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Gasoline Price Effects on Traffic Safety in Urban and Rural Areas:  1 
Evidence from Minnesota, 1998–2007 2 

 3 
Abstract 4 
A large literature base has found that economic factors have important effects on traffic crashes. 5 
A small but growing branch of literature also examines the role that gasoline prices play in the 6 
occurrence of traffic crashes. However, no studies have investigated the possible difference of 7 
these effects between urban and rural areas. In this study, we used the monthly traffic crash data 8 
from 1998–2007 at the county level in Minnesota to investigate the possibly different effects 9 
gasoline prices may have on traffic crashes in urban versus rural areas. The results indicate 10 
significant difference of gasoline price effects on total crashes in urban versus rural areas. 11 
Gasoline prices also significantly affect the frequency of injury crashes in both urban and rural 12 
areas; however, the difference is not significant. Gasoline prices have no significant effects on 13 
the frequency of fatal crashes in urban and rural areas. As expected, vehicle miles traveled play a 14 
bigger role on the incidence of injury and fatal crashes. The results concerning the differences 15 
between urban and rural areas have important policy implications for traffic safety planners and 16 
decision makers. 17 
 18 
1. Introduction 19 
 20 
A large body of literature has found that economic factors have important effects on traffic safety 21 
(see Traynor, 2008, for a review of the literature). These studies generally found that, in a stable 22 
or prosperous economy, people drive more and drive more aggressively, leading to a decreased 23 
level of traffic safety; in contrast, in economic downturn, people drive less and drive more 24 
carefully, leading to improved traffic safety. Income and unemployment are the two most 25 
thoroughly studied economic factors linked to traffic safety in existing studies. 26 
 27 
An increasing, but still limited, number of studies has also examined the possible role that 28 
gasoline prices play in affecting traffic safety (e.g., Chi, Cosby, Quddus, Gilbert, & Levinson, 29 
2010). These studies have found that rising gasoline prices lead to fewer people on the road, 30 
which in turn reduces occurrence of traffic crashes. These studies analyzed the association of 31 
gasoline prices to total traffic crashes (Chi et al., 2010, 2011; Huang & Levinson, 2010), fatal 32 
crashes (Grabowski & Morrisey, 2004, 2006; Leigh & Geraghty, 2008; Leigh & Wilkinson, 33 
1991), drunk-driving crashes (Chi et al., 2011), and motorcycle crashes (Hyatt, Griffin, Rue, & 34 
McGwin, 2009; Wilson, Stimpson, & Hilsenrath, 2009), as well as the demographic variations of 35 
the association (Chi et al., 2010, 2011; Grabowski & Morrisey, 2004; Hyatt et al., 2009). 36 
 37 
However, no studies have examined the possible variation of the association of gasoline prices to 38 
traffic crashes in urban versus rural areas. The response to rising gasoline prices may differ 39 
between urban and rural areas because of their different commuting behavior characteristics, 40 
transportation infrastructure, and socioeconomic contexts (Levinson & Wu, 2005). In this study, 41 
we use monthly traffic crash data from 1998–2007 at the county level in Minnesota to investigate 42 
the possibly different effects of gasoline prices on total crashes, injury crashes, and fatal crashes 43 
in urban versus rural areas. 44 
 45 
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This manuscript is organized into five additional sections. The next section provides an extensive 1 
summary of existing studies on the relationship between gasoline prices and traffic safety. The 2 
two following sections introduce the data related to monthly traffic crashes in Minnesota from 3 
1998–2007 and address the methods that directed our analyses. The results section reports our 4 
findings. Finally, the present study concludes with a summary and discussion of our results. 5 
 6 
2. Prior research 7 
 8 
A large body of literature has found an association between economic factors and traffic safety 9 
(e.g., Kopits & Cropper, 2005; Scuffham, 2003; Sivak & Schoettle, 2010; Traynor, 2008, 2009). 10 
The literature suggests that, in developed countries, economic downturn generally leads to 11 
improved traffic safety. Income and employment have been studied the most among economic 12 
factors linked to traffic safety. Lower income forces people to drive less by reducing trip 13 
frequency and distance, switching from personal vehicles to public transportation, converting 14 
single-purpose trips to multi-purpose trips, and reducing vacation trips in order to save on 15 
gasoline expenditures. Higher unemployment rates reduce work-related trips. However, the 16 
possible linkage of gasoline prices to traffic safety is largely neglected in existing literature. 17 
 18 
The relationship between gasoline price changes and traffic safety has been studied in a limited 19 
body of literature. Our literature search resulted in nine journal articles that are specifically 20 
focused on gasoline prices (or taxes) and traffic crashes. These studies produced understanding 21 
on the relationship between gasoline prices and traffic crashes from six perspectives: gasoline 22 
price effects on total traffic crashes, gasoline price effects on fatal crashes, gasoline price effects 23 
on drunk-driving crashes, gasoline price effects on motorcycle crashes, the effects by 24 
demographic characteristics, and the short-term or long-term effects (Table 1).   25 
 26 

