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NEW TECHNOLOGY STOCK MARKET INDEXES CONTAGION:
A VAR-DCCMVGARCH APPROACH

RYAN SULEIMANN

Abstract. The episodes of stock market crises in Europe and the U.S.A.

since the year 2000, and the fragility of the New Technology sector after the
explosion of the speculative bubble, have sparked the interest of researchers in
understanding and in modeling this market’s high volatility to prevent against
crises. The strong linkage of the American and European New Technology sec-
tors has brought up the co-movement and the contagion hypothesis, especially
after the fall in new technology stock prices in Europe following the explosion
of the IT speculative bubble in the U.S.A. In this article, we attempt to show
that the NASDAQ-100 is a major origin for the shocks that the IT.CAC and
the NEMAX undergo. We construct a VAR model with GARCH errors to
show this linkage and we find that the NASDAQ-100 has a strong effect on the
French IT.CAC; this approach is an original work on contagion in the case of
stock market indexes.

1. introduction

We can speak of the IT1 speculative bubble as any other speculative bubble. A
speculative bubble with a particularly fast development that spread over all the
continents in one year. In other words, it was the first speculative bubble of the
globalization process. The effect of this bubble went way beyond the frontiers of
the stock market. The speculative movements not only dragged investors into this
sector, but also created a massive wave of IT companies creation everywhere in
the world. It suddenly attracted thousands of workers seduced by the innovative
aspect of this sector and by the fast gain they can get through stock options. The
traditional economy sector had to improvise new strategies into the Internet to
seduce back investors and financial analysts who lost interest in it. People of all
backgrounds and all levels got into the IT sector and invested in start-ups and this
is what makes it an even like no other in the world of financial markets.

The peak of the world’s interest in this sector arose just before the year 2000.
The year 2000 bug2 was a threat to all of the computers in the world, especially
that most of the world’s goods and services are computer dependent. So the world

1Affiliation: Ecole Normale Supérieure, Cachan, Adress: 132, rue de la Convention, 75015
Paris, France, Email: ryansuleiman@aol.com, Tel/Fax:+33145572544.

Date: March 2003.
1991 Mathematics Subject Classification. C22, C32, C52, G15.
Key words and phrases. Conditional Variance, Regime Changes, New Technologies, Contagion,

Volatility, VAR, Causality.
I would like to thank Mme Dominique Guegan for her support and her comments in order to

complete this paper.
1Information and Technology.
2The year 2000 bug makes the computers consider passing from the year 1999 to the year 2000

as passing to the year 1900.

2



3

realized its computer dependency and its need for computer engineers with the
approach of the year 2000, which created the technology snow ball, especially that
the year 2000 bug was avoided very smoothly.

In a previous article, we studied the co-movement hypothesis between the NASDAQ-
100 and the IT.CAC (Suleimann, 2002). We used several conditional variance
models with changes in regime to show that there is co-movement between those
markets. In fact, we show that the two IT indexes are both either in a high volatil-
ity state in or both in a low volatility state and never in a low-high or high-low
volatility states. This suggests that the time the contagion takes to spread is quite
short (a few days or a few weeks only). Having shown the co-movement hypothesis,
we attempt to show in this article, that there is a one way co-movement in the case
of the American NASDAQ-100, the French IT.CAC and the German NEMAX50.
We proceed using VAR models with heteroskedastic errors and we examine the im-
pulse response function in addition to making a causality test to check the direction
of the contagion.

Using daily data of the three IT indexes, we find that there is a one way co-
movement from the NASDAQ-100 to the French and German indexes and we find
that a shock equal to one standard deviation on the NASDAQ-100 is transmitted
quite rapidly onto the IT.CAC, which makes the American index responsible of
a large part of the French’s volatility; this can be clearly seen once we make the
variance decomposition. In fact, the American IT sector is the birth place of IT
sectors in the Europe, which gives it a strong influence on the French and German
IT sectors that are quite small in size compared to the NASDAQ-100. It has been
observed that most of the shocks that the NASDAQ-100 has undergone were trans-
mitted quite rapidly to the French and German stock markets, for example with the
Enron and WorldCom cases in the U.S.A., French companies were strongly affected
and the public had doubts concerning them; this situation had a great influence on
the IT.CAC which includes many companies similar to Enron and WorldCom.

This paper is an original work in combining VAR models with dcc-MVGARCH3

models with an application to European and American IT stock market indexes to
study contagion.
The paper is organized in the following manner: section 2 provides a historical per-
spective of the IT crises. Section 3 reviews the theoretical and empirical literature
on contagion. Data and estimation techniques are discussed in section 4. Section 5
reports the results of cross-country contagion and cross-market contagion results.
Finally, the conclusion is drawn in section 6.

2. Historical perspective of the IT crises

The explosion of the Internet traffic is generally presented as the first sign of
the new economy’s birth. This explosion became possible following the progress
realized in data processing and in telecommunication. It should be pointed out
that Internet’s development is prior to the emergence of micro-computers. Even
though the first email message was sent in 1969 by the American army, the first

3Dynamic Correlation Multivariate Garch model (Engle and Sheppard, 2001).
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micro-computer, Altäır, was manufactured in the U.S.A. in 1975. Hardware com-
panies like Apple, IBM, Compaq... appeared on the market, as well as software
producing companies like Microsoft. There were 2000 computers worldwide in the
1950s and 200 million forty years later. Computer data processing speed went from
10000 operations per second to 100000000 operations per second, and this speed is
doubling every 18 months. Parallely to the quick rise in microprocessors’ power,
the price of those microprocessors keeps falling, with an average of 25% per year
(see figure below4).

This impressive fall in prices is basically due to the progress realized in the manu-
facturing methods. Economies of scale in general, played a very important role in
lowering the prices of the final goods.

The realization of a considerable progress in telecommunication technology was
waited for, in order to connect a network of a constantly growing number of com-
puters. As of the end of the 1970s, the progressive usage of optical fibers allowed
for high speed and low cost data transmission. The transmission costs of a bit of
data over one kilometer of optical fibers has been divided by four between the year
19775 and the year 19956. So the industry of computers has evolved through three
parallel axis: data processing, networking and software to link the preceding two.
Those three axis constitute today what we call the IT sector.

