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THE CONTAGION EFFECT BETWEEN THE VOLATILITIES OF
THE NASDAQ-100 AND THE IT.CAC: A UNIVARIATE AND A

BIVARIATE SWITCHING APPROACH

RYAN SULEIMANN

Abstract. This article uses models with changes in regime and conditional
variance to show the presence of co-movement between the American and the
French New Technology indexes, the NASDAQ-100 and the IT.CAC respec-
tively. For the past two years, the American and the French New Technology
stock markets have been fluctuating severely, and it has been observed that the
IT.CAC is considerably affected by the the NASDAQ-100. In the first part of
this article, we study the volatilities of those two IT indexes, using univariate
conditional variance and changes in regime models. We show that the volatili-
ties of the two indexes have considerably increased exhibiting a certain level of
correlation. We find signs of a co-movement effect between the volatilities of
the NASDAQ-100 and the IT.CAC. The hypothesis of a co-movement effect is
discussed in the second part of this article, using a bivariate SWARCH model
to show the dependence of the high and low volatility states of the IT.CAC
on the NASDAQ-100, with no intermediate simultaneous high-low volatility
states.

Introduction

Since the explosion of the international speculative New Technology bubble, IT
stocks have been going through a period of high instability. Investors and specula-
tors are being careful in handling their investments in this sector, since they are not
tempted by the high revenues promises of IT companies anymore, and the deceiv-
ing accounting methods of some big sized telecommunication companies, created
a certain wave of fleeing from technology stocks. In fact, many New Technology
companies made numerous promises of extraordinary technological progress that
weren’t met by proportional business to business sales, which created a big deficit
in their balance on the one hand, and a high market capitalization that overvalued
the true values of those companies’ stocks on the other hand.

This situation lead to a high market fluctuation and very volatile IT stock prices
that are affected by informations, rumors and the international New Technology
markets.

To study the influence of one IT stock market in one country on another and
vice-versa, we use daily data of the NASDAQ-100 and the IT.CAC, two indexes
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thoroughly scanned at the moment and exhibiting a high level of volatility and
instability. We examine this increasing volatility and financial instability through
the last five years using the rolling standard deviations over 21 days. Then in the
first part, we model the two volatilities to reach the co-movement hypothesis that
we model in the second part, to show it’s extent.

In the first part we use three univariate GARCH models and two univariate models
of changes in regime to show the considerable increase in volatility and to identify
simultaneous periods of high and low volatilities over the two samples.

In the second part we use a bivariate SWARCH model (Edwards and Susmel, 2001)
to identify the co-movement effect between the two markets and show through the
model above that the American and the French New Technology markets have si-
multaneously increased in volatility all through the sample in question, with a high
co-movement effect between the NASDAQ-100 and the IT.CAC.

Our approach is similar to studies made by Bennett and Kelleher (1988) and King
and Wadhwani (1990) on the effects of the 1987 stock market crash over the finan-
cial volatility through a number of countries. Engle, Ito and Lin (1990, 1992) and
Hamano, Ng and Masulis (1990) have also studied the volatility through a number
of countries and identified the geographical effect of the informations’ impact on
the volatility through those countries. We can also cite works by Longin and Solnik
(1995) and Ramchand and Susmel (1998) on time varying correlations.

The paper is organized as follows: in section I we present the data used and their
corresponding descriptive statistics, and we provide information on the indexes and
the way they are calculated. In section II, we model the return in percentage of the
two indexes using AR(1)-GARCH(1,1), AR(1)-TARCH(1,1), regime switching and
univariate SWARCH models. In section IV we use the bivariate SWARCH model.
Section V is the conclusion.

1. NASDAQ-100 and IT.CAC: data description

We use two samples of daily time series of the NASDAQ-100 and the IT.CAC.

1.1. indexes Description. We describe the two new technology indexes1 follow-
ing the information provided by the N.Y.S.E. and the Paris Stock Market. More
information is provided about the IT.CAC than the NASDAQ-100 since the French
New Technology index is less known than the American one.

1.1.1. The NASDAQ-100. The NASDAQ-100 is composed of American and inter-
national non-financial companies quoted on the NASDAQ market, based on market
capitalization. The index represents technology companies which include the com-
puter sector (hardware and software), telecommunication and biotechnology. The
index does not include financial and investment firms.

The NASDAQ-100 was created in January 1985 and is calculated with a methodol-
ogy of capitalization weighing that considers the economic attributes of the weighted

1The graphs of the series can be found in appendix C.
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capitalization while keeping a significant diversification. In case certain require-
ments are not met for the weights’ distribution set a priori, the composition of
the NASDAQ-100 is revised on a quarterly basis and the weights of the index’s
members are adjusted.

Certain conditions apply to the members of the index, for example, every mem-
ber should have a daily exchange volume of 100,000 shares. The graph of the
NASDAQ-100’s historical volume of exchange is found in the appendix.2

1.1.2. The IT.CAC. The IT.CAC was created on March 29th 2000 and it contains
150 French technology companies. It is not possible to define purely deterministic
criteria for those companies, like the evolution of the sales turnovers, that allow
the distinguishing between the members. Furthermore, the inclusion of these com-
panies in the IT.CAC is a result of each company’s decision to position itself in
the New Technology sector; the impact of the companies’ accounts and financial
situation intervenes later on.

On December 31th 1999, the target population included 113 companies with a
capitalization of 360 billion euros, almost the quarter of the total capitalization
of the Paris Stock Market. The market capitalization of those companies is not
uniform, for example, the largest one, France Télécom is worth 134 billion euros
and the smallest one is Tonna Electronique, 7 million euros. It is also quite young
since half of companies joined the New Technology population in the past two years.

It is necessary to allocate weights adapted to the shares’ prices of those companies
because of the capitalization size diversity and the rapid growth of those compa-
nies. A traditional weight allocation based on market capitalization would lead to
the domination of certain companies’ shares, which would harm the diversification
of the index. It is necessary then, to limit the impact of the bigger companies’
capitalization in such a way that their weights in the index do not exceed a certain
predetermined threshold.

The permanent and strict respect of the capitalization threshold leads to multi-
ple adjustments that do not necessarily have a logical economic and financial sig-
nificance. Therefore, the weights’ revision should be relatively the least frequent
possible to be credible.