[Table 1 about here] 27 
 28 

First, the three most recent studies examined gasoline price effects on total traffic crashes. Using 29 
Mississippi monthly traffic crash data from April 2004–December 2008, Chi et al. (2010, 2011) 30 
examined the relationship of gasoline prices with traffic crashes.  Their findings indicate that 31 
rising gasoline prices lead to reduction in both the frequency and rate of traffic crashes. They 32 
argued that traffic crash frequency is reduced because drivers may reduce travel frequency and 33 
distance for non-work trips as well as switch from personal vehicles to carpool or public 34 
transportation in response to gasoline price increases. They also argued that the rate of traffic 35 
crashes was reduced because drivers may improve their driving behaviors by reducing immediate 36 
braking or speeding in response to gasoline price increases. Similarly, Huang and Levinson 37 
(2010) found that higher gasoline prices reduced traffic levels and reduced traffic reduced total 38 
crashes from 2001–2007 in Minnesota. 39 
 40 
Second, the majority of the literature (five out of eight articles) is focused on fatal crashes. All 41 
these studies used the Fatality Analysis Reporting System (FARS) data (with one exception, 42 
which used data from the Centers for Disease Control and Prevention) to study gasoline price 43 
effects on incidence of fatal crashes in the United States over a relatively long time period. For 44 
example, the study by Wilson et al. (2009) was conducted over an eighteen-year period. 45 
Grabowski and Morrisey (2004, 2006) conducted their studies over an eight-year period. The 46 



Chi, Quddus, Huang, and Levinson    4 

  

respective studies of Leigh and Wilkinson (1991) and Leigh and Geraghty (2008) were each 1 
conducted over a four-year period. These studies found that gasoline price increases lead to 2 
reduction in automobile traffic fatalities, but increase in motorcycle traffic fatalities. 3 
 4 
Third, only one study has examined gasoline price effects on occurrence of drunk-driving 5 
crashes. Still using Mississippi monthly traffic crash data from April 2004–December 2008, Chi 6 
et al. (2011) found that increasing gasoline prices do lead to reduction in drunk-driving crashes. 7 
Gasoline prices have greater effects on less severe crashes (e.g., property damage only crashes), 8 
whereas alcohol consumption has greater effects on more severe crashes. Overall, gasoline prices 9 
and alcohol consumption have greater effects on drunk-driving crashes than on total crashes. 10 
 11 
Fourth, two studies (Hyatt et al., 2009; Wilson et al., 2009) have examined the association 12 
between gasoline price increases and motorcycle crashes. They found that as gasoline prices rise, 13 
more people switch to motorcycles as the main mode of transportation. That, in turn, leads to 14 
more motorcycle injury and fatal crashes. Controlling for the number of registered motorcycles, 15 
however, motorcycle crash rates remain relatively constant (Hyatt et al., 2009). This suggests 16 
that the association between gasoline prices and motorcycle crashes are a result of the increasing 17 
number of motorcycles on the road rather than a function of driving behaviors.  18 
 19 
Fifth, some of the studies mentioned above have also addressed the demographic variation of the 20 
effects. In general, gasoline price increases have a higher impact on younger drivers than on 21 
older drivers (Chi et al., 2010; Grabowski & Morrisey, 2004), a higher impact on female drivers 22 
than on male drivers (Chi et al., 2010; Chi et al., 2011), and a similar impact on white drivers and 23 
black drivers (Chi et al., 2010; Chi et al., 2011). While Hyatt et al. (2009) also found that the 24 
association between gasoline prices and traffic crashes differed statistically significantly by age 25 
and gender, the actual differences were found to be negligible.  26 
 27 
Sixth, gasoline prices were also found to have both short-term (immediate) and long-term 28 
(delayed) effects. While most of the studies only examined the short-term effects of gasoline 29 
price changes on traffic crashes, two studies (Chi et al., 2010; Grabowski & Morrisey, 2004) 30 
investigated both the immediate and delayed effects. They found that the immediate effects are 31 
generally stronger than the delayed effects. 32 
 33 
In summary, existing studies have examined gasoline price effects on traffic crashes by crash 34 
types, demographic characteristics, and the endurance of effects. Nevertheless, the possible 35 
difference of the effects between urban and rural areas has not been investigated. Urban and rural 36 
areas have different commuting behavior characteristics and transportation infrastructure levels 37 
(Levinson & Wu, 2005), which may alter gasoline price effects on traffic crashes. 38 
 39 
3. Data  40 
 41 
In this study, we examine the possibly different effects of gasoline prices on the incidence of 42 
traffic crashes in urban versus rural areas on the basis of county-level data from 1998–2007 in 43 
Minnesota. The data include monthly total crashes, fatal crashes, and injury crashes, monthly 44 
retail gasoline prices, and urban status. We also obtained data on variables that are potentially 45 
related to traffic crashes; these included vehicle miles traveled (VMT), percentages of young 46 
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population, unemployment rate, road types, percentages of employees by industry, and 1 
drunkenness. The descriptive statistics of the variables are shown in Table 2. 2 