As can be expected, the stock markets realized the importance of this growing
market and wanted to take part of it. So speculators bought IT stocks massively

4MIPS: Millions of Instructions Per Second. Source: www.neweconomyindex.org.
5The year when the first transmission using optical fibers was made in Chicago, U.S.A.
6Source: The New Economy Index, www.neweconomyindex.org.
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and speculative valorization of IT companies broke records. Even though those
companies were still young and weak and were making modest revenues, their mar-
ket capitalization reached the equal of U.K.’s GNP7. In fact, most of the financial
models value a company based on the dividends that the investor would expect to
get. The problem is that most of the IT companies would have had to grow at a
rate of 30 to 40 % over the next 20 years in order to be able to make sufficient
revenues and distribute dividends. So most financial models fail to account for this
problem since stock prices bear little or no relationship to the value of the IT com-
pany. In fact, Joseph Schumpeter discussed a similar phenomenon and introduced
the concept of creative destruction to help explain the business cycle. This theory,
which has become a mantra to venture capitalists and high-tech entrepreneurs, puts
forth that economic fluctuations are caused by the introduction of new technology
that destroys the value of existing investments built on old technology. Schumpeter
took this line of thinking further and foresaw that the creative process of capitalism
itself, ”sows the seeds of its own destruction”. Furhermore, Schumpeter talks about
successive waves of innovation that would result in severe economic fluctuations.

The following table illustrates the gap between the American IT companies’ market
capitalization and their accounting situation: The scenario that took place in the

Table 1. Development of certain IT stocks from their introduc-
tion until 9/12/1999 (Capitalization and net revenues in millions
of dollars)

Comp. Stock price Capit. Net rev. Int. date Int. price Var.%
AOL 84.17 92607 762 19.3.1992 11.22 650
Lycos 83.5 7159 -52 1.4.1996 15.61 435
Yahoo! 331.81 85204 26 13.4.1996 12.69 2515
Amazon 101.13 36171 -125 15.5.1997 17.57 467
eBay 156.75 19879 2.4 24.9.1998 17.57 792
Terra 48.82 13546 -3.8 17.10.1999 13 276

U.S.A. got repeated almost at the same time all over the major market places, all
over the world, and especially in France and in Germany where a French and a
German technology indexes (IT.CAC and NEMAX respectively) were created to
account for this sector. Europe witnessed also the creation of a large number of
IT companies which also ”suffered” from a very high market capitalization versus
quite modest revenues. Figure 1 shows the parallel explosion of the NASDAQ-100,
the IT.CAC and the NEMAX’s respective volatilities around the year 2000 using
the RSD as a preliminary measure of those volatilities8.

In table 2 we can see the correlation coefficients of the three indexes’s volatilities
measured using the RSD over 21 days.

Based on the above correlation matrix, we can make a preliminary hypothesis
that the IT indexes’s volatilities are highly correlated, which reflects the reality

7For IT companies based in the U.S.A.
8Rolling standard deviation (RSD) over 21 days: σ(rt) = [253

∑2
k=1 1(rt−k −µ)2/20]

1
2 , where

µ is the mean of the observations over 21 days (Schwert, 2002).
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Figure 1. Rolling 21-day standard deviation for the 3 indexes

Table 2. Correlation coefficients of the indexes’ 21-day RSD

NASDAQ-100 IT.CAC NEMAX
NASDAQ-100 1 0.74 0.77

IT.CAC 0.74 1 0.78
NEMAX 0.77 0.78 1

seen in the close relationship between the American and the European IT markets.

The rise of the new technology sector’s volatility all over the world has taken place
mainly because of technology itself. It seems all speculative bubbles are associ-
ated with some new gimmick, some new investment vehicle or technology. Many
of these new market technologies of the past, have persisted as important market
tools. However, their excessive over use in the short run contributed to speculation.
Today’s gimmick is probably the availability of on-line trading.

Today anyone can buy and sell stock at very low commissions with the click of
a mouse. This wonderful technology represents several potential problems for un-
healthy speculation. First, it makes it easy for anyone to get into the market. In
the past, all the hassle of going to a broker to open an account probably prevented
many people from diving in. Additionally, the broker probably represented an im-
portant double check on an investor’s speculative euphoria. Brokers have a legal
obligation to qualify their clients in an attempt to help people invest in securi-
ties appropriate to their circumstances. Though this system is far from perfect,
a broker is a better filter than a computer. Finally, on-line trading has resulted
in an explosion of day-traders. No one knows how many day-traders there are
or how much money they actually represent. but it is getting to be substantial.
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Unfortunately, many of them are really gambling; they do not truly have a ratio-
nal and disciplined approach to trading. If they understood the true volatility of
stocks, and especially how the dealers and floor specialists work they would realize
that for all their apparent on-line access the odds, are terribly stacked against them.

A second reason why the IT sector’s volatility exploded in the recent years is the
heavy use of margin, especially in France. Margin is a term for borrowing money
to buy stock. If an investor borrows and buys a stock that goes up, his profits
increase. If the stock declines, his losses increase. Thus, margin increases the risk
in owning stock. Margin rises during speculative bubbles. The Wall Street Jour-
nal reported recently that in February, margin debt hit $265.2 billion up 45% in
just four months. And this number probably understates the amount of leveraged
speculation that is going on. There is evidence that in addition to regular margin
debt, people are borrowing against the equity in their homes and even their credit
cards to invest. This is not healthy.

And finally, a third reason is a phenomenon known as an information mirage in
which traders ignore their own information and instead look to ”follow the herd”.
In an information mirage, also known as a reverse information cascade, an individ-
ual trader who can be certain that his or her own information is reliable is likely
nonetheless to follow other traders, even if he or she knows that everyone else are
badly trading based on these information. Such a behavior may play a role in
bubble formation and in creating a contagion effect, national or international.

3. Financial market contagion: Literature survey

The phenomenon of global stock market contagion is now too familiar and serious
to ignore and has become an integral part of the stock market activity. Interna-
tional spread of a financial crisis is no new phenomenon and dates back to the
Mississippi and the South Sea bubbles. The collapse of the Mississippi scheme in
the Netherlands during 1719-1720 led to the quick demise of the South Sea Com-
pany in England within one year in 1720.

The impact of the October 1987 crash was even more widespread. The 21.50%
fall in the Dow resulted in a 44% decline in Australia, 22.20% in Canada, 21.70% in
the UK, 18.60% in France and 17.70% in Germany. This is despite the fact that the
indicators of economic conditions varied widely among the countries. Surprisingly,
the impact was very little in the Italian and the Japanese markets.

However, the contagion effect has become more pronounced in recent years be-
cause of the rapid global economic integration. It may also be observed that the
phenomenon of global stock market contagion always comes for debate only when
a major crisis hits the US market.