The 10% limit as a maximum weight constitutes the general reference. But the
limit used for the IT.CAC is 8% to master the respect of the preset limit without
making multiple and frequent adjustments, while allowing it to reflect the natural
evolution of the market (mergers, acquisitions, capital revision, etc). The revision
of the weights takes place every month, at the end the last session of the month.

The determination of weights is done as follows:
(1) Calculation of the weight using market capitalization of each company: the

weights allocated to a share is then the ratio between its market capital-
ization and the global market capitalization of the target population;

2The Paris Stock Market website(www.bourse-de-paris.fr)
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(2) comparison of the highest weight with the 8% threshold:

• if it’s inferior, the obtained weight is kept,
• otherwise, the excess weight is distributed over the other shares with
respect to their respective capitalization proportions.

(3) repeating step 2 as long as any of the weights is greater than 8%.
When the number of shares having a limited weight of 8% is determined, the index
calculation is done in the same way as for the other Paris Stock Market indexes, with
a price index that does not take the dividends distribution into account and that
considers the profitability index (the reinvested dividends). It is important to point
out that contrary to the NASDAQ-100, there are no minimum volume exchange
conditions for the IT.CAC’s members, therefore it is possible to find companies
with very low exchange volumes.

1.2. Statistical Description of the Series. The two time series of the indexes
are not stationary, the details of the Dickey-Fuller test found in the appendix A,
show the presence of a first order unit root I(1) in the two series and its absence for
the second order I(2). The data are transformed as to have ∆rt =

yt−yt−1
yt−1

× 1003

which eliminates the unit root in the series and stationarizes them. For convenience
purposes, the studied series ∆rt will be referred to as yt where if yt = 2 it means
that the corresponding index grew by 2% and in the case of a negative value this
would mean that the index fell with respect to its previous value. The mean, stan-
dard deviation, asymetry, kurtosis and the Jarque-Bera normality test of the two
series can be found in the appendix A.

The two series exhibit the classical characteristics of high frequency financial time
series, especially the high kurtosis that leads to rejecting the normality hypothesis,
and the LM test (TR2) by Robert Engle indicates the presence of an ARCH effect.

The graphs of the rolling standard deviations over 21 days4 in the appendix C
show the ”explosion” of the the two indexes’ volatilities with the approach of the
year 2000. This was during the formation of the New Technologies speculative
bubble formation, especially Internet related shares. The volatilities of the other
traditional indexes (DJ, SP, etc) remained relatively stable.

Actually, it is clear that the NASDAQ market is quite volatile with respect to
the other N.Y.S.E. indexes because of the instability’s evolution of sectors related
to the IT sector. This evolution was highly influenced by the very rapid market
capitalization of many tech companies and equally by a very brutal depreciation
(after the explosion of the tech bubble) with respect to the more traditional sectors.
The interest in studying this sector arises from the importance of the Information
and the Immaterial Capital in it and the interest of risk managers in it, and this is
because of the variety of derived financial products that it contains. The question is
whether traditional parametric non-linear volatility models, like the GARCH mod-
els, can explain the temporal evolution of this sector’s volatility (high and low) and

3The graphs of the transformed series can be found in the appendix C.
4Rolling standard deviation (RSD) over 21 days: σ(Rt) = [253

∑2
k=1 1(Rt−k − µ)2/20]

1
2 ,

where µ is the mean of the observations over 21 days (Schwert, 2002).
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whether there is co-movement between the volatility of an IT sector in one country,
and the volatility of an IT sector in another country.

In the following sections, we examine the non-traditional volatility for the NASDAQ-
100 and the IT.CAC. We identify periods of high volatility and the probability that
they take place. Furthermore, we examine the link between the two volatilities of
the two indexes.

2. Univariate Analysis

In this section, we use a number of univariate parametric models to show the
presence of at least two regimes for the volatility of the studied indexes. We start
by using three GARCH specifications, then we use a simple model with changes in
regime, then we use a SWARCH model and finally we model the indexes using a
GARCH model with changes in regime.

2.1. GARCH, TARCH and EGARCH heteroscedastic models. The ARCH
model, introduced by Engle (1982) and generalized by Bollerslev (1986) in order to
have the GARCH model is represented as follows:

(2.1)
εt = σt.νt with νt ∼ i.i.d.(0, 1)

σ2
t = a0 +

∑q
i=1 aiε

2
t−1 +

∑p
i=1 biσ

2
t−i.

It models the conditional variance σ2
t of a time series as a linear function of the

squared q lagged innovations and the p lagged conditional variances of the series.
These models have been widely used to model the time variable volatility of fi-
nancial time series. Those simple but powerful models in explaining time variable
volatilities, have been modified several times to adapt to the financial data that has
been constantly changing in their structure.

The TARCH model, introduced by Zakoian (1990) and Glosten et al. (1993) model
the conditional variance in the following way:

(2.2) σ2
t = a0 +

q∑
i=1

aiε
2
t−i + γε2t−1dt−1 +

p∑
i=1

biσ
2
t−i,

where dt = 1 if εt < 0 et dt = 0 otherwise. In this model, good news (εt < 0)
and bad news (εt > 0) have different impacts over the conditional variance - good
news have an impact a, whereas bad news have an impact a+γ. If γ �= 0, the news
impact is asymmetric and if γ > 0 then the leverage effect5 exists.

5The leverage effect refers to the well-established relationship stock returns and both implied
and realized volatility: volatility increases when stock prices fall. A standard explanation ties
the phenomenon to the effect a change in market valuation of a firm’s equity has on the degree
of leverage in its capital structure, with an increase in leverage producing an increase in stock
volatility.
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The EGARCH model (exponential GARCH, introduced by Nelson (1991), has the
following conditional variance:

(2.3) log(σ2
t ) = a0 + b1 log(σ2

t−1) + a1

∣∣∣∣ εt−1

σt−1

∣∣∣∣ −
√

2
π
+ γ

εt−1

σt−1
,

where log(σ2
t ) is the log of the conditional variance. This implies that the leverage

effect is exponential instead of being quadratic and that the conditional variance
forecasts are surely non-negative. The presence of the leverage effect may be tested
with the hypothesis γ < 0 and the impact is asymmetric if γ �= 0. The EGARCH
model that we estimate is slightly different from Nelson’s (1991) model: we assume
that the ε’s follow the Normal distribution whereas Nelson (1991) assumes that
they follow a generalized error distribution. Furthermore, the expression of the
conditional variance that we use is also different from Nelson’s:

(2.4) log(σ2
t ) = a0 + b1 log(σ2

t−1) + a1

∣∣∣∣ εt−1

σt−1

∣∣∣∣ + γ
εt−1

σt−1
,

our estimation provides the same estimators as Nelson’s with the exception of a0

that has a scale difference of a1

√
2
π with the respect to the original model.

