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Do Bid-Ask Spreads Or Bid and Ask Depths Convey New Information First? 
 
 

Abstract 
 

This paper investigates the order in which new information is first reflected in the market  – through 
changes in spreads or through updated depths.  We develop an error correction model of spreads and 
depths and estimate Gonzalo-Granger common factor components using two years of tick-by-tick quote 
data on all stocks in the Dow Jones Industrial Average.  We show that indeed depths rather than spreads 
are first to impound new information that leads to new quote trends.   Specifically, (bid and ask) depths 
convey information first in virtually every stock in both years, while spreads almost never convey 
information in 1998, and do so in only 8 out of 30 cases in 1995.  Even in those 8 cases, the percentage of 
new information revealed by spreads ranges from 50 – 59% with the depths accounting for the rest.  Our 
results have important implications for academic research on asymmetric information trading, for security 
market design, and for public policy.   
 
 
JEL Classification:  G12
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1. Introduction 

An important role of financial exchanges is to facilitate price discovery.  In several related 

studies, Hasbrouck (1991, 1993, 1995, 2001), Harris et al. (1995, 2000, 2001), Liberman et al. (1999) and 

Frino et al. (2001) use time series techniques to answer questions about which market first discovers the 

innovations in security prices that prove to be new permanent trends.2  While knowing which exchange or 

execution channel first captures price discovery is critical for effective execution of trading strategy and 

for security market public policy, none of these studies address the more fundamental question as to 

whether these information events are first reflected in price quotes or in the depths quoted at the bid and 

the ask.  

Beginning with the seminal work of Demsetz (1968), the role of bid-ask spreads as a cost of 

immediacy and, by extension, market liquidity, has been studied extensively.3  More recently, however, it 

has been recognized that a complete characterization of market liquidity should include both the bid-ask 

spread and the associated bid and ask size quotes (see, for example, Harris (1990)). 4  Intuitively, any 

information event like an earnings announcement or corporate restructuring that leads to an unambiguous 

decline in market liquidity would be reflected in a widening of the bid-ask spread and a declining size or 

depth (see, for example, Lee, Mucklow and Ready (1993)).  Although a sizeable and growing literature 

examines the role of spreads and depths as a way to characterize the changing market liquidity around 

such events (see, for example, Lee et al. (1993), Chakravarty and McConnell (1997), Chung and Zhao 

(1999), and Chakravarty et al. (2001)), the extant theory is incapable of telling us the order in which new 

information should be reflected in the market—i.e., through changes in spreads first or through updated 

                                                           
2  Frino, Harris, McInish and Tomas (2001) apply a VECM to the electronic and floor execution channels in the 
Sydney Futures Exchange and the CBOT.  Liberman, Ben-Zion, and Hauser (1999) and Ding, Harris, Lau and 
McInish (1999) showed multi-lateral error correction of dual-listed international stocks. 
  
3 The theoretical research is represented by Garman (1976), Stoll (1978), Ho and Stoll (1981), Copeland and Galai 
(1983), Glosten and Milgrom (1985), Easley and O’Hara (1987), among others.   
  
4Bid and ask size quotes represent the number of shares for which the corresponding bid or ask price quotes are 
guaranteed.   
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depths first.  This determination of the relative importance of depths versus spreads in revealing new 

information that leads to permanent price changes is ultimately an empirical issue and is the focus of the 

current paper.   

To investigate this question, we develop a vector error correction model (VECM) that 

incorporates both spreads and depths.  We estimate the model with a long time series of high frequency 

quote data on each of the thirty stocks in the DJIA over the calendar years 1995 and 1998.   This time 

period was chosen to additionally investigate the changing role (if any) of spreads and depths in the wake 

of significant market reforms, like the decrease in the minimum quoted spreads from eighths to 

sixteenths.   

