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Abstract. Modelling spot price behavior plays a key role in the electric-
ity market, since this is the breeding engine for the activity in the corre-
sponding forward and futures market: developers and generators (as well
as traders) need to know how electricity prices behave, as their profitabil-
ity depends on them. Additionally, credit rating agencies need to monitor
the exposure of different players in the market to price fluctuations and
risks. Starting from those considerations, this work is intended to offer
a comparative analysis of the statistical properties of hourly prices in
the day–ahead electricity markets of several countries, in order to fix
some features which a good model should have to fit day–ahead prices.
A number of stochastic processes will be then examined as perspective
candidate to generate sample paths with explanatory power respect on
the real time–series, and results will be discussed.
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1 Introduction

The deregulation of the electricity industry starting in earlier ninety in the
United States and in Scandinavian countries has traced the way to a global
trend, which is in action in most European countries, yet.

Electricity markets generally manage the incorporation of suppliers’costs into
the price to purchasers (who in turn interface with final customers) through a
composite structure.

In particular, a first–look investigation suggests the existence of two parallel
markets (where, hence two different kind of prices are fixed):

– the spot market, which is in practice a day–ahead market, since the sys-
tem operator needs information in advance about scheduling feasibility and
transmission constraints. Hourly (or half–hourly1) contracts with physical
delivery are therein traded in the form of a once per day auction: we will
hence have 24 (or 48 in the assumption of half–hour trades) different price
levels fixed in advance for the next day.

1 M–co, the New Zealand power market, for instance, is organized into three regional
sections: Benmore, Hayward and Otahuhu, where the electricity price is fixed on
half–hourly basis.
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– the market of ancillary services, where a more composite number of tasks
are performed. To our purpose it is just noteworthy to mention that this is
the place where the generation–consumption balancing is adjusted, when the
system regulator is noticed of defaults throughout the transmission network.

Figure 1 adds some explanatory remark to such topic, presenting a general
scheme of electricity market organization.

Fig. 1. Electricity market structure

Despite of the existence of such above complex structure, we will focus on
the day–ahead market, studying the behaviour of the spot market of various
countries.

Our choice is motivated with the residual nature of the ancillary services
market, where typically random congestions of the system are resolved.

The attractiveness played by the spot market is entirely contained in the
main features of the commodity therein traded:

– electricity cannot be stored, thus making nonsense of retention strategies.
In other terms, it is not possible to cover the electricity demand of a single



hour with the electricity which has been produce before, or that will be made
available in the next hours.

– severe weather changes may dramatically affect the load of electricity pro-
duced, thus inducing jumps into the normal level of prices.

The spiky nature of electricity market prices makes low powered the tra-
ditional approach employed in finance, which model the dynamics of price X
through a diffusion-type stochastic differential equation of the form:

dXt = µ(X, t)dt + σ(X, t)dBt (1)

where µ(X, t) is the drift, σ(X, t) is the volatility (scaling factor) and dBt

are the increments of a standard Brownian motion.
A common approach (see for instance [8], [16], or [13]) is to regard at elec-

tricity prices as mean reverting, and hence, in its simplest form, completely
described by the stochastic differential equation:

dXt = α(µ − Xt)dt + σdBt (2)

α being the magnitude of the speed adjustment around the equilibrium or
mean level µ.

This model, often referred to as an arithmetic Ornstein–Uhlenbeck process,
has been generalized in [8], where the mean level is made time–dependent. Fur-
ther contributions toward such direction consider a jump component random in
size. ( [11], [12]).

We will start from this point, and we will try to go one step further, examining
the features of electricity prices in the day–ahead markets of various countries.

In particular, we will consider different alternative models as perspective
candidate to simulate the behaviour of market price fluctuations: a selection
scheme based on the notion of empirical scaling function, already applied in
financial markets [17] will be therein use to find the best matching process.

The structure of the paper is as follows.
In section II we will discuss the main features of spot prices in the mar-

kets under examination (Alberta Pool, EEX, and OMEL). Particular emphasis
will be given to the measure of correlation, and mainly to persistence (or anti–
persistence) properties of the observed data.

A set of preliminary conclusions will be hence drawn:

[i ] electricity power markets present some statistical features making them
quite closer to classical financial markets;

[ii ] we can then try to apply the same techniques widely used in classical

financial market to extract relevant information also from electricity markets;

It is hence perfectly straightforward to search among an ensemble of can-
didate stochastic processes those which can be more reliable to our modelling
tasks.

To such purpose, in section III we will introduce such selecting criterion in
the form of the scaling function. After some theoretical remarks, we will focus



on the aspects inside the estimation of the empirical scaling function of a given
time–series.

In section IV, we will give a sketch of the potential of the empirical scaling
function into a contest among a number of stochastic models trying to emulate
the behaviour of our observed data. We will start by considering the main fea-
tures of stochastic candidate processes, and hence we will present and discuss
the results obtained through the generation of sample paths via Monte Carlo
simulations.

Finally, section V will end this note, giving some conclusions and outlooks
for future works.