Theoretical work on international propagation of shocks can be broadly catego-
rized as focusing on three different mechanisms: aggregate shocks which affect the
economic fundamentals of more than one country, country-specific shocks which
affects the economic fundamentals of other countries, and shocks which are not
explained by fundamentals and are categorized as pure contagion (Masson, 1996).
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The first mechanism focuses on aggregate or global shocks which simultaneously
affect the fundamentals of several economies. For example, a rise in international
interest rate, a contraction of the international supply of capital, or a decline in
international demand could simultaneously slow growth in a number of countries.
The stock markets in any countries affected by this aggregate shock would move
together (at least to some degree), so that directly after the shock, cross-market
correlations between any affected countries could increase.

The second mechanism explains how a shock to one country (or group of coun-
tries) could affect fundamentals in other countries (Eichengreen, Rose and Wypolsz,
1996). This mechanism could work through a number of real linkages, such as trade
or policy coordination. Trade could link economies because a devaluation in one
country would increase the competitiveness of that country’s goods, potentially de-
creasing the competitiveness of other countries. This could not only have a direct
effect on a country’s sales and output, but if the loss in competitiveness is severe
enough, it could increase expectations of an exchange rate devaluation and/or lead
to an attack on a country’s currency. Policy coordination could link economies be-
cause one country’s response to an economic or financial shock could force another
country to follow similar policies. For example, a trade agreement might include a
clause in which lax monetary policy in one country would force other trade member
countries to raise trade barriers.

The final propagation mechanism, contagion, is defined as any increase in market
co-movement which cannot be explained by the previous two channels, so conta-
gion in this case is treated as a residual and which will be the case in our article.
For example, Mullainathan (1998) focuses on investor psychology and argues that
investors imperfectly recall past events. A crisis in one country could trigger a
memory of past crises, which would cause investors to recompute their priors (on
variables such as debt default) and assign a higher probability to a bad state. The
resulting downward co-movement in prices would occur because memories instead
of fundamentals are correlated.

The cross-market linkages during a crisis are different than during relatively stable
periods. In fact, international propagation mechanisms are strengthened during a
crisis and this shift is not driven by real economic linkages.

Now if we examine the IT sector in general, we can conclude that it does not
belong to the first two propagation mechanisms. As a consequence we will treat
contagion as a residual and we define it as a significant increase in cross-market
linkages after a shock to one country (or group of countries), similarly to the liter-
ature (Forbes and Rigobon 2002).

Motivated by the lack of evidence on countrys economic fundamentals as deter-
minants of contagion, researchers sought explanations in investment holding pat-
terns. Kodres and Prisker (2002) develop a theoretical model of financial contagion
through cross-market hedging. This hedging model predicts market co-movements
should be symmetrical in market upturns and downturns. Kyle and Xiong (2001)
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suggest that contagion occurs through the wealth effects of investors. When in-
vestors undergo a large loss in investment in the crisis country, they may have to
liquidate their positions in other countries, thus causing equity prices to depreciate
elsewhere. Moreover, Calvo (1999) and Yuan (2000) find that wealth effects per-
sist even when only a small fraction of investors are wealth-constrained, as long as
they are relatively more informed. They argue that uninformed rational investors
would not be able to discern the purpose of informed investors, and would not be
able to distinguish between selling based on liquidity shocks and selling based on
fundamental shocks. In the presence of margin-constrained, informed investors, it
is possible for contagion to result from confused uninformed investors. Kyle and
Xiong (2001), Calvo (1999), and Yuan (2000) predict that crises are spread to stock
markets by their wealth-constrained investors, and that correlations among mar-
kets are greater in market down- turns. Although theoretically convincing, there is
little empirical evidence for the investor-induced contagion hypothesis.

Empirical literature, in general, finds support for a case of currency contagion.
For example a group of economists detected contagion in case of Tequila crisis in
Latin America initiated by a crash of Mexican peso in 1994. Eichengreen, Rose and
Wyplosz (1996) used thirty years panel data for 20 industrialized countries and ar-
gue that currency contagion spread more easily to countries which were closely tied
by international trade linkages than to countries in similar macroeconomics condi-
tions. Using data from emerging markets, Glick and Rose (1999) concluded that
trade was the important channel for contagion. Using a time-varying transition
probability Markov-switching model, Cerra and Saxena (2000) found empirical ev-
idence suggesting contagion (pressures on exchange rate emerging from Thailand)
as one source of crisis in Indonesia along with other factors such as domestic fi-
nancial conditions and political instability. Ahluwalia (2000) twisted the argument
of common macroeconomic weaknesses to important similarities between countries
but found support for contagion in a sample of 19 countries Asia and Latin America.
Rijckeghem and Weder (1999) argue that financial market linkages are an impor-
tant source of spillovers from shock-originating country to the other countries in the
11 regions. Using Mexico, Thailand and Russia as the crisis originating countries,
they found support for financial market linkages as the source of spillovers. There
is also an argument based on common creditor problem, which may lead to unex-
pected capital outflows independent of macroeconomic fundamentals. Aizenman
and Hoffmaiser (1999) found strong support for contagion of bank lending spreads
and output fluctuations in Argentina.

Biag and Goldfajn (1998) used a VAR model to analyze data from a sample of seven
Asian countries and found support for cross-boarder contagion in the currency and
equity markets. Chan (1999), using a SURE framework for nine Asian economies,
found both contagion and economic fundamentals to be important source of spread
of crisis in the region. Dungey and Martin (1999) decomposed the exchange rate
movements into idiosyncratic, common shocks, spillover effect and contagion effects
and found empirical evidence suggesting that contagion from Thailand during the
1997 Asian crisis accounted for 15 percent volatility in Indonesia, 10% in Malaysia
and less than 1 percent for South Korea.
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Forbes and Rigobon (1999a), however, argue that cross-country correlation during
the crisis may have a tendency to increase. Therefore, attributing such correlation
as contagion may be biased unless some adjustment for such co-movements is made.
Their empirical tests based on data from a sample of countries in Asian and Latin
American regions and the United states suggest that adjusted coefficients do not
have any contagion. However, the same data when applied to unadjusted coeffi-
cients reflect evidence of contagion. In a later paper, Forbes and Rigobon (1999b)
suggest another definition of contagion, called shift-contagion. Shift-contagion oc-
curs when cross-market linkages increase significantly after a shock to an individual
country. Using this definition, they claim that most of evidence of contagion may
not be classified as shift contagion. In this sense, the countries are highly interde-
pendent, as the cross-country linkages remain stable even after the crisis.