VECMs allow us to study both the long-term equilibrium properties and the short-term 

adjustment dynamics of time-series variables that are cointegrated.  Failure to detect and analyze the 

cointegration between microstructure-theoretic variables like price quotes, spreads and depths has often 

led to the serious misinterpretation of spurious regressions as long-run economic relationships rather than 

evidence of the common trends contained in non-stationary cointegrated time series.  For example, 

Huberman and Halka (1999), Pastor and Stambaugh (2001) and Chordia, Roll and Subermanyam (2001) 

have all attempted to extract the liquidity premium in asset pricing models of the expected return without 

addressing the common stochastic trends in prices and order flows.  Our work is perhaps closest in 

motivation to Hasbrouck and Seppi (2001) who use principal components and canonical correlation 

analysis to examine common factors in prices, order flow and liquidity.  However, these authors do not  

model the dynamic adjustment process between spreads and depths and find their covariation to be small.  

In contrast, in this paper, we first conduct a unit root, system lag length, and cointegration analysis that 

establishes the appropriate specification of the prices, spreads and depths empirical model as a VECM.  

That is, the equilibrium dynamic adjustment process is shown to be an error correction mechanism.5 We 

                                                           
5 Engle and Patton (2001) have also employed a VECM to analyze price quotes and the spread as an error correction 
process.  Our purpose is broader and our focus is different in that we feature the additional role of the size quotes in 
a prices, spreads and depths model. 
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then employ Gonzalo and Granger’s (1995) common factor procedure to estimate the contribution of the 

spread and each depth to the common trend(s) underlying these three cointegrated variables. 

We show that indeed depths rather than spreads are first to impound new information that leads to 

new quote trends.   Specifically, (bid and ask) depths convey new information in virtually every stock in 

both years, while spreads almost never convey new information in 1998, and do so in only 8 out of 30 

cases in 1995.  Even in those 8 cases, the percentage of new information reflected in spreads ranges from 

51% to 59% with the depths accounting for the rest.  Our VECM parameter estimates over the two years 

1995 and 1998 also suggest that while a tightening of the spreads in 1998, due to increased competition 

and a decrease in the minimum tick size to sixteenths from eighths, leads to an increased role of spreads 

in the error correction process, our basic conclusion of depths first revealing changes in the common 

stochastic trend remains intact. 

Our results highlight the active role played by the limit order book in the price discovery process.  

This finding has important implications for academic research as well as for exchange regulators 

concerned with market liquidity -- especially due to the fact that that most of the depth changes in the 

limit order book represent the inflow of limit orders to the specialist rather than the specialist’s personal 

interest.  Specifically, theoretical modeling and empirical measures of adverse selection will need to 

provide at least as much weight to depths as to spreads.  The limit order book, with its order sizes at the 

various pricing grids (the depths), needs to be monitored for continuity at least as closely as spreads are 

monitored.   There is indication that such scrutiny has already begun.  In March 2001, the NYSE started 

disseminating “depth indications” on eight of its stocks (WSJ, March 15, 2001, C1) – and has since been 

expanded to include all NYSE stocks.  Its purpose is to show investors the existence of a meaningful 

number of shares of a given stock available beyond the best price being bid and offered for the stock..    

The rest of the paper is structured as follows.   Section 2 motivates the current research in light of recent 

literature.  Section 3 develops an error correction model of spreads and depths.  Section 4 provides an 

overview of the data used for the analyses.  Section 5 addresses the appropriate specification of an error 
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correction model involving various pairs of price and depth quotes. 6    Section 6 reports tests of 

cointegration involving the spread and two depths and estimates the proportion of new information 

reflected in depths versus spreads.  Section 7 provides a conclusion and directions for further research.  

The appendix provides estimates and tests of cointegrating vectors involving bid and ask quotes and bid 

and ask depths for all thirty stocks in our sample over 1995 and 1998.   

 

2. Related Literature 

The classical models of specialist pricing under asymmetric information effectively ignore depth 

by assuming unit size for all trades (Copeland and Galai (1983), Glosten and Milgrom (1985) and Easley 

and O'Hara (1992)).  Other models capture depth implicitly by having the specialist quote complete 

pricing functions rather than individual bid and ask prices (Kyle (1985) and Rock (1999)).    Even in these 

latter models, there is no discussion of how the spread and depths interact, especially in response to a 

changing information signal.    