2 Data analysis

Prices in the day–ahead market of different countries have been taken into ac-
count.

Table 1 summarizes the main features of the data under examination: the
labels used to refer to them are indicated together with the temporal frame
considered, and the total length of sample paths.

Table 1. Day–ahead markets considered in the study.

Country Label Observation Period Sample size Index Name Length

Alberta AP 01/01/1997 − 06/10/2003 2352 × 24 matrix MIAP 2351
Germany EEX 06/16/2000 − 10/15/2003 1093 × 24 matrix MIEEX 1092
Spain OMEL 01/01/1998 − 10/15/2003 1990 × 24 matrix MIOMEL 1989

The choice of such data is firstly motivated by their public availability; addi-
tionally we have considered markets which can exhibit sufficiently long records
paths, in order to give greater robustness and consistency to our analysis.

For each market we have then operated as follows:

– We have worked with detrended data, i.e. we have removed the sample mean
and hence, after a least–squares fitting, linear trends have been eliminated.
Additionally, data have been filtered using classical Fourier transform meth-
ods.

– We have hence moved from the sequence of price levels {p
(h)
i } to that of

corresponding price changes {p
(h)
i }:

X(t)(h) = log(p(t + 1)(h)/p(t)(h)) (3)

where h = 1, ..., 24.



– The results obtained in the previous step have been averaged at a daily
scale, hence obtaining a synthesis indicator MI for each market, whose single
observations are as follows:

MI(t) =
1

N

N∑

h=1

X(t)(h) (4)

where N = 24. In this way we got the sequence {MI(t)} which have used in
our study (see Table 1 once again for some further details).

Our purpose is primarily to investigate whether or not the quantitative ap-
proach typical of financial economics can be applied tout court to electricity
markets.

To such aim, this section will concentrate on the search for such stylized facts
which are claimed to be typical of financial markets and make the gaussianity
assumption of log–returns not reliable to modelling tasks.

We start with common statistics, which are reported in Table 2 for MIs
indexes, and in Tables 10– 12 in the Appendix A for each hourly market2.

Table 2. Common statistics on MIs indexes. For the Jarque–Beran test H0 is assumed
to be the normality of data.

Statistics MIAP MIEEX MIOMEL

Minimum −0.5594 5.5909 2.0472
Maximum 0.6425 −2.7644 −1.0599
Range 1.2018 2.8265 0.9873
Median −0.0038 −0.0129 −0.0045
Mean 0.0000 0.0000 0.0000
Std.Dev 0.1234 0.2710 0.1011
Variance 0.0152 0.07343 0.0102
Skewness 0.1374 0.2887 0.4725
Kurtosis 2.2065 34.2048 25.5772
Jarque–Beran REJECT H0 REJECT H0 REJECT H0

We have also performed usual normality tests (Kolmogorov–Smirnoff type
see Table 3), and some more qualitative studies (qq–plots reported in Figure 2).

2 For sake of clarity, and readability of this note, from now on the results for each
hourly markets will be reported in Appendix A.



Fig. 2. QQ–plots for MI indexes

Table 3. Normality tests. L:Lilliefors; CVM:Cramer–Von Mises; W:Watson;
AnD:Anderson–Darling. Pr is the associated p–value.

L CVM W AnD
Val Pr Val Pr Val Pr Val Pr

MIAP 0.117708 0 6.826083 0 6.810103 0 40.17197 0
MIEEX 0.061684 0 3.969573 0 3.951013 0 21.90298 0
MIOMEL 0.127144 0 11.77841 0 11.64072 0 64.74497 0

The results obtained put clearly into evidence that the assumption of nor-
mality of log–returns is not sustainable, both for hourly markets and for their
representative synthesis indexes.

This is true for each examined market: the departures from normality are
particularly evident looking at the results of Jarque–Beran test provided for
each given time–series (see also Table 13 in the Appendix A).

Additional evidence is provided by the analysis of the sample moments (of
order ≥ 2) as function of the time lag k, which is given in Figure 3. the common
interpretation suggests that if the theoretical moment is finite, then the sam-
ple moment should fluctuate within a defined region centered on its theoretical
limit. In the case where the true value is infinite, the sample moment should
either diverge as a function of sample size, or exhibit erratic behaviour and large
fluctuations.
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Fig. 3. Behaviour of empirical moments: from top to bottom: 2nd to 4th moments
behaviour varying the lag k from 2 to the maximum length of data.

It is possible to see that both MIAP and MIOMEL exhibit increasing volatility
which on the other hand is more stable for the MIEEX index; additionally,
while MIAP shows stable 3rd and 4th order empirical moments, in the remaining
indexes the behaviour of corresponding moments seem to be more erratic.

Finally, we have given particular emphasis to the study of correlation mea-
sures.