Fratzscher (1998) compares the spread of Latin American crises and the Asian
crises to other emerging economies. Using different definitions of contagion, he
found that high financial and trade integration were central to the spread of crises
across the regional economies. Masih and Masih (1999) examined the long and
short-term dynamic linkages among international and Asian emerging stock mar-
kets. They found strong support for the role of contagion among Asian markets.

It is evident from above discussion that the interest in contagion has increased
after two recent episodes of regional crises namely, the 1997 Asian crisis and the
1998 Russian crisis.

4. Data and Estimation Techniques

The main objective of this paper is to study the contagion effect between the
three IT indexes that we study, namely the American NASDAQ-100, the French
IT.CAC and the German NEMAX (see figure 2 for the three indexes’ graphs).

4.1. Data and some preliminary analysis. In fact, in a previous article we used
a multivariate SWARCH model (Edwards and Susmel, 1998) to show that the IT
indexes are simultaneously in high volatility regime or in a low volatility regime,
but never in a high-low volatility regime. The coincidence of the indexes volatility
states along with the high correlation coefficients (see table 3) the indexes have,
lead us to draw the conclusion that there is a co-movement between them.

Table 3. Correlation coefficients matrix of the three indexes

NASDAQ100 IT.CAC NEMAX
NASDAQ100 1 0.89 0.93

IT.CAC 0.89 1 0.79
NEMAX 0.93 0.79 1

Our aim is to show that there is a one way co-movement between the three IT
indexes and that the NASDAQ-100 is the originator of the shocks. On the other
hand we will attempt to reach the conclusion that there is a relationship between
international correlation of the three indexes and stock market turbulence.
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Figure 2. Graphs of the NASDAQ-100, the IT.CAC and the NEMAX

We use weekly stock returns of the three indexes, starting on the 6th of Janu-
ary 1999 till the 9th of October 20029. A summary of the indexes weekly stock
returns can be found in Table 4 below.

Table 4. Descriptive statistics of the three indexes weekly stock returns

DNASDAQ-100 DIT.CAC DNEMAX
Mean -6.20388 -2.63094 -24.7852
Median -3.29 -6.04 -31.61

Maximum 732.25 1052.93 1389.66
Minimum -822.3 -1096.7 -1996.23
Std. Dev. 174.7744 196.9647 334.7201
Skewness -0.29906 0.287231 -0.29903
Kurtosis 5.239088 9.621564 6.850925

Jarque-Bera 217.7603 1790.933 615.7182
Probability 0 0 0

The average weekly return is negative for the three indexes. Standard deviations
reveal that the NASDAQ-100 has the smallest one whereas the German NEMAX
has a standard deviation that is almost the double of the NASDAQ-100’s. As for
the skewness, which is the measure of the distributions asymmetry of returns, we
find that the NASDAQ-100 and the NEMAX returns exhibit a negative one, which
suggests that crashes are more likely than booms, whereas the IT.CAC’s skewness

9We use weekly stock returns since they are less noisy than daily stock returns and allow for
us to keep more information in the series than the first order differencing.
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is positive. As for the kurtosis, which measures the heaviness of tails compared
to a measure of three for the normal distribution, we find that the three indexes
exhibit excess kurtosis (larger than 3), therefore their distributions have fatter tails
than the normal one. The Jarque-Bera test statistic strongly rejects the normality
hypothesis of stock returns for the three indexes. Those preliminary descriptive
statistics confirm the widespread results in the financial literature on stock returns:
negative skewness (except for the IT.CAC) and fat tails.

We next consider the presence of return serial correlation. We consider the Ljung-
Box statistic. The Ljung-Box (LB) statistic with 36 lags is distributed as a χ2

36.
The LB statistic shows significant linear dependencies of returns for the three mar-
kets investigated.

Next we consider heteroskedasticity by regressing squared returns on past squared
returns (up to 12 lags). The TR2 Engle statistic, where R2 is the quality of the fit
coefficient, is distributed as a χ2

12 under the null hypothesis of homoskedasticity.
The Engle statistic takes very large values for each market, and strongly rejects
the homoskedasticity null hypothesis, which indicates strong non-linear (second
moment) dependencies. We therefore conclude that there is a fair amount of het-
eroskedasticity in the data.
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Figure 3. Graphs of the weekly returns for the NASDAQ-100,
the IT.CAC and the NEMAX

Table 5 reports unconditional correlation coefficients between indexes returns
and the unconditional variances over three subperiods. The first subperiod covers
the year that preceded the IT crash (15/1/1999 till 31/12/1999) and the second
subperiod (3/1/2000 till 29/12/00) covers the year of the IT crash. If we compare,
we can clearly see that the unconditional variances grew out of proportions in the
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second subperiod compared to the first subperiod. Furthermore, the unconditional
correlations between the NEMAX and the NASDAQ-100 more than doubled from
the first subperiod to the second subperiod. Curiously, the unconditional correla-
tions of the NASDAQ-100 and the IT.CAC did not increase in the second subperiod,
but rather decreased. In fact, if we examine the graphs of the three indexes’ weekly
returns in figure 3 and the unconditional variances in table 5, we can see that in
the period that followed the crash, the IT.CAC and the NEMAX weekly returns
had a very high volatility for short period of a few months and then this volatility
decreased dramatically afterwards. The NASDAQ-100 weekly returns on the other
hand, exhibited a high increase in volatility after the crash and sustained this high
volatility for a much longer time than the other two indexes. Looking back again
at table 3, we can see that the unconditional correlation coefficients of the three
indexes in levels show very high values and reach maximums around the year 2000
when the three indexes exhibited very high volatilities in a very turbulent period.
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Figure 4. Conditional correlation coefficients over 100 days of the
three IT indexes in levels

If we examine the conditional correlation coefficients10 of the three indexes over
100 days in figure 4 above, we can see that those correlations are far from constant.
The solid lines show the unconditional correlation coefficients of the three indexes
and if compared with the conditional ones, we can see that those correlations ex-
hibit dramatic fluctuations. Now if we examine the correlation coefficients matrix
of the rolling 21-day standard deviations of the three indexes, as a preliminary

10Using the classical formula ρ̂12,t =

∑ t−1
s=t−n−1 r1,sr2,s√

(
∑ t−1

t−n−1 r2
1,s)(

∑ t−1
t−n−1 r2

2,s)
. This estimator gives equal

weights to all observations less than n periods in the past and zero weight on older observations.
This estimator will always lie in the [−1, 1] interval. This estimator is also called moving average
(MA) estimator for rolling conditional correlations.
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Table 5. Unconditional correlation matrices and variances over
various sub-periods of the three IT indexes’ weekly returns

Correlation matrix variance
DNASDAQ-100 DIT.CAC DNEMAX

15/1/99-31/12/99
DNASDAQ-100 1 0.36 0.07 12389.25

DIT.CAC 0.36 1 0.25 6499.178
DNEMAX 0.07 0.25 1 49019.44

3/1/00-29/12/00
DNASDAQ-100 1 0.20 0.19 67863.71

DIT.CAC 0.20 1 0.13 97527.53
DNEMAX 0.19 0.13 1 275789.8

1/1/01-8/10/02
DNASDAQ-100 1 0.19 -0.11 11302.01

DIT.CAC 0.19 1 0.09 9360.779
DNEMAX -0.11 0.09 1 17511.98

measure of volatility (figure 1), we can see that the correlation coefficients are quite
high (table 2).