 3 
[Table 2 about here] 4 

 5 
3.1.  Total crashes, fatal crashes, and injury crashes 6 
 7 
The crash data used in this study are vehicle-related crashes from 1998–2007 at the county level 8 
in Minnesota. The dataset, collected and compiled by the Minnesota Office of Traffic Safety, 9 
catalogues each crash’s time, date, location, and level of severity. From this dataset, we 10 
generated the number of total crashes, fatal crashes, and injury crashes for each county for every 11 
month from 1998–2007. 12 
 13 
3.2.  Gasoline prices 14 
 15 
Gasoline prices were obtained from the U.S. Department of Energy’s Energy Information 16 
Administration (2010). The per-gallon prices are the average retail prices from all gasoline 17 
outlets in Minnesota. The data were collected for every month from 1998–2007. Gasoline prices 18 
are adjusted for inflation in January 2008 dollars. 19 
 20 
3.3.  Urban/rural status 21 
 22 
There are many urban and rural classifications, but a standard does not exist (Balk, 2009). In this 23 
study, we classify our urban and rural counties by using a combination of the 1990 Census 24 
Urbanized Areas as delineated by the U.S. Census Bureau and the 2003 Metropolitan and 25 
Micropolitan Statistical Areas (MMSAs) as defined by the U.S. Office of Management and 26 
Budget. The 1990 Census Urbanized Areas are mostly principal cities, which consist of densely 27 
settled territory that contains at least 50,000 people. The counties that fall into the metropolitan 28 
statistical areas and contain urbanized areas are classified as urban counties, which include 29 
Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, Washington (the seven major Twin Cities 30 
counties), Olmsted (Rochester), St. Louis (Duluth), and Stearns (St. Cloud). The other 77 31 
counties are classified as rural counties. The urban and rural status is illustrated in Figure 1. 32 
 33 

[Figure 1 about here] 34 
 35 

3.4.  Control variables 36 
 37 
Traffic crashes in general are affected by four categories of variables: traffic characteristics, road 38 
characteristics, socioeconomic factors, and drunk driving (Quddus, 2008). In this study, we 39 
control for the four categories of variables. 40 
 41 
First, VMT is an important variable to explain the variation of crashes on road (Huang & 42 
Levinson, 2010). We use VMT estimates by county and month in this study. The Minnesota 43 
Department of Transportation compiled and reported the annual VMT by county from 1998–44 
2007. We estimate monthly VMT at the county level on the basis of the hourly traffic volume 45 
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data from 1998–2007 collected by Automatic Traffic Recorder Stations (ATR) set up on the 1 
state’s interstates, trunk highways, county state aid highways, and municipal state aid streets.1

 3 
  2 

Second, road characteristics are found to be associated with crash occurrences (Quddus, 2008). 4 
Road types are used in this study to represent road characteristics. Minnesota has three types of 5 
roads: freeways, arterial roads, and local roads. Road type data are obtained from the Minnesota 6 
Department of Transportation (2010). The percentages of arterial roads and locals roads in each 7 
county are calculated and used in the analysis. 8 
 9 
Third, four socioeconomic variables measuring young population and employment are controlled 10 
for in the analysis. The percentage of the young population (ages 16–25) is used as a control 11 
variable. Young drivers are more likely to get involved in crashes than older drivers. The cohort 12 
with the highest crash rate consists of younger drivers under the age of 24. Their high crash rates 13 
have been attributed to immaturity and driving inexperience, poor risk perception, excessive risk-14 
taking, poor vehicle handling skills, and comparatively high incidences of nighttime driving (e.g., 15 
Arnett, 2002; Williams, 2003; Williams, Preusser, & Ferguson, 1998). 16 
 17 
Unemployment rates are used as a control variable because economic conditions affect 18 
consumers’ ability to afford gasoline, which, in turn, affects the occurrence of traffic crashes 19 
(Graham & Glaister, 2003; Leigh & Wilkinson, 1991; Quddus, 2008). The unemployment rates 20 
for each county for each month from 1998–2007 are obtained from the Minnesota Department of 21 
Employment and Economic Development (2011). The percentages of employees working in the 22 
service industries and the agricultural industry, the two main industries in Minnesota, are also 23 
used to represent employment. The data are derived from the 2000 U.S. Census Bureau and are 24 
available at the county level. 25 
 26 
Fourth, drunkenness in each county is used as a control variable. Alcohol intoxication impairs a 27 
driver’s risk assessment and safe driving skills (Leigh & Wilkinson, 1991). The drunkenness 28 
measure is obtained from the County Health Rankings, a collaborative project conducted by the 29 
University of Wisconsin-Madison Population Health Institute (2011) and the Robert Wood 30 
Johnson Foundation. Their data measure excessive drinking in each county on the basis of the 31 
2003–2009 Behavioral Risk Factor Surveillance System (BRFSS) by the Centers for Disease 32 
Control and Prevention (2011). 33 
 34 
These variables, however, do not all vary by month and county (Table 2). Only crashes, 35 
unemployment, and VMT are both time-variant and space-variant. Gasoline prices are time-36 
variant but space-invariant. Other variables (percentage of young population, road types, 37 