Results are documented for various kinds of measures:

– classical autocorrelation:

C1(k) = corr(X(t),X(t + k)) (5)

– autocorrelation of the squared returns:

C2(k) = corr(|X(t)|2, |X(t + k)|2) (6)



For this measure, we have been mainly interested to the search for autocor-
relation functions remaining positive and decaying slowly (with significant
positive values over several days, sometimes weeks): since this gives evi-
dence of what is sometimes called the ARCH effect. However this property
is model–independent and it is typical of time–series which exhibit volatility
clustering.

– correlation of the logarithm of absolute returns:

C0(k) = corr(ln|X(t)|, ln|X(t + k)|) (7)

This measure can play an important role, since in a recent work [3] has
shown that slow decaying C0(k) functions could signal the evidence of mul-
tifractality of the data.

– leverage effect given by the correlation of returns with subsequent squared
returns:

L(k) = corr(|X(t)|2, |X(t + k)|) (8)

This measure can be helpful to give additional information about the volatil-
ity of data.
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Fig. 4. Correlation measures: from top to bottom: C1(k), C2(k), C0(k), and L(k) as
function of the lag amplitude k.



The analysis of results in Figure 4 suggests a number of observations:

(a) The detrending task needs probably to be refined, since the weekly effect is
still high in all the observed markets;

(b) The ARCH effect is evident in AP and EEX markets, and it is less significant
in OMEL;

(c) MIAP index exhibits a slow decaying C0(k) function which should be deeply
investigated to control if it is accomplishing with the assumption of its mul-
tifractality.

Before proceeding further, we have hence performed an additional filtering
on (already detrended and deseasonalized) data with classical Fourier transform
methods, in order to remove the residual cyclical effects evidenced form auto-
correlation analysis.

Hence, further remarks have come from rescaled range analysis (RSA) of the
observed data, whose results are given in Table 4.

Both classical Hurst coefficient estimates (H value) and empirical corrections
are provided3.

Table 4. Rescaled Range Analysis on MIs indexes

MIAP MIEEX MIOMEL

MIN LAG 4 4 4
MAX Lag 2048 1024 1024
H VALUE 0.2423 0.4293 0.3356
A–L VALUE 0.5063 0.4805 0.4805
mA–L VALUE 0.4748 0.4456 0.4456
E[R/S] 0.4546 0.4233 0.4233
DIFF. R/S–E[R/S] −0.2128 0.006 −0.0801

3 Shorcuts: A–L VALUE, mA–LVALUE, and E[R/S] stand, respectively for Anis and
Lloyd, modified Anis and Lloid and empirical correction estimates. Such values has
been computed as follows:

A − Ln =
Γ (0.5(n − 1))√

πΓ (0.5n)

n−1∑

r=1

√
n − r

r
(9)

mA − Ln =

∑
n−1

r=1

√
n−r

r√
nπ

2

(10)

E[R/Sn] =
(n − 0.5)

∑
n−1

r=1

√
n−r

r

n
√

nπ

2

(11)
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Fig. 5. R/S plots for MI indexes

Fig. 6. R/S plots for AP, EEX and OMEL markets

Such results can be compared to those obtained on single hourly markets
which are plotted in Figure 6, and analytically given in Table 14 of Appendix
A. It is noteworthy to observe that, despite of the results given by the R/S
on MIEEX , the corresponding hourly markets are in some cases clearly persis-



tent. For the remaining markets, on the other hand, we record the same anti–
persistence features already seen on the corresponding indexes.

A first set of conclusions may be hence drawn at this point:

[i ] electricity power markets presents some statistical features making them
quite closer to classical financial markets;

[ii ] the synthesis indexes that we have analysed exhibit in two cases (MIAP and
MIOMEL) anti–persistence properties which should well accomplish with
mean–reverting stochastic models. However, the result on MIEEX , closer to
those reliable with the assumption of normality, arises some perplexities and
needs further investigation, since in the other tests the null hypothesis of
gaussianity has been strongly rejected.

[iii ] the different behaviour of EEX market on a side, and OMEL and Alberta
Pool on the other side, lead us to state that, in order to give a proper rep-
resentation of price movements, more than a single candidate model should
be taken into account.

It is hence perfectly straightforward to search among an ensemble of candi-
date stochastic processes those which can be more reliable to our prefixed tasks.

Starting from this point we will introduce in the next section a selecting
criterion helping to choose the best candidate process to fit the data, which has
already given satisfying results when applied on financial markets.

3 A classification of stochastic processes by means of the

scaling function

In a recent work [17] the authors provided a justification of the scaling function,
derived from the empirical function of moments, and offered a powerful tool to
compare and classify realizations from ad hoc processes in the simulation of the
behaviour of the observed variable.

3.1 Self–affine and multifractal processes

We will now some brief remarks on the theoretical framework where the notion
of scaling function (i.e. the function that will be referred to as τ(q) since now
on), has been developed.

Let us assume {X(t)} to be a stochastic process. Hence, {X(t)} is properly
self–affine (self–similar) with scaling coefficient H if the following equality in
distribution holds:

{X(lt1),X(lt2), ,X(ltk)} ' {cHX(Lt1), c
HX(Lt2), ..., c

HX(Ltk)} (12)

with H > 0, c = l/L, t1, t2, , tk ≥ 0, for every l, L, with L > l, that is:

Pl(X) = PL[(l/L)−HX] (13)



where PL(X) and Pl(X) are, respectively, the probability density functions
at the temporal scales L and l.