But a complete characterization of market liquidity should encompass both the bid-ask spreads 

and the market depth, i.e., the number of shares available at each bid and ask price (Harris (1990)).  When 

liquidity is defined in these two dimensions, it is conceivable that a reduction in liquidity could occur 

through a reduction in bid or ask depth even though the quoted or effective spread is unchanged.  

Consistent with this intuition, Lee, Mucklow and Ready (1993) report the empirical result that spreads 

widen and depths fall in response to an increase in the amount of adverse selection present before 

earnings announcements.  Harris, McInish, and Chakravarty (1995) show that a comparison of volume 

within a price regime to announced depth is a statistically significant determinant of subsequent quote 

revision for NYSE stocks.   Chung and Zhao (1999) provide empirical evidence that Nasdaq dealers use 

both spreads and depths to manage market liquidity.  Recently, Chakravarty, Harris and Wood (2001) find 

                                                           
6 Appendix A provides results of cointegration tests involving four variables--the two price quotes and two depth 
quotes--for the representative stocks in the DJIA.   
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that while NYSE spreads have reduced considerably following decimalization, the corresponding bid and 

ask depths have also fallen.  Thus, the empirical evidence appears to provide powerful evidence to 

support the notion that spreads and depths are actively managed by specialists and limit order traders. 

The relationship between the limit order book and the order strategies of the traders has been 

theoretically examined by Cohen, Maier, Schwartz and Whitcomb (1981), O’Hara and Oldfield (1986), 

Rock (1999), Easley and O’Hara (1992), and Glosten (1994).  Unfortunately, these early models either 

did not consider adverse selection issues or did not allow informed traders to submit limit orders.  The 

limit order book, therefore, plays an insignificant role in the price discovery process.   

 Chakravarty and Holden (1995) were among the first to theoretically investigate the interaction 

between spreads and depths by explicitly allowing an informed trader to choose both market and limit 

orders to maximize his expected profit.   Under fairly general conditions, the authors obtain a closed-form 

equilibrium where the informed trader chooses both market and limit orders, and, more importantly, uses 

the limit orders as a "safety net" for his market orders.   Since both uninformed and the informed traders 

use limit orders in this framework, we can think of the resultant supply and demand schedule, the limit 

order book, to be (partially) informative.  The Chakravarty and Holden model is, however, a single period 

model that precludes examining the spread-depth relationship in an intertemporal context.    

 Recently, Kavajecz (1998) formalizes the Lee, Mucklow and Ready (1993) empirical result by 

modeling a specialist choosing prices and depths jointly to maximize profits.  In a similar vein, Dupont 

(2000) provides an asymmetric information model of spread and depth where the equilibrium depth is 

proportionally more sensitive than the spread, to changes in the degree of information asymmetry. 

Two institutional features of asset markets also attest to the fact that the depth is an important 

empirical proxy for market liquidity.  First, the NYSE specialist has an affirmative obligation to keep a 

fair and orderly market, which includes quoting tight spreads with reasonably indicative depths.  The 

average spreads and depths are part of the monthly statistics reported on each specialist, and affect his 

performance evaluation.  Excessive spreads or inadequate depths are regarded as indicators of poor 

performance, since they suggest relatively thin liquidity.   Second, although there is some discreteness in 
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both prices and depths, stock prices were quoted in large discrete intervals of quarters, 1/8ths and 1/16ths 

during 1995 and 1998 while depths were disaggregated into small 100 share lots.  Accordingly, Lee, 

Mucklow and Ready (1993) argue that changes in market liquidity should be more easily detected in 

depths than in spreads.    

 In summary, the prevailing intuition in the microstructure theory literature is that both spreads 

and depths matter.  The available empirical evidence, related to specific corporate/market events, also 

provides circumstantial evidence supporting this view.   The extent and nature of the relationship between 

spreads and depths, however, especially in the context of how new information is reflected in subsequent 

updating of the spreads and depths, is an important empirical issue that has never been rigorously 

examined. 