                                                 
1 Some counties have ATR stations, but others do not. The procedures for estimating their VMTs are different. For a 
county that has at least one ATR station, the monthly traffic counts from the ATR stations in the county are 
calculated, based on which the ratio of traffic counts in each month to annual traffic counts is further computed. One 
important assumption to estimate monthly VMT is that the distribution of VMT by month in a county is the same as 
the distribution of the traffic counts by month in the county. Thus the ratio of traffic counts in each month to annual 
traffic counts is used as the ratio of VMT by month. Based on the annual VMT and the ratio of VMT by month, we 
can estimate the monthly VMT for the county with at least one ATR. For a county without ATR stations, we 
calculate the state-wide monthly traffic count ratio based on the traffic counts from all stations and use the monthly 
traffic ratio as the monthly VMT ratio.  
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percentage of employees by industry, and drunkenness) are space-variant but time-invariant. The 1 
invariance by time or by space limits the robustness of the results. 2 
 3 
4. Methods 4 
 5 
The objective of this study is to develop a relationship between incidence of traffic crashes and 6 
gasoline prices while controlling for other factors using the data related to traffic crashes in 7 
Minnesota as discussed above. Two issues need to be considered when selecting a suitable 8 
statistical model: 9 
 10 

1. traffic crashes are random and non-negative count events 11 
2. the data are panel or longitudinal (i.e., cross-sectional and time-series) 12 

 13 
According to the crash modeling literature (e.g., Shankar, Albin, Milton, & Mannering, 1998; 14 
Chin & Quddus, 2003), appropriate models for panel count data are random- or fixed-effects 15 
Poisson models and random- or fixed-effects negative binomial models. These models are 16 
adequate tools on the condition that panel data should preserve stationarity (i.e., the monthly 17 
crash data are not serially correlated). Since crash data normally exhibit overdispersion (i.e., 18 
mean is higher than variance), the application of Poisson models may be inappropriate (c.f., Lord 19 
& Mannering, 2010). A random- or fixed-effects negative binomial model should be employed. 20 
This is expressed as follows: 21 

 22 

0

( , )
log( )

it i it i

it it i

Y Poisson k
X u
α λ

λ β β

= + + 



        (1) 23 

 24 
in which exp( )i iuα = . 25 
Yit represents the annual number of observed traffic crashes recorded in a county i at month t . 26 
This is assumed to be a Negative Binomial (NB) distributed with parameters and ki, where 27 

 refers to the individual effect (county-specific); ki is the NB overdispersion parameter; β0 is the 28 
intercept term. In the fixed-effects model,  is assumed to be a fixed and unknown parameter. 29 

 stands for the vector of explanatory variables, and  is the vector of parameters to be 30 
estimated. In the random-effects model,  is assumed to be an independently and identically 31 
distributed (iid) random variable. Yit has mean iλit/ki and variance ( iλit/ki)×(1+ i/ki), in which 32 
(1+ i/ki)-1 is assumed to be beta distributed with Beta (r, s). 33 
 34 
On the one hand, a fixed-effects model cannot handle time-invariant variables but county-35 
specific unobserved variables are allowed to be correlated with the regressors. On the other hand, 36 
a random-effects model can handle time-invariant variables, but there is a strong assumption that 37 
country-specific unobserved factors are uncorrelated with the regressors.  Since the dataset 38 
contains some time-invariant variables, a random-effects NB model is preferred. However, one 39 
can employ a Hausman (1978) test to identify the suitable model.  40 
 41 
Since the panel data used in this study have a large number of temporal units (i.e., T=120) for 42 
each of the counties (N=87), the Levin-Lin-Chu (LLC) unit-root test (Levin, Lin, & Chu, 2002) 43 
suitable for panel data was performed to see whether the monthly crashes exhibit stationarity. 44 
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The null hypothesis for the test states that all the panels contain a unit root. Different 1 
specifications of the LLC test (i.e., cross-sectional correlation) were examined, and the results 2 
suggest that the monthly traffic crashes by county in Minnesota are not serially correlated. This 3 
implies that a random-effects NB model can be applied to the data. 4 
 5 
It may be argued that gasoline price may be correlated with VMT. The data, however, show a 6 
correlation coefficient of only 0.02 between gasoline prices and VMT. Some of the other 7 
independent variables were found to be highly correlated with each other (e.g., population and 8 
monthly VMT; the percentage of non-Hispanic blacks and road density); therefore, less 9 
interesting variables were excluded from the analysis.  10 
 11 
Based on the stated hypotheses, two models were estimated. In the first model, crash counts are a 12 
function of gasoline prices and control variables. In the second model, crash counts are a 13 
function of gasoline prices, urban status, the interaction term of gasoline prices and urban status, 14 
and control variables. Since the effect of gasoline prices on traffic crashes may vary by crash 15 
types, each of the two models were estimated for three crash categories: total crashes, injury 16 
crashes and fatal crashes. The results are discussed in the next section.  17 
 18 
5. Results 19 
 20 
5.1.  Gasoline prices and crashes 21 
 22 
The first step is to illustrate the relationship between gasoline prices and traffic crashes.  For that 23 
purpose, Figure 2 shows gasoline prices (adjusted for inflation in January 2008 dollars), total 24 
traffic crashes, fatal crashes, and injury crashes from 1998–2007 in Minnesota. The data were 25 
aggregated to the quarterly level in order to eliminate monthly fluctuations. Gasoline prices and 26 
crashes are further standardized by indices (the first quarter of 1998 = 100) to better illustrate the 27 
relationship between their corresponding lines. Figure 2 approximately demonstrates a negative 28 
association between gasoline prices and traffic crashes: as gasoline prices rise, incidence of the 29 
three types of crashes is reduced; as gasoline prices fall, incidence of the three types of crashes 30 
increases. A strong negative association marks the relationship between gasoline prices and total 31 
crashes, whereas the negative association between gasoline prices and fatal crashes is weak. 32 
 33 