GARCH, TARCH and EGARCH models have proven to be limited in their abil-
ity to account for financial time series with a volatility that undergoes occasional
regime shifts due to certain prompt events, like a stock market crash or the for-
mation or explosion of a speculative bubble. Several models have been introduced
as to include changes in regime in the processes that volatile financial time series
follow.

2.2. Constant variance models with changes in regime. The constant vari-
ance model with changes in regime was introduced by Hamilton (1989):

(2.5) yt ∼



N(µ1, σ
2
1) when st = 1

N(µ2, σ
2
2) when st = 2

The st variable is an unobserved variable that can take the discrete values 1 and 2.
This variable represents the state or the regime of the studied series at date t. The
variable st follows a hidden Markov Chain.

This model allows the data in question to be drawn from two different Normal
distributions, one that represents a high volatility regime and one that represents a
low volatility regime. Relaxing the hypothesis of only one distribution all over the
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sample would allow the series to exhibit the regime change effect.

The estimation is carried out using Hamilton’s iteration algorithm and which pro-
vide all of the estimators of the model without having to calculate the 2T of the
likelihood function.

The filtered probabilities are calculated as follows:

(2.6) Pr(st|∆r1, ...,∆rt; θ),

as for the smoothed probabilities, the following expression is used:

(2.7) Pr(st|∆r1, ...,∆rT ; θ)

The filtered and the smoothed probabilities are necessary to identify periods of
high and low volatilities by examining the probability of passing from one regime
to another.

2.3. The SWARCH model. The most commonly used models for modeling fi-
nancial time series are the ARCH (Engle, 1982) and GARCH (Bollerslev, 1986)
models. Those two models have proven, through modeling the conditional variance
as a linear or non-linear function of the lagged squared errors, their ability to pro-
vide very significant parameters most of the time, but that lack stability over time
(Lamoureux and Lastrapes, 1990, 1993 and Engle and Mustafa, 1992). Hamilton
and Susmel (1994) treated this problem by introducing the SWARCH model that
allows the data to follow several ARCH models, with changes in regime between
those models governed by a hidden Markov Chain. Furthermore, relaxing the hy-
pothesis of having one regime in the conditional variance lowers the ARCH effect
and can render the estimators of the multiple regime ARCH model less significant
but more stable over time.

The SWARCH model takes into account structural changes in financial data, a
SWARCH(K,q) is written as follows:

(2.8)

yt = c+ φyt−1 + εt εt|Ωt−1 ∼ N(0, ht)
εt =

√
gst × ε̃t

ε̃t = ht.νt

h2
t = a0 + a1ε̃

2
t−1 + a2ε̃

2
t−2 + ...+ aq ε̃

2
t−q + ξ.dt−1.ε̃

2
t−1,

where yt is the modeled series, the gst are the scale changing regime parameters,
and the Ωt−1 is the matrix of available information up to the date t − 1; further-
more, dt−1 = 1 if ε̃t−1 ≤ 0 and dt−1 = 0 if ε̃t−1 > 0 and ξ represents the leverage
effect. The error term ε̃t is multiplied by the constant

√
g1 when the process is in

the regime st = 1, multiplied by
√
g2 when st = 2 and so on (Hamilton and Susmel,

1994). The conditional variance of εt knowing the regimes up to the date t is:
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(2.9)
E(ε2t |st, st−1, ..., st−q, εt−1, εt−2, ..., εt−q) ≡ σ2

t (st, st−1, ..., st−q)
= gst{a0 + a1.(ε2t−1|gst−1) + a2.(ε2t−2|gst−2) + ...+ aq.(ε2t−q|gst−q)
+ξ.dt−1.(ε2t−1|gst−1)}.

The transition probabilities between the regimes follow a hidden Markov chain
with K states that are independent of yt for all t, which means that the transition
probabilities pij are constant. The estimation of the SWARCH model is carried out
using the maximum likelihood (Hamilton, 1989 and Hamilton and Susmel, 1994)
which is possible to maximize with respect to the vector or parameters θ̂6, with
constraints that g1 = 1,

∑K
j=1 pij = 1 for i = 1, 2, ...,K and 0 ≤ pij ≤ 1 for

i, j = 1, 2, ...,K. The filtered and the smoothed probabilities are calculated respec-
tively through:

(2.10)
Pr(st, st−1, ..., st−q|yt, yt−1, ..., y−3)
Pr(st|yT , yT−1, ..., y−3),

where T is the size of the sample, using Hamilton’s (1989) and Kim’s (1994) algo-
rithms.

The filtered probabilities represent the conditional probability that the regime at
date t is st and at t−1 it was st−1 conditionally over the observed values of yt up to
the date t. On the other hand, the smoothed probabilities represent inferences over
the actual regime at date t based on the data available until T . For example, for a
two regime model, the smoothed probabilities at date t are represented by a 2 × 1
vector which includes the estimated probabilities for the two regimes in question.
This vector represents ex-post inferences made on the regime of the studied variable
at date t, based on all the sample.

2.4. GARCH models with changes in regime. The changing regime GARCH
model, introduced by Gray (1996b), is written in the following way:

(2.11)
yt = a0st + a1styt−1 + εt

εt|Ωt−1 ∼ N(0, htst),
htst = b0st + b1stε

2
t−1 + b2stht−1st .

The innovative aspects of this model over existing changing regime conditional
variance models lie in the inclusion of a GARCH term in the conditional variance
expression and the dependence of this term’s parameters on two possible regimes.
This methodology is quite different from the SWARCH model discussed earlier,
which undergoes changes in regime through a scale parameter and does not allow

6θ̂ = α, φ, a0, a1, a2, ..., aq , p11, p12, ..., pkk, g1, g2, ..., gk, ξ et ν



10 RYAN SULEIMANN

for any kind of dependence of the parameters on the different regimes.