 

3.  An Error Correction Model of Spreads and Depths 

To investigate the comparative importance of depths and spreads in revealing new information, 

we employ an econometric dual of error correction--i.e., common trends estimation--first proposed by 

Stock and Watson (1988), refined by  Hall, Anderson and Granger (1992), fully developed and applied to 

interest rate markets by Gonzalo and Granger (1995), and adapted to the Eurodollar futures market by 

Tse, Lee and Booth (1996).   Recently, several papers have employed common trends estimation as a way 

to measure and test the comparative importance in stock price discovery of international exchanges 

involved in dual listings (Ding, Harris, Lau, and McInish, 1999; Liberman, Ben-Zion and Hauser, 1999)), 

of different execution channels within an exchange (Frino, Harris, McInish, and Tomas, 2001), and of the 

NYSE versus the regional exchanges (Harris, McInish and Wood, 2000).   

3.1 The model  

Suppose that a stock’s unobservable implicit efficient price is a continuous series that can be 

represented as a random walk given by 

(1) P t  = P t-1  +  wt        where w  
iid
~   N (0, σ ) 2

w
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where wt is the random information arrival over the interval between (t-1) and t.  Further, assume that the 

observed ask and bid price quotes at time t span, 

(2) Ask t = P t  +  ε a, t      

and   

(2’)  Bid t =  P t  +  ε b, t     

where ε a, t and ε b, t are identically distributed zero mean covariance stationary random variables that may 

be autocorrelated.  In addition, E (w t ε j, t-s) ≠ 0 but w t   cannot be forecasted from ε j, t-s in the sense that  

ε j, t-s does not Granger cause w t  .   Since these observed (bid and ask) price quotes do not mean revert, 

information arrivals lead to permanent shocks cumulating over the time between quote adjustments into a 

stochastic trend.  Thus, at any realization, such as at t= T, both price quote sequences impound a common 

factor that is the stochastic trend in the unobserved implicit efficient price, 

 (3) AskT = Ask0   +∑  +  ε
=

T

t
tw

1
 a,T     and     BidT = Bid0   +  +  ε∑

=

T

t
tw

1
b,T, 

and between any interval (t-1, t), we can write 

 (4)  Ask t = Ask t-1  +  wt   +  ∆εa, t      and     Bid t =  Bid t-1  +  wt   +  ∆εb, t. 
 

Since Ask t and Bid t in equation (4) are both I(1) by maintained hypothesis, a linear combination 

representing the observed spread given by     

(5) (Ask t – Bid t)  =  εa, t  -  ε b, t , 
 

is stationary and we can write by the Granger Representation Theorem, a vector error correction model 

(VECM), as 

 (6)     ∆Askt = αask + ∑
=

S

t 1
β ask, ask, t-s ∆P ask, t-s + ∑

=

S

t 1
β ask, bid, t-s ∆P bid, t-s  

      + γ ask (z t-1) +  uask, t . 
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where a natural definition for the error correction term (z t-1) is the arbitrage-free condition that the 

equilibrium spread equal a constant that reflects the execution and inventory costs of market-making plus 

an I(0) white noise error term.   

As an error correction term in this formulation of the model, the spread is assumed to be I(0).  In 

later formulations, however, we specify a spread that is an I(1) variable in the cointegrating relations 

themselves.  Which model is the appropriate specification depends on order of integration tests for the 

spread series, which we report below.  Substituting from (5) into (6), we obtain 

(7)  ∆Ask t = αask + β ask w t-s + β ask, ask, t-s ∆ε a, t-s + β ask, bid, t-s ∆ε b, t-s  
                                                                         + γ ask  (εa, t-1 - ε b, t-1)  +  uask, t. 
We can similarly express the bid side VECM as    

(7’)  ∆Bid t = αbid + β bid w t-s + β bid, ask, t-s ∆ε a, t-s + β bid, bid, t-s ∆ε b, t-s  
                                                                 + γ bid (εa, t-1 - ε b, t-1)  +  ubid, t. 

Notice that in either (7) or (7’), w t-s is the common factor capturing the permanent effects of new 

information on subsequent ask or bid price adjustments, ∆ε a, t-s and ∆ε b, t-s are idiosyncratic factors 

capturing the temporary effects and (εa, t-1 - ε b, t-1) is the error correction term that captures equilibrium 

adjustment to disparities in the level of the idiosyncratic disturbances. 