Furthermore, if we establish a Granger causality test over the three series of the
rolling 21-day standard deviations (table 7 below), we can see that the NASDAQ-
100 Granger causes the two European IT indexes (IT.CAC and NEMAX) and that
it is a one way causality. We also find that there is a two-way causality between the
IT.CAC and the NEMAX. Therefore we conclude that there might be a volatility
contagion channel between these indexes and specifically from the NASDAQ-100
towards the IT.CAC and the NEMAX.

Table 6. Granger causality test for the three series of the rolling
21-day standard deviations for the NASDAQ-100, the IT.CAC and
the NEMAX

Pairwise Granger Causality Tests
Null Hypothesis: F-Statistic Probability
RSDcac doesn’t Granger Cause RSDnas 1.42 0.23 (accept H0)
RSDnas doesn’t Granger Cause RSDcac 5.60 0.02 (reject H0)
RSDnem doesn’t Granger Cause RSDnas 0.96 0.33 (accept H0)
RSDnas doesn’t Granger Cause RSDnem 31.53 0.00 (reject H0)
RSDnem doesn’t Granger Cause RSDcac 14.64 0.00 (reject H0)
RSDcac doesn’t Granger Cause RSDnem 62.03 0.00 (reject H0)

Based on the facts that the indexes are linearly dependent (LB test), show high
levels of heteroskedasticity (Engle’s test) and exhibit dynamic correlations, our ap-
proach in using a VAR model with heteroskedastic errors along with time variable
conditional correlations is justified. Since the dynamic correlations that we es-
timated do not show remarkably high levels, we also establish the hypothesis of
cointegration of the indexes.



15

4.2. Estimation techniques. We start by performing an augmented Dickey Fuller
test (ADF) in order to identify the presence of a unit root in the data. The re-
sult would help us decide on the cointegration order of the three indexes and to
construct a Vector Error Correction Model (VECM). The results of the ADF test,
show that the three series are non-stationary and have a unit root I(1).

A vector error correction model (VECM) is a restricted VAR designed for use with
non-stationary series that are known to be cointegrated. The VEC has cointegra-
tion relations built into the specification so that it restricts the long-run behavior
of the endogenous variables to converge to their cointegrating relationships while
allowing for short-run adjustment dynamics. The cointegration term is known as
the correction term since the deviation from long-run equilibrium is corrected grad-
ually through a series of partial short-run adjustments.

Table 7 below shows the results of the Johansen cointegration test to determine
the number of cointegration equations (CE) to include in the VEC model. The test
reveals the presence of a single cointegration equation between the indexes.

Table 7. Unrestricted Johansen cointegration rank test for the
three series to determine the number of cointegration equations

Hypothesized Eigenvalue Trace 5% Critical 1% Critical
No. of CE(s) Statistic Value value
None 0.051752 61.65296 29.68 35.65
At most 1 0.00971 9.841828 15.41 20.04
At most 2 0.000337 0.328232 3.76 6.65

The VEC model can be represented as follows:

(4.1) ∆Yt =
p−1∑
i=1

Di∆Yt−i + αβ′Yt−1 + εt,

with the cointegration equation defined as a β linear equation between the first
variable on one hand and the other two variables on the other hand and so on
depending on the number of cointegration equations. Yt with t = 1, 2, ..., T is the
vector of dimension s (s = 3 in our case) of the series in question, ∆ is the usual
difference operator and ∆Yt = rt the weekly returns (Yt being the indexes in levels),
α and β are matrices of full rank of dimensions s × r (r is the number of cointe-
gration relations and 0 < r < s), Di is a matrix of parameters to be estimated of
dimensions s× s, and εt is a vector of innovations.

It is very important to determine the lag length before estimating the VECM.
Therefore we use the Akaike information criteria(AIC), the Schwartz information
criteria (SIC) and the likelihood ratio test (LR) to determine the lag length.
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The main objective of estimating the VECM in this study is to identify any casual
relationship among the three different IT markets across the U.S.A., France and
Germany. In fact, we are interested in showing that the disturbances in the French
and the German IT markets are primarily caused by the American NASDAQ-100
along with the intrinsic events of each IT market. We establish a Granger causality
test for the three series (table 8) and we find that the NASDAQ-100 disturbances
indeed cause the disturbances in the IT.CAC and the NEMAX.

Table 8. Granger causality test for the three IT weekly stock
returns series

Pairwise Granger Causality Tests
Null Hypothesis: F-Statistic Probability
DIT.CAC doesn’t Granger Cause DNASDAQ-100 2.37 0.06 (accept H0)
DNASDAQ-100 doesn’t Granger Cause DIT.CAC 33.19 0.00 (reject H0)
DNEMAX doesn’t Granger Cause DNASDAQ-100 2.56 0.05 (accept H0)
DNASDAQ-100 doesn’t Granger Cause DNEMAX 4.75 0.00 (reject H0)
DNEMAX doesn’t Granger Cause DIT.CAC 6.08 0.00 (reject H0)
DIT.CAC doesn’t Granger Cause DNEMAX 19.93 0.00(reject H0)

Next, we carry on with the VEC model estimation using ordinary least squares
(OLS), and we use AIC, SC and LR to determine the most convenient lag length
and we establish a lag exclusion test after estimation to eliminate unnecessary lags.
We carry on a Pairwise Granger Causality/Block Exogeneity Wald Tests after es-
timation of the VECM to determine if there are any index to be considered as
exogenous to the system; the results are reported in table (9).

We can see from table (9) that all six hypotheses are rejected, which means that
the three indexes in the three VECM equations are significantly different from zero
and that they are endogenous to the system, none should be considered as exoge-
nous.

