT), we
analyze the relationship among these variables at the different time scales
using i) wavelet correlation analysis, as wavelet coefficients may provide
information about the contemporaneous and the lead/lag relationship be-
tween the two processes at the various time scales; and ii) nonparametric
regression models (GAMs), as this framework may enable us to evaluate
the signficance of the dynamic relationships among these variables without
making any a priori explicit or implicit assumption about the shape of the
relationships.

There are two main findings emerging from the time scales analysis of
the trems of trade - trade balance relationship. First, wavelet correlation
analysis indicates that, if the association between the trade balance and
the terms of trade depends mainly on the elasticity of substitution between
foreign and domestic goods, the Armington elasticities may be different
across scales, and in particular, tend to get larger as the time horizon of the
agents increases. Second, the analysis of the nonparametric fitted functions
and of the F-values for nonparametric effects suggests that the response of
the trade balance to movements in the terms of trade is not uniform across
scales and the significance of the nonparametric terms gets larger as the
wavelet scale increases. Moreover, while no relationship seems to occur at
the lowest scale, 1, the relationship appears to be negative at the finest
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scales, 2 and 3, positive at the coarsest scales, 4 and 5, and negative at the
longest possible scale (the trend resolution level). Thus, the sign of the long-
run relationship between the trade balance and the terms of trade seems to
provide support to the existence of the Harberger-Laursen-Metzler effect .
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A Wavelet analysis

Coming back to wavelets and going into some mathematical detail we may
note that there are two basic wavelet functions: the father-wavelet and the
mother-wavelet. The formal definition of the father wavelets is the function

φJ,k = 2−
J
2 φ

(
t− 2Jk

2J

)
(3)

defined as non-zero over a finite time length support that corresponds to
given mother wavelets

ψJ,k = 2−
J
2 ψ

(
t− 2Jk

2J

)
(4)

with j = 1, . . . , J in a J-level wavelets decomposition. The former inte-
grates to 1 and reconstructs the longest time-scale component of the series
(trend), while the latter integrates to 0 (similarly to sine and cosine) and
is used to describe all deviations from trend. The mother wavelets, as said
above, play a role similar to sins and cosines in the Fourier decomposition.
They are compressed or dilated, in time domain, to generate cycles fitting
actual data.

For a discrete signal or function f1, f2, ...., fn, the wavelet representation
of the signal or function f (t) in L2 (R) can be given by

f (t) =
∑

k

sJ,kΦJ,k (t)+
∑

k

dJ,kΨJ,k (t)+...+
∑

k

dj,kΨj,k (t)+...+
∑

k

d1,kΨ1,k (t)

(5)
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where J is the number of multiresolution components or scales, and k
ranges from 1 to the number of coefficients in the specified components. The
coefficients djk and sJk of the wavelet series approximations in [3] are the
details and smooth wavelet transform coefficients representing, respectively,
the projections of the time series onto the basic functions generated by the
chosen family of wavelets, that is

dj,k =
∫
ψj,kf(t)dt

sJ,k =
∫
φJ,kf(t)dt

for j = 1, 2, ...., J . The smooth coefficients sJk mainly capture the un-
derlying smooth behaviour of the data at the coarsest scale, while the details
coefficients d1k, .., djk, .., dJk, representing deviations from the smooth be-
haviour, provide progressively finer scale deviations. Each of the sets of the
coefficients sJ , dJ , dJ−1, ..., d1 is called a crystal.

The multiresolution decomposition of the original signal f (t) is given by
the following expression

f (t) = SJ +DJ +DJ−1 + ...+Dj + ...+D1 (6)

where SJ =
∑
k

sJ,kΦJ,k (t) and Dj =
∑
k

dJ,kΨJ,k (t) with j = 1, . . . , J .

The sequence of terms SJ , DJ , ..Dj , ..., D1 in (4) represent a set of signals
components that provide representations of the signal at the different res-
olution levels 1 to J , and the detail signals Dj provide the increments at
each individual scale, or resolution, level.

In addition to the features stated in the appendix Whitcher et al. (1999,
2000) have extended the notion of wavelet covariance for the maximal over-
lap DWT (MODWT) and defined the wavelet cross covariance and wavelet
cross correlation between two processes. The maximal overlap DWT (MODWT)
may be regarded as a modified version of the discrete wavelet transform
(DWT), but as MODWT employs circular convolution the coefficients gen-
erated by both beginning and ending data could be spurious.15 For a signal
f (t) the MODWT applying the Daubechies compactly supported wavelet
produces J vectors of wavelet coefficients ŵ1, ŵ2, ..., ŵJ and one vector of
scaling coefficients, ŝJ . The wavelet variance for a signal f (t) is defined
to be the variance of the wavelet coefficients at scale 2j−1 and an unbiased
estimator using the MODWT after removing all coefficients affected by the
periodic boundary conditions through

v̂2
f(t)

(
2j−1

)
=

1

N̂j

N−1∑
t=LJ−1

ŵ2
j,t (7)

15If the lenght of the filter is L, there are
`
2j − 1

´
(L− 1) coefficients affected for

2j−1-scale wavelet and scaling coefficients, while
`
2j − 1

´
(L− 1) − 1 beginning and`

2j − 1
´
(L− 1) ending components in 2j−1 -scale details and smooth would be affected

(Perival and Walden, 2000).
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where N̂j = N
2j−Lj

with Lj =
[
(L− 2)

(
1− 2j

)]
being the lenght of the

scale 2j−1 wavelet filter, and the vector ŵ are n-dimension vectors con-
taining the coefficients sJ , dJ , ......, d1 of the wavelet series approximations.
Thus level j wavelet variance is simply the variance of the wavelet coeffi-
cients at that level (Gencay et al., 2002). Similarly, the covariance is defined
to be the covariance between the scale wavelet coefficients of f (t) and g (t).
Again, after removing all wavelet coefficietns affected by the boundary con-
ditions, an unbiased estimator of the wavelet covariance using the MODWT
may be given by:

Ĉovf(t)g(t)

(
2j−1

)
=

1

N̂j

N−1∑
t=LJ−1

ŵf(t)
j,t ŵg(t)

j,t (8)

Analogously to the usual unconditional correlation coefficients, the MODWT
estimator of the wavelet cross correlation coefficients may then be obtained
making use of the wavelet covariance Ĉovf(t)g(t) and the square root of their
wavelet variances v̂2

f(t) and v̂2
g(t) as follows:

ρ̂f(t)g(t)

(
2j−1

)
=

Ĉovf(t)g(t)

(
2j−1

)
v̂f(t) (2j−1) v̂g(t) (2j−1)

(9)
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