 Motivating our study is the idea that, rather than having the (updated) price quotes convey new 

information about informed trades, the depths at the pre-existing ask and bid could convey the arrival of 

information in the market.  An analogous empirical model can therefore be developed for the size quotes, 

and the VECM for this information structure would then be written: 

(8)  ∆Asksz t = αasz + β asz w t-s + β asz, asz, t-s ∆ε asz, t-s + β asz, bidsz, t-s ∆ε bsz, t-s  

                                                                        + γ asz  (εasz, t-1 - ε bsz, t-1)  +  u asz, t  
  
(8’) ∆Bidsz t = αbsz + β bsz w t-s  + β bsz, asz, t-s ∆ε asz, t-s + β bisz, bsz, t-s ∆ε bsz, t-s  

                                                              + γ bsz (εasz, t-1 - ε bsz, t-1)  +  u bsz, t 
This second empirical framework highlights the role of strategic traders who time their trades to execute 

when the depths on one or both sides of the market are large and/or the net depth is at a minimum, so as to 
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minimize the price impact of their trades.  By assumption, the error correction term (εasz, t-1 - ε bsz, t-1) is 

the non-information-based source of different depths in the order flow at the ask and at the bid --i.e., 

simply that portion of the order imbalance at the pre-existing price quotes that results from market 

frictions.  Comparing and assessing the origins of order flow on the opposite sides of the market is a 

function of the specialist and the crowd in floor trading environments but is increasingly performed by 

limit order and other traders in screen-based electronic trading environments.  

  Finally, it is also possible to formulate a composite information structure that combines the above 

hypothesized roles of price quotes and size quotes.  As we suggested earlier, the time-series properties of 

the bid-ask spread may provide an error correction mechanism that conveys information to limit order 

traders who thereby adjust the size of their orders at the pre-existing price quotes.  The specialist may 

similarly adjust depth quotes in response to his observation of the spread on incoming limit orders.  For 

this information structure, the VECM looks as follows: 

(9)  ∆Askszt = αasz + β asz w t-s + β asz, asksz, t-s ∆ε asz, t-s + β asksz, bidsz, t-s ∆ε bsz, t-s  

                                                                        + γ asz  (Spreadt-1)  +  u asz, t.  
  
(9’) ∆Bidszt = αbsz + β bsz w t-s + β bsz, asz, t-s ∆ε asz, t-s + β bisz, bsz, t-s ∆ε bsz, t-s  

                                                              + γ bsz (Spreadt-1)  +  u bsz, t. 
 

Other more hybrid information structures are clearly possible.  In section 4, we test empirically 

whether price quotes themselves, depth quotes themselves, or prices and depths are cointegrated and if so, 

whether depths or spreads first convey the permanent innovations in an error correction/common factor 

components model.  

3.2 Gonzalo and Granger decomposition 

Although w t-s in eqns. (7)-(9’) is the first difference of the unobservable implicit efficient price, 

we can derive the β ask , β bid,  β asz , and β bsz parameters from estimates of γ ask , γ bid , γ asz , and γ bsz 

using the Gonzalo-Granger (1995) (GG) procedures.  The GG decomposition involves expressing p 
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cointegrated series as an additively separable function of k common factor(s), f t , and r stationary error 

correction terms, z t = α′ P t , where α′ is an r x p matrix of the cointegrating vectors and z t  is I(0), 

 (10)   P t   =  A1 f t +  A2 z t 

 (10')                 P t    =  A1 γ⊥′ P t  +  A2 α′ P t-1. 