In the same way, a stochastic process is said to be auto–affine if its moments
(when existent) rescale according to a power law, that is:

M(q, t) = tHq[M(1, t)]q (14)

where M(q, t) is the q–th order general moment at the time scale t. The
brownian motion, the fractional brownian motion, as well as stable processes
are consistent examples of proper self–affine processes, whose definition directly
comes from Eq. 13.

Eq. 14 can be extended to more general cases in the following way:

M(q, t) = c(q)tτ(q)+1 (15)

where the functions c(q) and τ(q) are defined on the real space.
The function τ is the scaling function of the process: in the case of monofrac-

tals we will have: τ(q) = Hq − 1; in the case of multifractal processes τ(q) will
be a nonlinear concave function 4, with τ(0) = −1.

4 More precisely, Schmitt, Schertzer and Lovejoy [19] speak about the bilinear form
of τ(q) in the case of Lévy stable processes, since they get the following estimation:
τ(q) = Hq − 1, when q < 1/H, and τ(q) = 1 for q ≥ 1, where: H = 1/α, and
0 < α ≤ 2 is the Lévy index.



3.2 The empirical approach

We will now introduce a selecting criterion, which is based on the classification
of processes through their scaling function.

It could be argued that the representation of a process via its scaling function
is properly possible when a number of requirements hold, namely:

[a ] stationarity of increments;
[b ] process self–affinity;
[c ] process multifractality 5;
[d ] log–linearity of the partition function, with respect to time increments,

when the q parameter is varied along the half–positive real axes.

Conversely, the processes we will refer to will be mostly non satisfying either
requirements [b] or [c].

However, in all the examined cases the scaling function can be always recon-
structed from raw data, through an empirical procedure, assumed a number of
conditions hold, like we will specify in this note.

We will compare the shape of τ(q) drawn from raw data to that empirically
derived from sample paths generated by different stochastic processes.

The empirical evidence will suggest us some preliminary remarks:

(i) in many cases of econometric interest, the τ(q) can be properly modelled
through a quadratic function, and

(ii) such parabolic shape is generally a straightforward approximation of the
empirical function τ(q), also when the observed processes do not fulfill one
or more requirements set in [a]–[d].

The value of τ(q) can be estimated according to a two–step procedure which
will be described on following:

(1) evaluation of the empirical partition function:

Sq(∆t) =

N∑

i=1

(|X(i∆t + ∆t) − X(i∆t)|)q (16)

where ∆t is the time scale. Here we have chosen q ∈ [0.3; 5.5] with step 0.3,
and ∆t varying according to powers of 2, from 2 to 1024 (2048 in the case
of AP).

(2) if it is possible to give a linear approximation to log2[Sq(∆t)] versus log2(∆t),
the estimation of τ(q) comes in an easy way, by regressing log2[Sq(∆t)] onto
log2(∆t).
The results for real data are presented in Figure 7.

5 The notion is here intended in the strict sense, as multifractality in the continuum
of all possible scales.
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3.3 Simulation Features

The procedure described above has been applied on a group of data–sets ob-
tained through Monte–Carlo simulations, relying on different types of generating
processes, that will be therein briefly presented.

Table 5 summarizes the features of the performed simulations.

Since a number of words have already been spent on classical Ornstein–
Uhlenbeck type processes, we will directly focus on the others newly introduced:

Gamma Ornstein–Uhlenbeck type processes. The sequence of realizations
(increments) X = {X(t)}29627

t=1 of the stochastic process have been obtained
through the transformation:

X(t) = ε(t)σ2(t) (17)



Table 5. Simulation features.

Process Shortcut Model Type

Ornstein–Uhlenbeck OU Stoch. Volatility Model
Gamma Ornstein–Uhlenbeck OU–Gamma Stoch. Volatility Model
Fractional Brownian Motion fBm Log–returns Stoch. Model
Multifractal Random Walk MFRW Log–returns Stoch. Model

where ε is a zero mean normally distributed random variable, and σ2(t) comes
from:

σ2(t) = eλtσ2(0) +

∫ t

0

e−λ(t−s)dz(λs) (18)

We have replaced σ2(t) with the series representation suggested in Barndorff–
Nielsen and Shephard (2001) [4], that gives equality in law:

∫ t

0

e−λ(t−s)dz(λs) = α−1eλt

N(1)∑

i=1

log(c−1
i )e−λtri (19)

where: c1 < c2 < . . . < cN(1) are the arrivals on a Poisson process with
intensity νλt; N(1) is the related number of events until time 1, ri is a uniformly
distributed random variable, and σ2(0) is a random variable with distribution
Γ (ν, α).