[Figure 2 about here] 34 
 35 
The results from the random-effects negative binomial regression models support the above 36 
observation (Appendix A). To facilitate the interpretation, we calculate the coefficients (in terms 37 
of both factor change and percentage change) of explanatory and control variables, when they 38 
are statistically significant at the level of p ≤ 0.1 for a two-tail test (Table 3). Formulas (2) and (3) 39 
are employed to calculate the effect of a specific explanatory variable (e.g., gasoline prices) on a 40 
dependent variable (e.g. total traffic crashes) in terms of factor change and percentage change by 41 
using the estimated coefficient for that explanatory variable. 42 
 43 
Factor change = exp( )β         (2) 44 
Percentage change = { }100 exp( ) 1β× −       (3) 45 
 46 
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For a one-unit increase in gasoline prices (i.e., $1), the expected total traffic crashes decrease by 1 
a factor of 0.741, or by 25.9%, holding all other variables constant (Table 3). Total crash counts 2 
are also affected by other variables. Total crash counts seem to be affected by VMT statistically 3 
significantly—for every one-million increase in monthly VMT, total crash counts increase by 4 
0.03%.  The drunkenness score and the percentage of service employees are positively associated 5 
with total crash counts. The percentage of the young population, unemployment rate, and the 6 
percentage of agricultural employees are associated negatively with total crash counts. 7 
 8 

[Table 3 about here] 9 
 10 
According to our results, gasoline prices, however, do not have statistically significant effects on 11 
injury and fatal crashes. One reason for this outcome may be that VMT is the major causal factor 12 
for injury and fatal crashes—VMT is the most statistically significant variable in the models 13 
examining injury and fatal crashes (Appendix A). For a one-million increase in monthly VMT, 14 
the frequency of injury crashes increases by 0.12%, and the frequency of fatal crashes increases 15 
by 0.3% (Table 3). The unemployment rate also has statistically significant effects on reducing 16 
injury and fatal crashes (Appendix A). For a one-percent increase in the unemployment rate, 17 
injury crashes decrease by 4.83% and fatal crashes decrease by 6.68%.  The drunkenness score 18 
affects fatal crashes: a one-unit increase in the drunkenness score is associated with a 14% 19 
increase in the number of fatal crashes. 20 
 21 
5.2. Difference of the effects between urban and rural counties 22 
 23 
We further examine the possible variations of gasoline price effects on crashes between urban 24 
and rural counties. For each one of Models 1, 2, and 3, we added a dummy variable indicating 25 
urban status (1=urban; 0=rural) and an interaction variable between gasoline prices and urban 26 
status (Appendix B). The coefficients (in terms of both factor change and percentage change) of 27 
explanatory and control variables (when statistically significant at the level of p ≤ 0.1 for a two-28 
tail test) are shown in Table 4. Formulas (4–7) are employed to calculate the effect of gasoline 29 
prices on a dependent variable (e.g., total traffic crashes) in rural and urban areas in terms of 30 
factor change and percentage change by using the estimated coefficients from Appendix B. 31 
 32 
Factor change in rural counties =  exp( )gasolineβ      (4) 33 
Factor change in urban counties = exp( )gasoline interactionβ β+     (5) 34 

Percentage change in rural counties = { }100 exp( ) 1gasolineβ× −    (6) 35 

Percentage change in urban counties = { }100 exp( ) 1gasoline interactionβ β× + −   (7) 36 
 37 
Higher gasoline prices reduce the total traffic crashes in both rural and urban areas (Table 4). For 38 
a $1 increase in gasoline prices, the expected total crashes in rural areas decrease by a factor of 39 
0.718, or 28.15%, holding all other variables constant; the expected total crashes in urban areas 40 
decrease by a factor of 0.816, or 18.40%, holding all other variables constant. Being an urban 41 
county increases the expected number of traffic crashes by 14%, holding all other variables 42 
constant. 43 
 44 