The surprising result in table (9) is the first part in it, where the test suggests
that D(IT.CAC) and D(NEMAX) are not to be excluded from the D(NASDAQ-
100) equation, which means that the D(NASDAQ-100) has, to a certain extent to
be determined, a dependency on the two European indexes. The extent of this
dependency will be determined next based on the impulse-response functions and
on the variance decomposition of the three indexes.

4.2.1. Impulse-Response Functions and Variance Decomposition. The impulse re-
sponse function traces the effect of a shock equal to one standard deviation to one
of the innovations on current and future values of the endogenous variables. A
shock to the i-th variable directly affects the i-th variable, and is also transmitted
to all of the endogenous variables through the dynamic structure of the VAR. Since
innovations are usually correlated, they have a common component, which cannot
be associated with a specific variable.

The dynamic analysis of VECMs is usually carried out using the orthogonalized
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Table 9. VECM Pairwise Granger Causality/Block Exogeneity
Wald Tests for the Three Indexes

Dependent variable: D(NASDAQ-100)
Exclude Chi-sq df Prob.
D(IT.CAC) 86.98 29 0
D(NEMAX) 102.41 29 0
All 190.29 58 0

Dependent variable: D(IT.CAC)
Exclude Chi-sq df Prob.
D(NASDAQ-100) 111.61 29 0
D(NEMAX) 77.86 29 0
All 195.83 58 0

Dependent variable: D(NEMAX)
Exclude Chi-sq df Prob.
D(NASDAQ-100) 74.40 29 0
D(IT.CAC) 319.46 29 0
All 474.00 58 0

impulse-responses. as suggested by Sims (1980). Accordingly, Cholesky decompo-
sition is normally used in the literature where errors are orthogonalized in such a
way that the covariance matrix of the resulting innovations is diagonal.

We first introduce a shock to the NASDAQ-100 and we analyze the impact within
and across the markets over 30 days. We repeat the same in the other two markets
namely, the IT.CAC and the NEMAX. Figure (5) shows the different graphs of the
accumulated impulse-response functions.

If we look at the first column of graphs, which represent a shock to the NASDAQ-
100, we can see that the effect on the IT.CAC is almost immediate (3 days after
the shock took place) and rises rapidly, whereas the response of the NEMAX is
delayed with relatively to the IT.CAC and the response rises after the 10th days. If
we compare the shock to the NASDAQ-100 and its effect on the other two indexes
with the shocks to the IT.CAC and the NEMAX and their effect, we can clearly
see that the NASDAQ’s shock has considerable effect on the other two indexes
compared with the IT.CAC’s and the NEMAX’s shocks. This suggests a contagion
effect coming from the NASDAQ-100 and affecting the two European indexes.

Next, we consider the variance decomposition for the three indexes. While im-
pulse response functions trace the effects of a shock to one endogenous variable on
to the other variables in the VAR, variance decomposition separates the variation in
an endogenous variable into the component shocks to the VAR. Thus, the variance
decomposition provides information about the relative importance of each random
innovation in affecting the variables in the VAR. The first column in figure (6)
shows the percent of variance due to the NASDAQ-100 in each of the three indexes
and so on for the other two columns.
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Figure 5. Accumulated impulse-reponse functions over 30 days
for the three indexes

If we examine the variance decomposition graphs for the three indexes we can
see that the contagion hypothesis is confirmed. In fact, if we look at the first
column and see the variance decomposition of the IT.CAC and the NEMAX, we
can conclude that the NASDAQ-100 is responsible for a considerable part of the
IT.CAC’s and the NEMAX’s variances. After a shock, the NASDAQ’s variability
is transmitted at a rate of almost 40% after one week of the shock. On the other
hand, the effects of shocks to the IT.CAC and the NEMAX on the variances of
the three indexes are much less significant. This drives us to conclude that the
contagion effect is indeed coming from the NASDAQ-100 to the IT.CAC and the
NEMAX.

4.2.2. Analysis of the residuals. We next examine the residuals of the VEC model
in order to see if the VEC model has captured the linearity in the data and to see
if the residuals are heteroskedastic as it can be expected. We first test the residuals
for serial correlation using an LM test for different lags (6, 12 and 18 lags). The
results are reported in table (10).

We reject the hypothesis of a presence of serial correlation in the VECM residuals
for the three lags, 6, 12 and 18. This means that the VEC model captures all of
the linearity that was present in the three indexes. Then, we test the residuals’
normality using a multivariate normal test. The results of the test are reported in
table (11).
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Figure 6. Variance decomposition in percentage over 30 days for
the three indexes

Table 10. VECM Residual Serial Correlation LM Test (H0:no
serial correlation at lag order h)

Lags(h) LM-Stat Prob
6 10.76 0.29
12 13.66 0.14
18 12.66 0.18

The test reveals that the NASDAQ-100’s and the NEMAX’s residuals are sym-
metrical and show no skewness, whereas the IT.CAC’s residuals are positively
skewed since the test rejects the hypothesis that its skewness is null. The three
indexes’s residuals show excess kurtosis, which is typical in the case of financial
data. Finally the Jarque-Bera normality test strongly rejects multivariate normal-
ity for the three residuals.

We finally examine if the residuals are heteroskedastic. The results of the het-
eroskedasticity test can be found in table(12).
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Table 11. VECM normality tests (H0:Residuals are multivariate normal)

Component Skewness Chi-sq df Prob.
ResidNAS 0.03 0.10 1 0.75
ResidITCAC 0.29 13.44 1 0.00
ResidNEMAX -0.08 0.90 1 0.34
Joint 14.44 3 0.00

Component Kurtosis Chi-sq df Prob.
ResidNAS 3.96 35.91 1 0
ResidITCAC 9.40 1612.07 1 0
ResidNEMAX 4.07 45.05 1 0
Joint 1693.03 3 0

Component Jarque-Bera df Prob.
ResidNAS 36.02 2 0
ResidITCAC 1625.50 2 0
ResidNEMAX 45.95 2 0
Joint 1707.47 6 0

Table 12. VECM Residual heteroskedasticity Tests: No Cross
Terms (only squares)

Joint test:
Chi-sq df Prob.
2878.283 1056 0

Individual components:
Dependent R-squared F-test Prob. Chi-sq

(ResidNASDAQ)2 0.49 4.18 0 462.30
(ResidITCAC)2 0.74 12.29 0 696.75
(ResidNEMAX)2 0.51 4.53 0 481.26

The joint and the individual heteroskedasticity tests show the presence of het-
eroskedasticity in the three indexes’s residuals. This result, along with the hy-
pothesis of dynamic correlations that we made earlier lead us to use a Dynamic
Conditional Correlation multivariate GARCH model (dcc-mvgarch).