Throughout the simulations we have used the estimated parameters values:
ν = 7, λ = 0.04, and α = 8.5 in the case of MIAP ; ν = 7, λ = 0.08, and α = 8.5
in the case of MIEEX , and ν = 14, λ = 0.01, and α = 8.5 in the case of MIOMEL.

Fractional Brownian Motion (fBm). We refer to the model introduced by
Mandelbrot and Wallis [14]:

X(t) = WH(t) − WH(t − 1) (20)

where

WH(t) = CV
1/2
H

∫ +∞

−∞

γH(|t − s|H−
1

2 I(−∞,t)(s) − |s|H
1

2 I(−∞,0)(s))dB(s) (21)

H being the Holder exponent, with WH(0) = 0, VH = (2H +1)sin(πH), and
γH = 1

Γ (H+1/2) .

Sample paths have been generated through the simulation method of the
Cholesky decomposition, as indicated in [9].



Multifractal Random Walk. Recently introduced by Bacry et. al [3], it
simulates log–returns according to the:

X∆t(t) =

t/∆t∑

k=1

ε∆t(k)exp{ω∆t(k)} (22)

where X(0) = 0, t = k∆t, ε∆t(k) and ω∆t(k) are independent gaussian vari-
ables. Additionally, ε∆t(k) is normally distributed with zero mean and variance
σ2∆t, with ε∆t(ki) independent from ε∆t(kj), for each i, j, and ω∆t(k) is a
normal multivariate random variable, with expected value:

E[ω∆t(k)] = −λ2ln(
L

∆t
) (23)

and covariance function:

Cov[ω∆t(k1), ω∆t(k2)] = λ2lnρ∆t(|k1 − k2|) (24)

where:

ρ∆t(k) =
L

(|k| + 1)∆t
(25)

Our simulation assumes the following estimated values for the parameters:
λ = 0.03, ∆t = 2, and L = 2048, for MIAP ; λ = 0.03, ∆t = 2, and L = 2048, for
MIEEX , λ = 0.03, ∆t = 2, and L = 2048, for MIOMEL.

Since the procedure is computationally very expensive, we have generated
sample paths no longer than 2048 observations.

3.4 Discussion of the results

For each generated time–series, the values of τ(q) have been regressed on q.
Second order polynomial fitting has been performed.

Tables 6- 8 shows the coefficients for second order fitting polynomial, for both
empirical data, and series generated by candidate processes.

Table 6. Second order polynomial coefficients for MIAP

Shortcut Coefficients
2nd Order 1st Order 0th Order

MIAP −0.0198 0.2441 −0.993
OU −0.0178 0.7232 −1.393
OU–Gamma −0.0184 0.2234 −1.403
fBm −0.0073 3.5922 −1.482
MFRW −0.0315 0.7146 −1.397



Table 7. Second order polynomial coefficients for MIEEX

Shortcut Coefficients
2nd Order 1st Order 0th Order

MIEEX −0.0126 0.2731 −0.900
OU −0.0088 0.3542 −1.793
OU–Gamma −0.0095 0.0328 −1.032
fBm −0.0173 0.2232 −1.329
MFRW −0.0016 0.4961 −1.007

Table 8. Second order polynomial coefficients for MIOMEL

Shortcut Coefficients
2nd Order 1st Order 0th Order

MIOMEL −0.0189 0.3518 −0.984
OU −0.0043 0.5681 −1.093
OU–Gamma −0.0024 0.0213 −1.121
fBm −0.0011 4.1532 −1.492
MFRW −0.0006 0.6912 −0.905

The best results have been provided by the OU–type processes, in the case
of MIAP , and by the fBm, in the case of MIEEX : both two exhibiting coeffi-
cients for second order term very close to the corresponding ones on real data.
The case of MIOMEL is quite particular, since all the candidate processes have
performed poorly. Possible explanations could be searched in the need for more
proper estimated parameters. However, it could be also plausible than different
processes, others than those considered should be taken into account.

A more remarkable contribution, adding strength to the previous assertions,
however has come by observing the sensitivity of the function τ(q) to variations
in the q level, evaluated as:

r(q) = −
τ ′′(q)

τ ′(q)
(26)

where τ ′′(q), and τ ′(q) are, respectively, second and first order derivative of
τ(q).

In our case, since τ(q) has approximated by τ̂(q) = âq2 + b̂q + k̂, this has led
to:

r(q) = −
2â

2âq + b̂
(27)

where â, b̂, k̂ are, respectively, second, first and zero–th order term coefficients
in the variable q.



We have evaluated r(q) for the different candidate processes, and the results
on r(q) confirm those previously evidenced on τ(q) for MIAP and MIEEX , and
indicate the classical OU–type as the more closer process (among those under
examination) to observed data.

In particular, the Euclidean distance between r(q) trajectories for the ob-
served data and for each candidate process have been evaluated: the results are
reported in Table 9.