[Table 4 about here] 45 
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 1 
Higher gasoline prices also reduce injury crashes in both rural and urban areas. For a $1 increase 2 
in gasoline prices, the number of injury crashes in rural areas decreases by 3.9%, and the number 3 
of fatal crashes in urban areas decreases by 18.4%, holding all other variables constant. However, 4 
urban status is not associated significantly with injury crashes. Similar to the results from Model 5 
2, in which the interaction term between gasoline prices and urban status is not considered, VMT 6 
shows a statistically significant association with injury crashes—for every one-million increase 7 
in the monthly VMT, the incidence of injury crashes increases by 0.11%. 8 
 9 
Gasoline prices do not have significant effects on fatal crashes, even when considering rural and 10 
urban areas. Urban status, nevertheless, is associated significantly with incidence of fatal crashes. 11 
Being an urban county increases the expected number of fatal crashes by 40%, holding all other 12 
variables constant. Similar to the results from Model 3, in which the interaction term between 13 
gasoline prices and urban status is not considered, VMT is statistically significant associated 14 
with fatal crashes—for every one-million increase in the monthly VMT, fatal crashes increase by 15 
0.27%. 16 
 17 
6. Summary and discussion  18 
 19 
An increasing body of literature examines the role of gasoline prices in the occurrence of traffic 20 
crashes. Nevertheless, no studies have investigated the possibly different effects in urban versus 21 
rural areas. In this study, we use traffic crash data from 1998–2007 in Minnesota to investigate 22 
the possible difference of gasoline price effects on traffic crashes in urban versus rural areas. The 23 
results indicate a significant difference of gasoline price effects on total crashes in urban versus 24 
rural areas. The effects of gasoline prices are stronger in rural than in urban areas. Gasoline 25 
prices also have significant effects in reducing injury crashes in both urban and rural areas; 26 
however, the effect difference between urban and rural areas is not significant. Gasoline prices 27 
have no significant effects in reducing fatal crashes in urban and rural areas. Vehicle miles 28 
traveled play a bigger role in reducing incidence of injury and fatal crashes. 29 
 30 
Nevertheless, this study did not examine what factors cause the difference in gasoline price 31 
effects on traffic crashes between urban and rural areas. The potential causal factors could 32 
include modes of transportation, income, and others. First, the modes of transportation could 33 
cause the difference of gasoline price effects in urban versus rural areas. In urban areas, people 34 
can switch from personal vehicles to public transportation for work-related trips, or even non-35 
work related trips, in response to higher gasoline prices. In most rural areas, however, public 36 
transportation does not exist. People will still have to drive their own cars. The variable mode of 37 
transportation could be represented by the percentage of workers using non-auto transportation to 38 
travel to work, or by dummy variables indicating whether subway or bus services are available. 39 
Second, the income level could also cause the difference of gasoline price effects in urban versus 40 
rural areas. Urban residents tend to have higher income levels than rural residents, and thus the 41 
same or similar amount of gasoline price increases would matter less to urban residents than to 42 
rural residents. That could in turn cause the difference in traffic crash levels. 43 
 44 
In future research, we would like to test if the spatial variation of gasoline price effects is due to 45 
the modes of transportation and income levels. In addition, 2-stage least squares (2SLS) models 46 
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might improve model estimates as injury and fatal crash counts are likely endogenous with VMT 1 
but are not associated with gasoline prices. The 2SLS models could include two parts—the 2 
reduced function to predict VMT and the structural function to predict crash counts (Huang & 3 
Levinson, 2010). Furthermore, future research could benefit from Bayesian spatial analysis. Our 4 
data cover the 87 counties of Minnesota; crashes might show spatial correlation, and gasoline 5 
price effects might show spatial variations. Models incorporating spatial dependence and/or 6 
heterogeneity might provide further insights into the spatial variation of gasoline price effects on 7 
crashes. 8 
 9 
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Figure 1. Urban counties and major cities in Minnesota 4 
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Figure 2. Gasoline prices and traffic crashes, 1998–2007, Minnesota. Gasoline prices and 4 
crashes are standardized by indices (the first quarter of 1998 = 100). 5 
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Table 1 
 
Prior studies on gasoline prices and traffic safety 
 
Study Study area Data set/source Time period Crash types Demographic groups Short- or long-

term effects 
Leigh & Wilkinson (1991) US FARS 1976–1980 Fatal crashes None Short-term 
Grabowski & Morrisey (2004) US FARS 1983–2000 Fatal crashes Variation by age Both 
Grabowski & Morrisey (2006) US FARS 1982–2000 Fatal crashes None Short-term 
Leigh & Geraghty (2008) US CDC 1999–2003 Fatal crashes None Short-term 
Wilson et al. (2009) US FARS 1990–2007 Motorcycle fatal crashes and 

vehicle fatal crashes 
None Short-term 

Hyatt et al. (2009) US NASS GES and 
FARS 

1992–2007 Motorcycle fatal crashes, 
motorcycle injury crashes, 
vehicle fatal crashes, and 
vehicle injury crashes 