This approach was not used by Hamilton and Susmel (1994) since they argued
that the presence of a GARCH term in the changing regime model would make the
model intractable, since the conditional variance at date t would depend on the
entire sequence of regimes up to the date t. Gray (1996b) solved this dependence
problem by aggregating the conditional variances of the two regimes at each step.
This allows the variance to be conditional on the information available but that
is aggregated all through the regimes. If conditional normality is assumed in each
regime, the conditional variance at date t would be:

(2.12)
ht = E[y2

t |Ωt−1]− E[yt|Ωt−1]2

= p1t(µ2
1t + h1t) + (1− p1t)(µ2

2t + h2t)− [p1tµ1t + (1− p1t)µ2t]2,

where Ωt−1 is the matrix of the available information up to the date t − 1 and
µ1t = a0st + a1styt−1. Furthermore, ht does not depend on the entire sequence of
regimes and can be used as the lagged conditional variance in order to construct
h1t+1 and h2t+1 which follow a GARCH model:

(2.13)
hit = a0i + a1iε

2
t−1 + biht−1,

ht−1 = p1t−1[µ2
1t−1 + h1t−1] + (1− p1t−1)[µ2

2t−1 + h2t−1)
−[p1tµ1t−1 + (1− p1t−1)µ2t−1]2,

where i represents the regime (2 regimes, i = 1, 2). Furthermore,

(2.14) εt−1 = yt−1 − E[∆rt−1|Ωt−2] = yt−1 − [p1t−1µ1t−1 + (1− p1t−1)µ2t−1].

So Gray (1996b) assumes that:

(2.15) ht−1 {εt|Ωt} = a0st + a1stε
2
t−1 + bstEt−2[ht−2 {εt−1|Ωt−1} .

In order to construct the log-likelihood of the model above, we suppose that ∆rt

undergoes changes in regime (2 regimes):

(2.16)
f(yt|Ωt−1) =

∑2
i=1 f(yt, St = i|Ωt−1)

=
∑2

i=1 f(yt|St = i,Ωt−1) Pr(St = i|Ωt−1)
=

∑2
i=1 f(yt|St = i,Ωt−1)pit,
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where pit is given by Pr(St = i|Ωt−1). As a consequence, the distribution of yt

conditional on the available information can be written in the following way:

(2.17) f(yt|St = i,Ωt−1) = 1√
2πhit

exp
{

−(yt−a0i−a1iyt−1)2

2hit

}
, i = 1, 2.

The calculation of the probabilities pit is done in the same way as it is done by
Hamilton (1994).

2.5. The results. In this section, we expose the results found using the different
models discussed above for the NASDAQ-100 and the IT.CAC7.

2.5.1. Autoregressive models with heteroskedastic errors. We start by using AR(1)-
GARCH(1,1), AR(1)-TARCH(1,1) and AR(1)-EGARCH models to examine the
volatilities of the two indexes NASDAQ-100 and IT.CAC. The choice of the models’
order was done based on the parameter significance and the Akaike and Schwartz
criterion (the values can be found in the appendix). The results presented below,
show the very significant presence of an ARCH effect in the two series, as well as a
significant leverage effect. The Ljung-Box statistics of the models’ residuals show
the absence of any correlation of those residuals and squared residuals, which means
the absence of an ARCH effect.

AR(1) GARCH(1,1) GARCH-L(1,1)* EGARCH(1,1)

µ
NAS IT
0,16 0,06
(0,06) (0,08)

NAS IT
0,04 -0,03
(0,07) (0,08)

NAS IT
0,04 -0,02
(0,07) (0,08)

φ
NAS IT
-0,06 0,14
(0,03) (0,03)

NAS IT
-0,04 0,16
(0,03) (0,03)

NAS IT
-0,04 0,15
(0,03) (0,03)

a0

NAS IT
0,20 0,04
(0,06) (0,02)

NAS IT
0,27 0,09
(0,06) (0,03)

NAS IT
-0,04 -0,13
(0,03) (0,03)

a1

NAS IT
0,12 0,10
(0,02) (0,02)

NAS IT
0,007 0,06
(0,01) (0,01)

NAS IT
0,17 0,22
(0,03) (0,03)

b1

NAS IT
0,86 0,89
(0,02) (0,02)

NAS IT
0,87 0,88
(0,02) (0,02)

NAS IT
0,96 0,97
(0,00) (0,00)

γ
- -
- -

NAS IT
0,19 0,11
(0,03) (0,03)

NAS IT
-0,12 -0,06
(0,02) (0,02)

J-B
Pr.
Q10

Pr.

8,37 12,70
0,02 0,00
6,59 7,73
0,68 0,56

3,05 20,90
0,22 0,00
9,03 8,35
0,43 0,50

4,39 19,60
0,11 0,00
8,17 9,16
0,52 0,42

Table 1. Estimators for the 3 GARCH models used

7The choice of the most fitting model in each section as well as the likelihood functions, the
AIC and Schwartz criteria of the results of each specification used, are indicated by a star in the
appendix B.
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where Q10 is the Box-Pierce test of order 10 of the normalized residuals and the
(.) represent the standard deviations of the estimated parameters. The sum of the
α1 and the β1 of the AR(1)-GARCH(1,1) model is close to 1 which indicates that
the conditional variance is quite persistent over time. Lamoureux and Lastrapes
(1990) and Hamilton and Susmel (1994) argued that the high persistence of the
conditional variance is an indicator of a regime change effect present in the process
explaining the variance.

2.5.2. The simple regime change model. We estimate a simple model with changes
in regime (Hamilton, 1989) in order to put into evidence the presence of two dis-
tributions that each of the indexes might have (equation 2.5), where p11 is the
probability that the model is in regime 1 and p22 is the probability that the model
is in regime 2.