Table 9. Normalized values of the distance between r(q) on MIs indexes and simulated
sample paths generated by candidate processes

ID MIAP MIEEX MIOMEL

OU 0.4605 0.1940 0.2734
OU–GAMMA 0.01 0.5578 0.5500
fBm 1 0.1523 0.4016
MFRW 0.1397 0.2225 0.3903



4 Conclusions

In this work we have focused on empirical aspects inside the behaviour of a
number of electricity spot price markets.

Our aim has been two–fold:

(a) testing the power of the quantitative approach usually applied into classical

financial markets.
(b) make a scan on some candidate processes which may operate as good sub-

stitute of the real underlying one. This task has appeared important to the
extent of having analitically tractable tools to model the market behaviour.

We have taken into account data on the Alberta Pool, the German EEX
market and the Spanish Omel.

Our choice has been motivated by the availability of data (which are freely
downloadable at the corresponding national system operator homepage), as well
as by reasonings connected with the need to manage with robust markets, i.e.
with markets whose activity has been consolidated over a period of almost three
(or more) years.

Before studying them, such data has been variously transformed, in order to
take off seasonality components as well as possible.

Hence, three synthesis indexes (one for each market) have been obtained by
daily averaging the returns.

The performed tests have shown that such indexes spare with common fi-
nancial times–series a number of features (the non–gaussianity, for instance),
but also maintain some properties which are typical of electricity markets (an
incredibly resisting seasonal –weekly– component).

It is at the same time clear that hoping to have a common model to explain
the behaviour of a multitude of electricity markets is just an utopia. Our analysis
has given evidence that although two markets exhibit strong anti–persistence
features (Alberta, and Omel), the EEX seems to be more erratic than expected.

As additional remark, volatility clustering phenomena have been clearly con-
firmed only on one market over the three under examination.

To make more light on our working scenario, we have then taken into account
different candidate processes which are generally employed in financial markets
modelling, and we have explored their potential in a sort of contest to find the
best matching process to the real one underlying our data.

To such aim, we have employed a technique that we have already successfully
experimented on financial data, based on the empirical estimation of the scaling
function τ(q) of a set of data.

After providing a brief theoretical introduction to that concept, we have given
some results based on Monte Carlo simulations.

Special attention has been given to the sensitivity of τ(q) to variations in the
levels of q.

In this way we have been able to provide some earlier results which seem to
give foundation, for instance, to the mono–scaling nature of the EEX market,



whose behaviour is well fixed by a fractional brownian motion, while confirm
that classical Ornstein–Uhlenbeck processes or conceptual evolutions of theirs
(Gamma Ornstein–Uhlenbeck processes) can give satisfying results on some mar-
kets (namely on Alberta Pool, and Omel).

This obviously cannot put the final sentence on the debate on how electricity
markets work: in a ideal wishing list, a huge number of tasks still remains to be
completed, but we trust that tools like the empirical scaling function might offer
an helpful criterion in the choice of good stochastic models of market behaviour.
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Appendix A: Common statistics on markets log–returns

Table 10. Common statistics on AP

Min Max Range Median Mean Standard Variance Skewness Kurtosis
Dev.

h01 −1.2079 1.1597 2.3676 −0.0001 0.00 0.2023 0.0409 −0.101672517 4.648545794
h02 −1.136 1.1184 2.2544 −0.0001 0.00 0.2157 0.0465 −0.084256507 3.17914448
h03 −1.0121 1.0162 2.0283 −0.0001 0.00 0.2171 0.0471 −0.03993425 2.795604124
h04 −1.0122 1.09 2.1022 −0.0001 0.00 0.2168 0.0470 −0.001557863 2.818767719
h05 −2.7231 2.7222 5.4453 −0.0002 0.00 0.2355 0.0555 −0.070873377 16.71510741
h06 −1.1003 1.0898 2.1901 −0.0001 0.00 0.2137 0.0457 −0.017608364 3.195616226
h07 −2.6769 2.7224 5.3993 −0.0002 0.00 0.2437 0.0594 −0.02367297 17.23116352
h08 −1.0515 1.424 2.4755 −0.0025 0.00 0.2399 0.0575 0.365617273 4.285621909
h09 −1.2129 1.8842 3.0971 −0.0033 0.00 0.2357 0.0555 0.419064024 5.833321036
h10 −1.0246 1.2431 2.2677 −0.0017 0.00 0.2218 0.0492 0.225425525 5.099191926
h11 −1.1858 1.0925 2.2783 −0.0014 0.00 0.2331 0.0543 0.115794746 5.680323715
h12 −1.4451 1.4105 2.8556 −0.0010 0.00 0.2337 0.0546 0.080931459 6.693938405
h13 −1.5187 1.4081 2.9268 −0.0006 0.00 0.2490 0.0620 0.023091932 7.732356233
h14 −1.7876 1.4087 3.1963 −0.0003 0.00 0.2465 0.0608 −0.055756631 7.150489709
h15 −1.4225 1.412 2.8345 −0.0008 0.00 0.2466 0.0608 0.060091745 7.493411332
h16 −1.4219 1.4095 2.8314 −0.0008 0.00 0.2454 0.0602 −0.043642748 7.775098975
h17 −1.3508 1.2359 2.5867 −0.0005 0.00 0.2620 0.0686 −0.067991388 5.166109329
h18 −1.4131 1.46 2.8731 −0.0003 0.00 0.2688 0.0723 0.031055678 4.66094141
h19 −1.188 1.053 2.241 −0.0003 0.00 0.2276 0.0518 −0.035123326 4.990485748
h20 −1.115 1.1793 2.2943 −0.0002 0.00 0.2201 0.0485 −0.092175017 6.625314112
h21 −1.0722 1.4359 2.5081 −0.0003 0.00 0.2072 0.0429 0.265156377 6.899792744
h22 −1.2547 1.2033 2.458 −0.0002 0.00 0.1955 0.0382 −0.059762463 7.242185117
h23 −1.0438 1.0724 2.1162 0.0000 0.00 0.1686 0.0284 −0.094963045 6.464455362
h24 −1.1235 1.206 2.3295 −0.0003 0.00 0.1909 0.0365 0.14454406 4.945904165