4.2.3. DCC-MVGARCH model. The dcc-mvgarch was introduced by Engle (2002)
as a generalization of Bollerslev’s (1990) multivariate GARCH with constant con-
ditional correlation estimator. Bollerslev’s MVGARCH has a variance-covariance
expressed as follows:

(4.2) Ht = DtRDt, where Dt = diag
√

hi,t

where ht is the conditional variance and where R is a correlation matrix containing
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the conditional correlations as can be directly seen from rewriting this equation as:

(4.3) Et−1(ηtη
′
t) = D−1

t HtD
−1
t = R, since ηt = D−1

t εt

where εt is the index residuals coming from the VAR model estimated earlier, and
Et−1 is the conditional expectation at date t − 1 with respect to the information
available till t− 1.

The expressions for h are typically thought of as univariate GARCH models, how-
ever, these models could certainly include functions of the other variables in the
system as predetermined variables or exogenous variables. A simple estimate of R
is the unconditional correlation matrix of the standardized residuals.

Engle (2002) proposed an estimator called dynamic conditional correlation (dcc).
The dynamic correlation model differs only in the allowing R to be time varying,
and the variance-covariance matrix would be expressed as:

(4.4) Ht = DtRtDt

Parameterizations of R have the same requirements that H did, except that the
conditional variances must be unity (see appendix and Engle and Sheppard, 2001
for further details). The matrix Rt remains the correlation matrix. More details
about the dynamic correlation estimator can be found in the appendix. Note that
the dcc-mvgarch is identical in its specification to Bollerslev’s multivariate GARCH
with the exception of the expression of Ht above.

Table (13) below, reports the estimators11 of the dcc-mvgarch and figure (7) shows
the graphs of the dynamic conditional correlations of the three indexes residuals.

It can be seen that the estimated parameters of the MVGARCH above are al-
most all quite significant and the GARCH effect is quite persistent, which reflects
the presence of strong heteroskedasticity found earlier in the heteroskedasticity test.
Furthermore, the likelihood ratio test (LR test) strongly rejects univariate GARCH
specifications for each of the series against the multivariate GARCH that we use
(probability=0.001).

If we check the residuals of the dccMVGARCH for the three indexes in table 14,
we can see that the residuals are follow the normal distribution and are white
noises. This indicates that the residuals are properly filtered for linearities and
heteroskedasticity.

11Note that the quasi-maximum likelihood method is used since the normality hypothesis is
not met a priori.
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Table 13. Trivariate GARCH estimators of the 3 indexes

Coefficient Std. Error z-Statistic Prob.
MU(1) 0.19289 1.693499 0.113901 0.91
MU(2) -1.41066 1.0814 -1.30448 0.19
MU(3) 4.474036 1.976667 2.263424 0.02
OMEGA(1) 2.43887 1.545445 1.578103 0.11
BETA(1) 0.986281 0.00298 330.9367 0.00
ALPHA(1) 0.159726 0.016269 9.817841 0.00
OMEGA(2) -0.28255 1.430329 -0.19754 0.84
OMEGA(4) 4.638526 1.017332 4.559503 0.00
BETA(2) 0.951596 0.008575 110.9779 0.00
ALPHA(2) 0.294954 0.026817 10.99894 0.00
OMEGA(3) 0.234706 0.897584 0.261487 0.79
OMEGA(5) -0.02327 0.93209 -0.02496 0.98
OMEGA(6) -0.00191 1472.742 -1.30E-06 1.00
BETA(3) 0.988205 0.00243 406.6571 0.00
ALPHA(3) 0.150763 0.015868 9.501166 0.00

Table 14. Residuals tests for the dccMVGARCH (star indicates
the acceptance of the normality hypothesis)

Mean STD Skewn. Kurt. Jarque-Bera(prob.)
Resid.NASD100 0.00 1.00 -0.05 2.93 0.74*
ResidITCAC -0.11 0.99 0.16 3.02 0.10*
ResidNEMAX 0.02 0.99 -0.14 2.92 0.17*

The dynamic conditional correlation estimators represented in figure(7) have
been smoothed using the Hodrick-Prescott filter. Technically, the Hodrick-Prescott
(HP) filter is a two-sided linear filter that computes the smoothed series s of y by
minimizing the variance of y around s, subject to a penalty that constrains the
second difference of s. That is, the HP filter chooses st as to minimize:

(4.5)
T∑

t=1

(yt − st)2 + λ
T−1∑
t=2

((st+1 − st)− (st − st−1))2

The smoothed dynamic conditional correlation coefficients in figure (7) show max-
ima around the year 2000, the year in which the IT indexes where in a lot of
turbulence. The solid lines in each graph represent the constant correlation coeffi-
cient of each couple of indexes. The fluctuation of the dcc coefficients around the
constant correlations show the non-constant aspect of the correlations, even if they
do not reach high levels in absolute terms. Still, their maxima around the year
2000 are quite significant and match the reality events at that time. the highest
correlations are achieved by the couple NASDAQ-100 and the IT.CAC.

4.2.4. Comparison of estimators. In this section, several correlation estimators will
be compared in terms of simple goodness of fit statistics, multivariate GARCH di-
agnostic tests and Value at Risk tests (Engle, 2002).
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Figure 7. Dynamic conditional correlations for the three indexes

Five different methods are used to estimate the correlations:

• Scalar BEKK as in Engle and Kroner (1995)
• DCCLLMR as described in the appendix
• DCCLLINT as described in the appendix
• EX.06, the RiskMetricsTM exponential smoother as described by equation
(4.8) and footnote 11 in the appendix.