Variation by age and 
gender 

Short-term 

Huang & Levinson (2010) Minnesota MnOTS 2001–2007 Total traffic crashes, and fatal 
crashes 

None Short-term 

Chi et al. (2010) Mississippi MHP 04/2004–12/2008 Total traffic crashes Variation by age, 
gender, and race 

Both  

Chi et al. (2011) Mississippi MHP 04/2004–12/2008 Total traffic crashes, drunk-
driving crashes, fatal crashes, 
injury crashes, and property-
damage-only crashes 

Variation by age, 
gender, and race 

Short-term 

 
Note. FARS = Fatality Analysis Reporting System; CDC = the Centers for Disease Control and Prevention; NASS GES = the National 
Automotive Sampling System General Estimates System; MnOTS = Minnesota Office of Traffic Safety; MHP = Mississippi Highway 
Patrol 
The last column “Short- or long-term effects” refers to whether a study considered and found both short- and long-term effects. 
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Table 2 
 
Descriptive statistics of the variables 
 

 
N Mean Standard 

deviation 
Minimum Maximum Time-variant Space-variant 

Total crashes 10,440 85.600 256.402 0 4,003 Yes Yes 
Injury crashes 10,440 26.549 75.527 0 887 Yes Yes 
Fatal crashes 10,440 0.503 0.924 0 10 Yes Yes 
Gasoline prices 120 1.318 44.337 66.280 239.950 Yes No 
Monthly VMT (million) 10,440 52.210 110.454 3.095 997.331 Yes Yes 
Arterial roads (%) 87 0.040 0.023 0 0.121 No Yes 
Local roads (%) 87 0.927 0.027 0.799 0.965 No Yes 
Young population 16–25 (%) 87 12.840 3.368 0.088 0.265 No Yes 
Unemployment rate (%) 10,440 4.641 1.906 1.200 18.500 Yes Yes 
Service employees (%) 87 63.520 6.278 44.300 77.500 No Yes 
Agriculture employees (%) 87 7.229 4.489 0.200 20.100 No Yes 
Drunkenness score 87 0 0.778 –2.145 2.007 No Yes 
Urban status (urban=1; rural=0) 87 0.115 0.321 0 1 No Yes 
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Table 3 
 
Coefficients (in both factor change and percentage change) from random-effects negative 
binomial regression models without the interaction term between gasoline prices and urban 
status, 1998–2007, Minnesota 
 
 Model 1  Model 2  Model 3 
 (Total crashes)  (Injury crashes)  (Fatal crashes) 
 Factor 

change 
Percentage 

change 
 Factor 

change 
Percentage 

change 
 Factor 

change 
Percentage 

change 
Gasoline prices  0.741 –25.91%       
Monthly VMT (million) 1.000 0.03%  1.001 0.12%  1.003 0.30% 
Arterial roads (%)       0.944 –5.64% 
Local roads (%)         
Young population 16–25 (%) 0.986 –1.37%  1.044 4.39%    
Unemployment rate (%) 0.982 –1.79%  0.952 –4.83%  0.933 –6.68% 
Service employees (%) 1.010 1.03%     1.017 1.69% 
Agriculture employees (%) 0.965 –3.49%  0.936 –6.43%  0.912 –8.84% 
Drunkenness score 1.073 7.32%     1.141 14.07% 
 
Note. Only the statistically significant (p ≤ 0.10 for a two-tail test) coefficients are shown in the 
table. 
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Table 4 
 
Coefficients (in both factor change and percentage change) from random-effects negative 
binomial regression models with the interaction term between gasoline prices and urban status, 
1998–2007, Minnesota 
 

 
Note. Only the statistically significant (p ≤ 0.10 for a two-tail test) coefficients are shown in the 
table. 
 
 
 
 

 Model 4  Model 5  Model 6 
   (Total crashes)  (Injury crashes)  (Fatal crashes) 
 Factor 

change 
Percentage 

change 
 Factor 

change 
Percentage 

change 
 Factor 

change 
Percentage 

change 
Gasoline prices in rural areas 0.718 –28.15%  0.961 –3.90%    
Gasoline prices in urban areas 0.816 –18.40%  0.996 –0.40%    
Urban status 1.141 14.10%     1.405 40.48% 
Monthly VMT (million)    1.001 0.11%  1.003 0.27% 
Arterial roads (%)         
Local roads (%)         
Young population 16–25 (%)    1.042 4.20%    
Unemployment rate (%) 0.979 –2.07%  0.950 –4.95%  0.936 –6.38% 
Service employees (%)         
Agriculture employees (%) 0.970 –3.03%  0.939 –6.14%  0.915 –8.46% 
Drunkenness score 1.072 7.23%     1.138 13.76% 
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Appendix A 
 
Table A.1. 
 