NASDAQ100 IT.CAC

µ1 0,1630 (0,0799) -0,0589 (0,0767)

µ2 -0,2203 (0,2057) 0,0358 (0,1755)

σ1 2,0044 (0,0654) 1,6115 (0,0570)

σ2 3,8762 (0,1167) 3,4517 (0,1161)

P 0,9860 (0,0059) 0,9872 (0,0062)

Q 0,9772 (0,0096) 0,9825 (0,0083)

Table 2. Estimators for the simple regime change model

The estimators of the parameters (µ1, µ2, σ1, σ2, p11 = P and p22 = Q) and their
standard deviations in Table 2 above are all significant which means that the two
indexes follow a mixture of two distinct distributions each with a probability of
passing from one distribution to another depending on the series volatility (high
and low). The low volatility variance of the IT.CAC is twice lower than its variance
for the high volatility state.

The graphs of the ex-ante probabilities, the filtered probabilities, the conditional
standard deviations, and the the conditional means of the two indexes show a change
from a low volatility regime to a high volatility regime from the end of 1999 till the
end of 2000, the year of the New Technology stock market crash. The smoothed
probabilities corresponding to the regime changes of the two indexes seem to vary
simultaneously and we find that the the regime change for both of the series take
place simultaneously also.

The graphs of the ex-ante probabilities and the conditional means and standard
deviations (see appendix) confirm what the smoothed probabilities show and at
the same dates. In July 2000, the graphs show some irregular fluctuations com-
pared to the rest of the sample and that is because the two indexes increased in
value before getting back to the constant decrease until today.

2.5.3. The univariate SWARCH model. We estimate different specifications of the
SWARCH model with q = 1 to 3 ARCH terms and K = 2 to 3 states, with in-
novations that follow a Student-t distribution and a Normal distribution and with
the presence and the absence of a Leverage effect ξ. With K = 4 states, the model
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does not converge because the Hessian matrix is nearly singular.

The likelihood test and the Akaike and Schwartz criteria reject the Student-t dis-
tribution in favor of the Normal distribution, furthermore, the ARCH parameters
and the Leverage effect parameter, ξ are all significant with the exception of the
second ARCH parameter of the IT.CAC. It is clear, then, that the SWARCH effect
is significant for both series and the smoothed probabilities in the appendix show
the volatilities’ evolution for both of them and indicate the presence of 3 regimes:
a low volatility regime, a medium volatility regime and a high volatility regime.

The first regime appears in the first place at the beginning of the sample, where
both of the indexes had very low volatilities in comparison with the rest of the sam-
ples. This regime shows the state of the indexes before the high increase of New
Technology stock prices and the formation of the speculative bubble. The other two
regimes show the high and medium volatility states of the indexes during the high
fluctuation periods that took place later on afte the year 2000. It can be clearly
seen on the graphs of the two smoothed probabilities P (st = 2) and P (st = 3) that
they move simultaneously over the same period of time, which leads us to make
the hypothesis of a co-movement between the two indexes and possibly a contagion
effect if this co-movement is one-sided.

On the other hand, we notice that the ARCH effect decreased in the conditional
variance and we find that it is less persistent. This result is similar to what Hamil-
ton and Susmel (1994) and Klaassen (2001) found in their financial modeling of
heteroscedastic models with changes in regime. But as a counterpart, we obtain
considerable information about the volatility states and their nature (low, medium
or high) through the smoothed probabilities.

AR(1)SWARCH-L(3,2) NAS100 IT.CAC

c 0,147 (0.001) 0,027 (0,031)

φ -0,046 (0.036) 0,145 (0,069)

a0 2,084 (0.043) 1,428 (0,026)

a1 0,032 (0,002) 0,073 (0,031)

a2 0,102 (0.049) 5,9e-011 (0,112)

g1 2,218 (0.055) 2,520 (0,002)

g2 7,173 (0.421) 8,234 (0,011)

γ 0.161 (0.132) 0.052 (0,020)

J-B
Pr.
Q10

Pr.

317
0,001
139
0,002

267
0,001
238
0,001

Table 3. Estimators for the SWARCH model

2.5.4. The GARCH model with changes in regime. We obtain the GARCH model
with changes in regime by relaxing the hypothesis of constant variances within
the regimes. We obtain then two conditional variances that correspond to each of
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the regimes in question, where each of the conditional variance equations has its
own set of parameters. Table 4 below shows the results obtained by estimating an
AR(1)-SWGARCH(2,1,1) model for the NASDAQ-100 and the IT.CAC.

The parameters are significant which reveals the presence of two regimes for the
volatility. Earlier in this paper, we find that the Jarque-Bera test rejects the hy-
pothesis of Normally distributed errors, whereas the SWGARCH model that we
estimate provides residuals that follow the Normal distribution and eliminates any
autocorrelation of the squared residuals. Table 1 in the appendix shows (following
the likelihood test and the Akaike and Schwartz criteria) that the SWGARCH is
the most convenient model for the data in question.

The limitation of this model with respect to the 3 states SWARCH model is that
it is not possible to include three regimes in it since it becomes intractable due
to the large number of parameters to estimate and the nearly singular Hessian
matrix. The 3 states SWARCH model provides more information and flexibility
with respect to the number of regimes that the volatility can have, whereas the
SWGARCH model better explains the conditional variance because of the presence
of a GARCH term in its expression.

It is clear that the parameters of the SWGARCH model (Table 4) satisfy the sta-
tionarity condition, b1i + b2i < 1. Furthermore, as it was found with the SWARCH
model earlier, the smoothed probabilities obtained with the SWGARCH model
appear to move simultaneously all along the sample, which confirms again the co-
movement hypothesis made earlier with the SWARCH model; the two indexes are
simultaneously in a low or high volatility regimes.

NAS-100 IT.CAC

a01 0,963 (0,264) 0,904 (0,292)

a02 -0,496 (0,246) 0,007 (0,062)

a11 -0,258 (0,105) 0,211 (0,118)

a12 0,014 (0,067) 0,123 (0,035)

b01 0,000 (0,000) 0,016 (0,252)

b11 0,000 (0,000) 0,000 (0,000)

b21 0,540 (0,121) 0,990 (0,034)

b02 0,000 (0,000) 0,035 (0.027)

b12 0,135 (0,049) 0,093 (0,018)

b22 0,731 (0,124) 0,899 (0,019)

P 0,696 (0,132) 0,980 (0,012)

Q 0,801 (0,067) 0,999 (0,000)

J-B
Pr.
Q10

Pr.