Table 11. Common statistics on EEX

Min Max Range Median Mean Standard Variance Skewness Kurtosis
Dev.

h01 1.17227 −0.61859 0.55368 0.0024 0.00 0.1511 0.0228 −0.015458788 1.3695
h02 3.7995 −1.6037 2.1958 0.0011 0.00 0.2090 0.0437 0.730438439 15.5515
h03 15.9081 −7.7921 8.116 0.0011 0.00 0.4241 0.1798 0.778761643 226.9540
h04 15.7537 −7.7027 8.051 0.0011 0.00 0.6467 0.4182 0.368424527 99.2877
h05 15.7776 −7.8014 7.9762 −0.0007 0.00 0.4625 0.2139 0.353338753 158.0180
h06 15.8675 −7.8733 7.9942 −0.0006 0.00 0.5542 0.3072 −0.056413887 103.0399
h07 16.0955 −8.1448 7.9507 −0.0098 0.00 0.7308 0.5341 0.168483736 56.6773
h08 16.4855 −8.3349 8.1506 −0.0200 0.00 0.6760 0.4570 0.201590296 72.0424
h09 16.6001 −8.3169 8.2832 −0.0215 0.00 0.5951 0.3541 0.592107689 105.0359
h10 3.7581 −1.5223 2.2358 −0.0135 0.00 0.2705 0.0732 0.528737658 6.4576
h11 2.34282 −0.97762 1.3652 −0.0104 0.00 0.2323 0.0540 0.390360121 2.6546
h12 2.6986 −1.1456 1.553 −0.0156 0.00 0.2807 0.0788 0.336054975 3.2462
h13 2.09794 −0.92284 1.1751 −0.0151 0.00 0.2230 0.0497 0.325586668 2.4099
h14 2.324 −1.0432 1.2808 −0.0240 0.00 0.2406 0.0579 0.431899361 2.3954
h15 4.0397 −1.8819 2.1578 −0.0263 0.00 0.2672 0.0714 0.446594855 9.7373
h16 14.6471 −7.4385 7.2086 −0.0220 0.00 0.4724 0.2231 0.13414236 153.6887
h17 12.2084 −6.0168 6.1916 −0.0194 0.00 0.3494 0.1221 0.538125179 170.7336
h18 16.8401 −8.8398 8.0003 −0.0140 0.00 0.4952 0.2452 −1.255793185 196.7287
h19 3.5966 −1.8022 1.7944 −0.0068 0.00 0.2117 0.0448 −0.279483881 15.6102
h20 2.6199 −1.1877 1.4322 −0.0014 0.00 0.1783 0.0318 0.24336806 10.3372
h21 1.9178 −0.8681 1.0497 −0.0011 0.00 0.1608 0.0258 0.063245274 3.7637
h22 1.83341 −0.84015 0.99326 −0.0011 0.00 0.1444 0.0208 0.143156658 3.4571
h23 1.35094 −0.58422 0.76672 −0.0014 0.00 0.1284 0.0165 0.073599168 2.3966
h24 1.32198 −0.55161 0.77037 0.0013 0.00 0.1339 0.0179 0.147345033 2.5159

Table 12. Common statistics on OMEL

Min Max Range Median Mean Standard Variance Skewness Kurtosis
Dev.