• MA100 as described in footnote 10 page 13.
The first test will be a test for autocorrelation of the squared standardized residu-
als. For the multivariate case, the standardized residuals νt are defined as:

(4.6) νt = H
− 1

2
t rt

The test is calculated as an Fisher (F) test of the regression of the following noises:
ν2
1,t, ν

2
2,t and ν2

3,t on five of their squared lags and cross products, plus an intercept.
The number of rejections (at 5% critical value) is the measure of each model’s per-
formance in modelling the same data. In fact, the larger is the number of rejections,
the surer we get that the data are badly modelled.
A second performance test involves the usage of the value at risk (VaR). We use
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this test in a bivariate context only. So, for a portfolio with ω invested in the first
variable and (1−ω) in the second, under the hypothesis of normality, the VaR can
be written in the following way:

(4.7) V aRt = 1.65
√
(ω2Hii,t + (1− ω)2Hjj,t + 2(ω(1− ω)ρ̂

√
Hii,tHjj,t).

where i, j = 1, 2, 3 with i �= j indicate the series used (i = 1 for the NASDAQ-100
residual, i = 2 for the IT.CAC residual and i = 3 for the NEMAX residual). We
define the following variable:

(4.8) Hit(νit, νjt, θ) = Hitθt = I(ω ∗ νit + (1− ω) ∗ νjt < −V aRt)− θ

where the ν represent the residuals of the examined indexes, I is an indicator func-
tion that takes the value 1 when the inequality is realized and θ = 0.05.
We use the Dynamic Quantile test12 introduced by Engle and Manganelli (2001),
which is a Fisher (F) test of the hypothesis H0 that all coefficients and the con-
stant, in a une regression of the variable Hitt on its past values and the actual VaR
(defined by the equation 4.7), the regression equation can be written as follows:

(4.9) Hitt = δ0 +
p∑

p=1

δpHitt−p + δp+1V aRt + ut

where p = 1, ..., 5 and ut is the error term of the regression. In this case, five lags
of the variable Hit and the actual VaR (defined by the equation 4.7) are used. The
number of rejections (at 5% critical value) represents the measure of each model’s
performance. The test is computed for two portfolios with ω = 0.5 for the first one
and ω = 1 for the second (which is a hedge portfolio).

Looking at table 14, we can see that the worst model is the MA100 model
with 13 rejections, next, the Scalar BEKK and the Exponential smoother with
both 4 rejections, and the best models are the dynamic conditional multivariate
GARCH models with only 2 rejections. These results confirm the usage of the dc-
cMVGARCH model in this paper and confirm the presence of dynamic conditional
correlations in the data.

12This test was introduced by Engle et Manganelli (2001) within a new framework of a new
VaR estimator they introduce. Their new VaR estimator is called CAViaR (Conditional Value at
Risk by Regression Quantiles).
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Table 15. P-statistics from tests of empirical models

ARCH in sqrd RES1 SCALBEKK DCCLLMR DCCLLINT EX.06 MA100
NAS&ITCAC 0.009667 0.011753 0.013318 0.007139 0
ITCAC&NEM 0.894947 0.687804 0.595367 0.010356 0
NAS&NEM 0.194241 0.54066 0.551369 0.484416 0

ARCH in sqrd RES2
NAS&ITCAC 0.0002 0.000608 0.000883 1.23E-09 0
ITCAC&NEM 0.903956 0.927369 0.939984 0.224642 0
NAS&NEM 0.103943 0.918572 0.912164 0.473 0

ARCH in sqrd RES3
NAS&ITCAC 0.00724 0.796626 0.777602 0.005317 0
ITCAC&NEM 0.53897 0.563765 0.635791 0.19268 0
NAS&NEM 0.033689 0.632895 0.628341 0.326404 0

Dyn.quantile test VaR1
NAS&ITCAC 0.166294 0.297307 0.928069 0.529417 0.747822
ITCAC&NEM 0.983894 0.973408 0.922966 0.739929 0.003114
NAS&NEM 0.717617 0.561479 0.459949 0.105145 4.79E-05

Dyn.quantile test VaR1
NAS&ITCAC 0.78702 0.85638 0.795149 0.977544 0.099688
ITCAC&NEM 0.824899 0.681015 0.505644 0.773985 0.008245
NAS&NEM 0.989572 0.980035 0.98062 0.977473 0.00486

conclusion

In this paper, we examined the three technological indexes, the NASDAQ-100,
the IT.CAC and the NEMAX on several levels. We first tested the data for linearity
and cointegration and we used a VEC model to eliminate the linearity. We then
used impulse-response functions and variance decomposition to check for a conta-
gion effect following our previous paper which showed the presence of co-movement
in the IT indexes (Suleimann, 2002). We find evidence of a contagion effect coming
from the NASDAQ-100.

Next we used a dccMVGARCH model to model the residuals of the VEC model
and to examine the presence of dynamic conditional correlation in those residuals.
We find that the residuals indeed follow a dccMVGARCH and we find that this
model is the best against a number of other models. We also find that the dy-
namic conditional correlations of the three indexes rise during turbulent periods,
especially during the year 2000 IT stock price correction.
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Appendix

The simplest specification for the correlation matrix is the exponential smoother
which can be expressed as13:

(4.10) ρi,j,t =
∑

s=1 λ
sεi,t−sεj,t−s√

(
∑t−1

s=1 λ
sε2i,t−s)(

∑t−1
s=1 λ

sε2j,t−s)
= [Rt]i,j

which is a geometrically weighted average of standardized residuals. Clearly these
equations will produce a correlation matrix at each point of time. A simple way
to construct this correlation is through exponential smoothing. In this case the
process followed by the

(4.11) qi,j,t = (1 − λ)(εi,t−1εj,t−1) + λ(qi,j,t−1), ρ =
qi,j,t√
qii,tqjj,t

will be integrated.

A natural alternative is suggested by the GARCH(1,1) model.

(4.12) qi,j,t = ρ̄i,j + α(εi,t−1εj,t−1 − ρ̄i,j) + β(qi,j,t−1 − ρ̄i,j)

where α and β are the GARCH(1,1) parameters. Rewriting gives:

(4.13) qi,j,t = ρ̄i,j(
1 − α− β

1− β
) + α

∞∑
s=1

βsεi,t−sεj,t−s

The unconditional expectation of the cross product is ρ̄i,j while for the variances:

(4.14) ρ̄i,j = 1

13Which is the exponential smoother used by RiskMetricsTM which uses declining weights
based on a parameter λ, which emphasizes current data but has no fixed termination point in the

past where data becomes uninformative. It lies surely in [−1, 1]; however there is no guidance
from the data on how to choose λ. In a multivariate context, the same λ is used for all assets to
ensure a positive definite correlation matrix. RiskMetricsTM uses the value of 0.96 for λ for all
assets. In this paper, this estimator is called EX.06.
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The correlation estimator

(4.15) ρi,j,t =
qi,j,t√
qii,tqjj,t

will be positive definite as the covariance matrix, Qt = [qi,j,t] is a weighted av-
erage of a positive definite and a positive semi-definite matrix. The unconditional
expectation of the numerator of equation (4.13) is ρ̄i,j and each term in the denom-
inator has expected value one. This model is mean reverting as long as α+ β < 1
and when the sum is equal to one it is just the model in (4.9).

When the mean reverting formula (4.10) is used in the estimation, the resulting
estimator is called DCC LL MR and DCC LL INT if the integrated formula (4.9)
is used.