3,239
0,197
5,660
0,843

2,355
0,308
12,462
0,255

Table 4. Estimators for the SWGARCH model
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3. Bivariate Analysis: The Bivariate AR(1)-SWARCH(1,1) Model

In this section, we model a bivariate specification of the SWARCH model to
investigate the co-movement hypothesis made earlier and possibly the presence of
a contagion effect between the volatilities of the two indexes.

3.1. The model and the results. Edwards and Susmel (2001) study in their
article a group of countries of Latin America and Asia on two levels: the first is
to analyze the possible increase of financial instability over the past years by using
stock market returns for those countries and on the second level to see if this in-
crease in volatility coincides through the countries in question.

They treat the subject by using univariate and bivariate SWARCH models and
they show that volatility increased over time and that this increase coincide in
those countries; they use daily stock market returns.

Their work is a bivariate extension of the univariate SWARCH model introduced
by Hamilton and Susmel (1994). This model allowed them to examine the co-
movements of the countries’ volatilities. This type of modeling is up to date be-
cause it studies the financial contagion through countries. In fact, the existence of
a statistically significant one-way volatility co-movement shows the presence of a
contagion effect. In particular, the simultaneous increase of the conditional vari-
ance of the financial variables in question, can have very important implications
with respect to the interpretation of the contagion effect through countries, and
the detection points of regime changes of the volatility through time.

Since multivariate SWARCH models are very difficult to estimate due to the big
number of parameters in their equations, Edwards and Susmel (2001) use a bivari-
ate SWARCH model which means that they study two countries at a time. They
show evidence of a contagion effect between the couples of countries that they study,
through the dependence of the volatilities through the countries in question. Fur-
thermore, they find that the correlation increases 2 to 4 times during periods of
high volatility, in comparison with periods of low volatility.

The SWARCH model is expressed as follows:

(3.1) yt = A+Byt−1 + εt|Ωt−1 ∼ N(0,Ht),

where yt = [ynas
t , ycac

t ] is the 2 × 1 vector containing the series in question and
εt = [εnas

t , εcac
t ] is the 2× 1 vector containing the Normally distributed errors hav-

ing a conditional covariance matrix that varies with time. Each of the diagonal
elements of this matrix follows a SWARCH model. The Ht is a 2 × 2 matrix
and the diagonal elements follow the SWARCH model given by equation (2.8). In
the bivariate case, the transition and the smoothed probabilities are calculated in
the same way as with the univariate model and the four cases that the transition
probabilities represent are:
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(1) probability that variables 1 and 2 are both in a low volatility state,
(2) probability that variable 1 is in a high volatility state and variable 2 is in

a low volatility state,
(3) probability that variable 1 is in a low volatility state and variable 2 is in a

high volatility state,
(4) probability that both variable are in a high volatility state.

Edwards and Susmel (2001) show evidence of a contagion effect between the coun-
tries in question and they find significant probabilities of the 2 and 3 kind above.
This means that there is a certain latency before the contagion effect reaches the
receptor country. They in fact find that there is not a country that has a big influ-
ence on another among the couples of countries that they study.

The NASDAQ-100 index which represents the New Technology market in the U.S.A.
and which introduced the idea of having a New Technology sector, is the largest
internationally. This leads to its great influence over New Technology sectors and
markets in the countries of the rest of the world. Those countries became receptor
countries with respect to the American IT market in the sense that events that take
place in the American New Technology sector, have great influence on them. For
example, the recent crisis that arose due fraudulent accounting methods of Enron
and Worldcom in the U.S.A., reached the French market and raised doubts conern-
ing accounting methods adopted by the French IT companies, especially Vivendi
Unniversal.

Interestingly and contrary to the results found by Edwards and Susmel (2001),
we find that the probabilities of kind 1 and 4 are very significant, whereas probabil-
ities of kind 2 and 3 are much less significant. This means that the American and
the French markets are simultaneously in a low or high volatility states and that
the there is no latency of the contagion effect; the contagion is transmitted almost
immediately. This result is compatible with the studied sector, the IT sector where
information is transmitted instantly, unlike traditional sectors.

Smoothed probabilities of kinds 1 and 4 in the appendix, show the significance
of the contagion effect of the NASDAQ-100 over the IT.CAC and we can clearly
see that both indexes are in high volatility states during the formation of the New
Technology speculative bubble. This effect is also clear on the graphs of the rolling
21 day standard deviations (see appendix). It is clear that the volatility increased
considerably and simultaneously in the two IT markets and the sample correlation
coefficient between the two standard deviation is as high as 0.76 (76%).

The estimators of the bivariate SWARCH model in Table 5 below are significant
which confirms the co-movement hypothesis made earlier in the univariate section:
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Bi-SWARCH(1,1)
cnas -0,042 (0,0299)
ccac -0,003 (0,002)
φnas -0,059 (0,003)
φcac 0,156 (0,022)
anas
0 5,307 (2,165)

acac
0 2,719 (1,273)

anas
1 0,023 (0,012)

acac
1 0,003 (0,001)

Table 5. Estimators for the Bi-SWARCH model

4. Conclusion

In this article we examined the volatilities of the American and the French New
Technology indexes, the NASDAQ-100 and the IT.CAC. We show on the one hand
that the volatilities of the two indexes have considerable risen because of the New
Technology speculative bubble, and on the other hand, we showed that there is
co-movement between the volatilities of those two indexes by using a bivariate
SWARCH model.

Furthermore, we find that the contagion effect between the two series is mini-
mal which lead to the conclusion that the the indexes are simultaneously in a low
volatility state or in a high volatility state. Classical conditional volatility models,
like GARCH models for example are unable to provide such informations, even if
they model the volatility of financial time series in a good way.

Following the empirical results that we find, we can make a number of conclusions:
• including regimes in volatile financial time series models is very important,
even a constant variance changing regime model can give results as good
as a conditional variance models.

• in the case of volatile financial time series, there is evidence of heteroskedas-
ticity in the regimes, so allowing for an ARCH or a GARCH effect is im-
portant in changing regime models.

• The GARCH effect which is absent in the SWARCH model is important in
case the series studied exhibit a GARCH effect.