h01 0.84869 −0.40257 0.44612 −0.0001 0.00 0.0959 0.0092 0.043380625 2.1799
h02 1.50443 −0.79263 0.7118 0.0001 0.00 0.0882 0.0078 −0.157141809 7.5017
h03 4.8459 −2.5167 2.3292 −0.0002 0.00 0.1083 0.0117 −1.611321345 259.4892
h04 5.4728 −2.9415 2.5313 −0.0002 0.00 0.1130 0.0128 −3.218413 357.2647
h05 5.63 −3.2271 2.4029 −0.0001 0.00 0.1201 0.0144 −5.850864102 345.1164
h06 6.0968 −3.2043 2.8925 −0.0001 0.00 0.1486 0.0221 −1.674051026 258.4552
h07 6.318 −3.197 3.121 −0.0002 0.00 0.1496 0.0224 −0.147067137 222.7117
h08 6.5978 −3.172 3.4258 −0.0029 0.00 0.2629 0.0691 1.084261714 78.9709
h09 6.8602 −3.2245 3.6357 −0.0069 0.00 0.3098 0.0959 1.189427988 60.8370
h10 4.5264 −2.1152 2.4112 −0.0079 0.00 0.1991 0.0396 1.07631559 21.4850
h11 2.528 −1.1135 1.4145 −0.0050 0.00 0.1606 0.0258 0.762071665 9.4902
h12 1.80006 −0.78566 1.0144 −0.0036 0.00 0.1429 0.0204 0.690292163 4.9015
h13 1.52951 −0.66402 0.86549 −0.0038 0.00 0.1345 0.0181 0.594268125 3.5452
h14 1.75794 −0.99601 0.76193 −0.0035 0.00 0.1234 0.0152 0.33752055 5.4473
h15 2.7042 −1.4453 1.2589 −0.0033 0.00 0.1215 0.0148 0.096055267 19.2392
h16 2.7187 −1.5023 1.2164 −0.0037 0.00 0.1370 0.0188 −0.21961333 17.2605
h17 5.1978 −2.8758 2.322 −0.0041 0.00 0.1663 0.0277 −0.974274735 66.7315
h18 2.4019 −1.3691 1.0328 −0.0064 0.00 0.1522 0.0232 0.150155214 9.0802
h19 1.06647 −0.48392 0.58255 −0.0049 0.00 0.1274 0.0162 0.58892751 2.1852
h20 0.99724 −0.49595 0.50129 −0.0029 0.00 0.1172 0.0137 0.530370231 2.1831
h21 1.04393 −0.54044 0.50349 −0.0008 0.00 0.0956 0.0091 0.101517972 2.9807
h22 2.04721 −1.0587 0.98851 −0.0002 0.00 0.0921 0.0085 −0.05850077 19.3223
h23 2.04726 −1.0587 0.98856 −0.0001 0.00 0.0961 0.0092 −0.25413515 20.8390
h24 1.92943 −0.9896 0.93983 −0.0002 0.00 0.0957 0.0092 0.040582795 15.1284



Table 13. Jarque–Beran statistics on hourly data

Market ID AP EEX OMEL
JB Pr JB Pr JB Pr

h01 2106.558 0 83.72986 0 391.3921 0
h02 985.3183 0 10953.49 0 4644.955 0
h03 760.3338 0 2316038 0 5553171 0
h04 772.2314 0 443201.9 0 10527665 0
h05 27217.58 0 1122692 0 9831945 0
h06 993.0126 0 477336.7 0 5508953 0
h07 28925.02 0 144386.7 0 4089788 0
h08 1837.439 0 233292 0 514592.3 0
h09 3379.426 0 496254.7 0 305556.3 0
h10 2549.894 0 1926.404 0 38414.13 0
h11 3145.464 0 343.4343 0 7610.463 0
h12 4364.888 0 493.1466 0 2133.17 0
h13 5822.516 0 279.4883 0 1149.528 0
h14 4980.597 0 290.1344 0 2482.427 0
h15 5468.096 0 4297.692 0 30509.46 0
h16 5887.047 0 1061942 0 24575.95 0
h17 2598.963 0 1310576 0 367534.7 0
h18 2114.712 0 1740256 0 6800.568 0
h19 2424.103 0 10967.02 0 508.1429 0
h20 4276.582 0 4803.669 0 485.4346 0
h21 4660.179 0 635.635 0 734.5668 0
h22 5108.015 0 538.0007 0 30777.04 0
h23 4071.918 0 257.1315 0 35815.53 0
h24 2387.038 0 286.6097 0 18864.58 0



Table 14. Estimated Rescaled Range Coefficient on hourly markets

AP EEX OMEL

h01 0.2247 0.30566 0.24226
h02 0.20583 0.20428 0.31739
h03 0.20966 0.25319 0.33972
h04 0.21204 0.47133 0.4052
h05 0.19758 0.3229 0.41435
h06 0.21231 0.30955 0.34206
h07 0.22511 0.4614 0.38913
h08 0.19649 0.31364 0.2979
h09 0.17832 0.54638 0.28145
h10 0.1627 0.4161 0.28529
h11 0.12284 0.37793 0.31365
h12 0.14979 0.32529 0.31282
h13 0.13897 0.36312 0.29536
h14 0.16527 0.39115 0.24441
h15 0.1537 0.44888 0.28889
h16 0.12224 0.57453 0.29603
h17 0.14695 0.60302 0.30659
h18 0.11435 0.47877 0.26504
h19 0.18732 0.51849 0.27701
h20 0.1836 0.48053 0.26326
h21 0.21351 0.34463 0.30246
h22 0.24304 0.22679 0.26684
h23 0.28357 0.25259 0.30333
h24 0.25721 0.23409 0.31936