Results of random-effects negative binomial regression models without the interaction term 
between gasoline prices and urban status, 1998–2007, Minnesota 
 
  Model 1 

(Total crashes) 
Model 2 

(Injury crashes) 
Model 3 

(Fatal crashes) 

Variables Coef. t-score Coef. t-score Coef. t-score 
Gasoline prices  –0.2999 –18.87 –0.0250 –1.47 0.0860 1.06 
Monthly VMT (million) 0.0003 2.36 0.0012 9.68 0.0030 5.74 
Arterial roads (%) 0.0118 0.79 0.0271 0.96 –0.0580 –1.76 
Local roads (%) 0.0097 0.61 0.0292 1.03 –0.0228 –0.84 
Young population 16-25 (%) –0.0138 –2.02 0.0430 3.07 –0.0080 –0.49 
Unemployment rate (%) –0.0181 –7.11 –0.0495 –15.47 –0.0691 –5.07 
Service employees (%) 0.0102 2.40 –0.0025 –0.31 0.0168 1.87 
Agriculture employees (%) –0.0355 –4.87 –0.0665 –5.08 –0.0926 –6.90 
Drunkenness score 0.0706 2.32 0.0200 0.35 0.1316 2.08 
Year 1998 (Reference) – – – – – – 
Year 1999 0.0357 2.95 –0.0204 –1.60 –0.0187 –0.31 
Year 2000 0.1945 13.95 0.0142 0.96 –0.0777 –1.10 
Year 2001 0.1696 12.36 0.0048 0.32 –0.1337 –1.87 
Year 2002 0.1086 8.14 0.0064 0.43 0.0702 1.05 
Year 2003 0.0654 4.33 –0.0255 –1.53 0.0596 0.79 
Year 2004 0.1780 10.29 0.0004 0.02 –0.0891 –1.02 
Year 2005 0.2348 11.38 –0.0608 –2.70 –0.1865 –1.76 
Year 2006 0.2397 9.96 –0.1157 –4.41 –0.3089 –2.48 
Year 2007 0.2237 8.10 –0.1490 –4.95 –0.3231 –2.27 
Intercept 2.1895 1.41 0.8942 0.32 6.0025 1.86 
Parameter: r 1.9737 6.85 5.1240 6.11 751.6784 0.63 
Parameter: s 2.7424 6.48 2.0463 6.20 6.0381 5.70 
Log-likelihood at convergence –37,928.70 –28,590.91 –8,366.85 
Number of observations N=87, T=120 N=87, T=120 N=87, T=120 
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Appendix B 
 
Table B.1. 
 
Results of random-effects negative binomial regression models with the interaction term between 
gasoline prices and urban status, 1998–2007, Minnesota 
 
  Model 4 

(Total crashes) 
Model 5 

(Injury crashes) 
Model 6 

(Fatal crashes) 

Variables Coef. t-score Coef. t-
 

Coef. t-score 
Gasoline prices  –0.3306 –20.41 –0.0398 –2.23 0.1153 1.36 
Urban status (urban=1; rural=0) 0.1319 1.79 0.0653 0.54 0.3399 1.73 
Gasoline prices X Urban status 0.1273 9.42 0.0358 2.85 –0.0347 –0.59 
Monthly VMT (million) –0.0002 –1.36 0.0011 8.43 0.0027 4.58 
Arterial roads (%) 0.0158 1.06 0.0333 1.17 –0.0520 –1.61 
Local roads (%) 0.0137 0.86 0.0322 1.13 –0.0180 –0.67 
Young population 16-25 (%) –0.0110 –1.57 0.0411 2.94 –0.0059 –0.37 
Unemployment rate (%) –0.0209 –8.11 –0.0508 –

15 67 
–0.0659 –4.76 

Service employees (%) 0.0072 1.58 –0.0047 –0.54 0.0127 1.40 
Agriculture employees (%) –0.0308 –4.08 –0.0634 –4.59 –0.0884 –6.62 
Drunkenness score 0.0698 2.29 0.0236 0.42 0.1289 2.10 
Year 1998 (Reference) – – – – – – 
Year 1999 0.0378 3.14 –0.0196 –1.53 –0.0188 –0.31 
Year 2000 0.1972 14.25 0.0153 1.03 –0.0828 –1.17 
Year 2001 0.1757 12.88 0.0073 0.49 –0.1381 –1.93 
Year 2002 0.1169 8.79 0.0099 0.67 0.0662 0.99 
Year 2003 0.0760 5.05 –0.0212 –1.26 0.0527 0.70 
Year 2004 0.1884 10.95 0.0044 0.23 –0.0988 –1.12 
Year 2005 0.2438 11.91 –0.0576 –2.56 –0.1999 –1.88 
Year 2006 0.2484 10.41 –0.1125 –4.28 –0.3257 –2.60 
Year 2007 0.2405 8.78 –0.1440 –4.78 –0.3436 –2.41 
Intercept 1.9775 1.27 0.7473 0.27 5.4320 1.80 
Parameter: r 2.0013 6.84 5.1213 6.09 634.6290 0.78 
Parameter: s 2.7583 6.47 2.0485 6.17 6.4103 5.50 
Log-likelihood at convergence –37,882.20 –28,586.52 –8,365.37 
Number of observations N=87, T=120 N=87, T=120 N=87, T=120 

 