Several extensions are possible, for example, a SWGARCH model which works
in the case of 3 or 4 states, another possibility is to develop a bivariate SWGARCH
model.
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Appendix A. Descriptive statistics of the two series

Descriptive statistics for the IT.CAC
Sample: 04/01/1999 14/08/2002
Number of observations: 1271

IT.CAC Mean Median Max. Min. Stand. Dev. Asym. Kurtosis Obs.

[0, 1000) 817.8103 794.54 996.84 633.88 115.5408 0.116798 1.490647 71
[1000, 2000) 1333.74 1285.245 1959.6 1000.06 246.9123 0.99548 3.067775 538
[2000, 3000) 2502.235 2467.305 2998.86 2002.9 304.9252 0.166785 1.729722 182
[3000, 4000) 3271.471 3188.4 3921.83 3003.18 232.9316 1.00056 3.008213 116
[4000, 5000) 4155.1 4135.59 4363.65 4015.65 116.0502 0.501824 1.901583 9

Total 1799.028 1384.785 4363.65 633.88 831.8377 0.865439 2.617248 916

Table 6. Descriptive statistics for the IT.CAC

Augmented Dickey-Fuller test for the IT.CAC

ADF stat. -0.85744 1% Critical value -3.4402

5% Critical value -2.8651

10% Critical value -2.5687

Variable Coeff. Stand. Dev. t-stat. Prob.

CAC(-1) -0.00188 0.002194 -0.85744 0.3914

D(CAC(-1)) 0.19976 0.033255 6.006877 0

D(CAC(-2)) -0.05428 0.03389 -1.60172 0.1096

D(CAC(-3)) -0.02844 0.033879 -0.83941 0.4015

D(CAC(-4)) 0.008253 0.033256 0.248155 0.8041

C 2.964034 4.357022 0.680289 0.4965

Table 7. Augmented Dickey-Fuller test for the IT.CAC

ADF test for the IT.CAC after first differences

ADF stat. -13.1269 1% Critical value -3.4402

5% Critical value -2.8651

10% Critical value -2.5687

Variable Coeff. Stand. dev. t-stat. Prob.

D(CAC(-1)) -0.86368 0.065795 -13.1269 0

D(CAC(-1),2) 0.062478 0.059078 1.057553 0.2905

D(CAC(-2),2) 0.00726 0.051266 0.141624 0.8874

D(CAC(-3),2) -0.02103 0.042614 -0.49342 0.6218

D(CAC(-4),2) -0.01743 0.03325 -0.5241 0.6003

C -0.40448 1.819434 -0.22231 0.8241

Table 8. ADF test for the IT.CAC after first differences
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Desciptive statistics for the NASDAQ-100
Sample: 1/10/1997 14/08/2002
Number of observations: 1271

NASDAQ-100 Mean Median Max. Min. Stand.-dev. Asym. Kurtosis Obs.

[0, 1000) 964.8405 975.67 998.46 857.08 34.60176 -1.34478 4.122783 41
[1000, 2000) 1429.74 1391.11 1999.04 1000.7 267.344 0.387757 2.169127 663
[2000, 3000) 2356.226 2330.025 2999.78 2000.18 249.616 0.611176 2.591512 266
[3000, 4000) 3572.002 3622.1 3998.26 3003.49 271.7814 -0.40952 2.129734 207
[4000, 5000) 4303.725 4264.045 4704.73 4030.26 203.6289 0.373506 1.944481 40

Total 2075.42 1751.11 4704.73 857.08 947.1657 0.88532 2.632854 1217

Table 9. Desciptive statistics for the NASDAQ-100

ADF test for the NASDAQ-100

ADF stat. -0.94996 1% Critical value -3.4402

5% Critical value -2.8651

10% Critical value -2.5687

Variable Coeff. Stand.-dev. t-stat. Prob.

NASDAQ100(-1) -0.002 0.002106 -0.94996 0.3423

D(NASDAQ100(-1)) -0.06763 0.028815 -2.34689 0.0191

D(NASDAQ100(-2)) -0.07568 0.028873 -2.62102 0.0089

D(NASDAQ100(-3)) -0.02285 0.028872 -0.79148 0.4288

D(NASDAQ100(-4)) 0.015973 0.028809 0.554464 0.5794

C 3.898322 4.809552 0.810538 0.4178

Table 10. ADF test for the NASDAQ-100

ADF test for the IT.CAC after first differences

Statistique ADF -16.662 1% Critical value -3.4402

5% Critical value -2.8651

10% Critical value -2.5687

Variable Coeff. Stand.-dev. t-stat. Prob.

D(NASDAQ100(-1)) -1.1883 0.071318 -16.662 0

D(NASDAQ100(-1),2) 0.119851 0.063241 1.89514 0.0583

D(NASDAQ100(-2),2) 0.042312 0.053566 0.789907 0.4297

D(NASDAQ100(-3),2) 0.016188 0.042173 0.38385 0.7012

D(NASDAQ100(-4),2) 0.029214 0.028807 1.014155 0.3107

C -0.27092 1.989252 -0.13619 0.8917

Table 11. ADF test for the NASDAQ-100 after first differences
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Appendix B. Estimation Results

IT.CAC (Sample=913 observations):

Specification Number of param. Log-like. AIC Schwarz

AR(1)-ARCH(2) 5 -2105 -2111 -2113
AR(1)-ARCH-L(1) 5 -2110 -2115 -2118

AR(1)-EGARCH(1) 5 -2113 -2119 -2121
AR(1)-GARCH(1,1) 5 -2040 -2045 -2048

AR(1)-GARCH-L(1,1)* 6 -2031 -2037 -2039
AR(1)-EGARCH(1,1) 6 -2033 -2039 -2041

Simple regime change 4 -2059 -2055 -2064

AR(1)-SWARCH(2,1)-Gauss. 7 -2084 -2091 -2094
AR(1)-SWARCH-L(2,1)-Gauss. 8 -2080 -2088 -2092
AR(1)-SWARCH(2,2)-Gauss. 8 -2075 -2083 -2087

AR(1)-SWARCH-L(2,2)-Gauss. 9 -2070 -2079 -2083
AR(1)-SWARCH(2,3)-Gauss. 9 -2055 -2064 -2068

AR(1)-SWARCH-L(2,3)-Gauss. 10 -2050 -2060 -2065
AR(1)-SWARCH-L(3,1)-Gauss. 11 -2025 -2036 -2041
AR(1)-SWARCH(3,1)-Gauss. 10 -2071 -2081 -2085
AR(1)-SWARCH(3,2)-Gauss. 11 -2019 -2030 -2035

AR(1)-SWARCH-L(3,2)-Gauss.* 12 -2012 -2024 -2029
AR(1)-SWARCH-L(3,2)-Student 13 -2025 -2038 -2044

AR(1)-SWARCH(3,3)-Gauss. 13 -2023 -2036 -2042

AR(1)SWGARCH(1,1)-Gauss.* 12 -1991 -2003 -2008

NASDAQ-100 (Sample=1213 observations):

AR(1)-ARCH(2) 5 -2938 -2944 -2946
AR(1)-ARCH-L(1) 5 -2961 -2967 -2969

AR(1)-EGARCH(1) 5 -2968 -2974 -2977
AR(1)-GARCH(1,1) 5 -2884 -2889 -2892

AR(1)-GARCH-L(1,1)* 6 -2862 -2868 -2871
AR(1)-EGARCH(1,1) 6 -2865 -2872 -2875

Simple regime change 4 -2899 -2895 -2905

AR(1)-SWARCH(2,1)-Gauss. 7 -2954 -2961 -2965
AR(1)-SWARCH-L(2,1)-Gauss. 8 -2938 -2946 -2950
AR(1)-SWARCH(2,2)-Gauss. 8 -2921 -2929 -2933

AR(1)-SWARCH-L(2,2)-Gauss. 9 -2916 -2925 -2930
AR(1)-SWARCH(2,3)-Gauss. 9 -2915 -2924 -2929

AR(1)-SWARCH-L(2,2)-Student-t 10 -2917 -2927 -2932
AR(1)-SWARCH-L(2,3)-Gauss. 10 -2908 -2918 -2923
AR(1)-SWARCH(3,1)-Gauss. 10 -2895 -2905 -2910

AR(1)-SWARCH-L(3,1)-Gauss. 11 -2870 -2881 -2887
AR(1)-SWARCH(3,2)-Gauss. 11 -2867 -2878 -2884

AR(1)-SWARCH-L(3,2)-Gauss.* 12 -2863 -2875 -2882

AR(1)-SWGARCH(1,1)-Gauss.* 12 -2862 -2874 -2879

Table 12. Estimation results

Note: The number of parameters for the GARCH estimations does not include the initial
variance estimator σ̂2. The number of paramters for the SWARCH-L(3,2) does not include
the transition probabilities pij . The second column indicates the maximum value of the
log-likelihood function. Twice the difference between two maximum likelihood values
of two different specifications is distributed as χ2 with degrees of freedom equal to the
difference between the number of parameters of the two specifications. AIC is calculated
as L-k, where k is the number of parameters in column 1. Schwartz is calculated as
L-(k/2).ln(T), where T is the size of the sample.
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Appendix C. Figures
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Figure 1. NASDAQ-100
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Figure 2. NASDAQ-100 Exchange Volumes
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Figure 3. NASDAQ-100 21-day Rolling Standard Deviations (RSD)
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Figure 5. RSD IT.CAC
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Figure 6. D(%)IT.CAC
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Figure 7. D(%)NASDAQ-100
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Figure 8. RSD IT.CAC and NASDAQ-100
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Figure 9. IT.CAC P (st = 1) ex-ante for constant variance
switching model
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Figure 10. IT.CAC P (st = 2) ex-ante for constant variance
switching model
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Figure 11. IT.CAC P (st = 1) smoothed probabilities for con-
stant variance switching model
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Figure 12. IT.CAC P (st = 2) smoothed probabilities for con-
stant variance switching model
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Figure 13. IT.CAC Conditional Means for constant variance
switching model
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Figure 14. IT.CAC Conditional Standard Deviations for con-
stant variance switching model
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Figure 15. NASDAQ-100 P (st = 1) ex-ante for constant variance
switching model
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Figure 16. NASDAQ-100 P (st = 2) ex-ante for constant variance
switching model
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Figure 17. NASDAQ-100 P (st = 1) smoothed probabilities for
constant variance switching model
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Figure 18. NASDAQ-100 P (st = 2) smoothed probabilities for
constant variance switching model
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Figure 19. NASDAQ-100 Conditional Means for constant vari-
ance switching model
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Figure 20. NASDAQ-100 Conditional Standard Deviations for
constant variance switching model
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Figure 21. IT.CAC P (st = 1) smoothed probabilities for uni-
variate AR(1)-SWARCH-L(3,1)
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Figure 22. IT.CAC P (st = 2) smoothed probabilities for uni-
variate AR(1)-SWARCH-L(3,1)
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Figure 23. IT.CAC P (st = 3) smoothed probabilities for uni-
variate AR(1)-SWARCH-L(3,1)
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Figure 24. NASDAQ-100 P (st = 1) smoothed probabilities for
univariate AR(1)-SWARCH-L(3,2)
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Figure 25. NASDAQ-100 P (st = 2) smoothed probabilities for
univariate AR(1)-SWARCH-L(3,2)
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Figure 26. NASDAQ-100 P (st = 3) smoothed probabilities for
univariate AR(1)-SWARCH-L(3,2)
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Figure 27. IT.CAC P (st = 1) smoothed probabilities for uni-
variate SWGARCH(2,1,1)
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Figure 28. IT.CAC P (st = 2) smoothed probabilities for uni-
variate SWGARCH(2,1,1)
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Figure 29. NASDAQ-100 P (st = 1) smoothed probabilities for
univariate SWGARCH(2,1,1)
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Figure 30. NASDAQ-100 P (st = 2) smoothed probabilities for
univariate SWGARCH(2,1,1)
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Figure 31. Smoothed probabilities for low-low volatilities for bi-
variate SWARCH(1,1)
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Figure 32. Smoothed probabilities for low-high volatilities for bi-
variate SWARCH(1,1)
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Figure 33. Smoothed probabilities for high-low volatilities for bi-
variate SWARCH(1,1)
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Figure 34. Smoothed probabilities for high-high volatilities for
bivariate SWARCH(1,1)