Pt is a p x 1 vector of cointegrated prices or depths, A1 and  A2 are loading matrices, and  γ⊥′ is a k x p 

matrix of common factor weights on the contemporaneous prices or depths in the k common factor 

vector(s)  f t where k = (p - r).  Gonzalo and Granger (1995) show that under the above restrictions, the p 

x k matrix A1 =  α⊥( γ⊥′ α⊥) -1 and the p x r matrix A2 =  γ (α′ γ) –1, where, by definition, γ⊥′γ = 0.   Since 

the vector of common factor weights γ⊥ is orthogonal to the coefficient vector γ on the error correction 

terms in a fully-specified VECM, the γ estimates in eqns. (7) -(9’) provide a way to identify the 

permanent components γ⊥′Pt .   

For example, consider an information structure that incorporates three I(1) variables—i.e., the 

price quote midpoint (MPQ), ½ of the summed size quote (SSZ), and the spread (SP)7--for the special 

case in which the spread is totally (100%) responsible for revelation of the permanent innovations in the 

common stochastic trend. Further, suppose that cointegration tests reveal two cointegrating vectors (r = 2) 

implying one common factor (k = 3 - 2) corresponding to Σ wt  in the foregoing model structure.  With k 

= 1, the rank of the 3 x k loading matrix A1 in equation (10') would be 1 (i.e., each row of A1 is identical), 

and the elements of γ⊥ would therefore cumulate the response of each series to an innovation in the 

composite common factor.  The error correction terms of the VECM in equation (10’) would then be 

estimated as 

(11)        γ       P  =   ′α 1-t 
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7 Our order of integration tests show that the spread is generally not I(0) but I(1) for most DJIA stocks during 1995 
and 1998 when many institutional features of the security market design were changing rapidly. 
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where Π1, i and Π2, i are the elements of the cointegrating vectors.  By hypothesis, γ SP  = 0 so that 

 
(12)     γ       P =  

 

′α
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Under this unilateral information discovery hypothesis, spreads do not error correct to changes in quote 

midpoints or summed depths whereas both the quote midpoint and summed depth do error correct to 

changes in spreads in order to maintain their equilibrium (cointegration) relationship to the permanent 

stochastic trend.  To identify the GG common factor vector γ⊥ for this case, one simply applies the 

orthogonality condition γ⊥′ γ  =  0 which here implies γ⊥′ = [ 1   0    0 ].  That is, the factor weight γ⊥ , SP 

corresponding to the first series in equations (11) and (12) is 1.0.  One could therefore conclude spreads 

are 100% responsible for revealing the common stochastic trend. 

3.3  Testing common factor weights 

Gonzalo and Granger (1995) show how to take an equation of the form given by (7) - (9’) and 

decompose it into permanent and temporary components and estimate γ⊥ in (10’) with reduced rank 

regression and eigenvector computations similar to those used by Johansen (1991) for estimating the 

cointegrating vectors α′ P t.8  Most importantly, Gonzalo and Granger also develop a χ2 distributed test 

statistic (QGG) for the elements of the common factor vector γ⊥ j. Because of the linear combination 

restriction on the γ⊥

                                                          

 j, these coefficients can be normalized and interpreted as a vector of factor weights on 

the underlying time series that together are responsible for the multivariate cointegration.   

 
8  For detailed accounts of the estimation procedures to obtain common factor results, see Johansen (1995, chapter 8) 
and Gonzalo and Granger (1995).  Hamilton (1994, chapters 19, 20) and Enders (1995, chapter 6), Booth, So and 
Tse (1999), and Huang (2000) provide useful treatments of cointegration econometrics.   
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These common factor weights provide a direct test of the revelation by price quotes, size quotes, 

or spreads of permanent innovations associated with the common stochastic trend.  Under the null 

hypothesis of multi-lateral information discovery, each of the common factor weights can be tested 

seperately or in subgroups as significantly greater than zero --i.e., H0 : γ⊥ j> 0 and Ha : γ⊥ j = 0.   

Consequently, one can test whether spreads are in fact responsible for revealing 100% of the common 

factor.  As execution strategy becomes a focus of microstructure research, the kinds of comparisons 

allowed by these QGG statistical tests take on potentially pivotal meanings.  In this paper, we use the 

common factor weights attributable to prices, spreads and depths to uncover the information structure of 

quote adjustment in DJIA stocks. 

 

4. Data Overview 

To estimate the cointegration-error correction relationship between the spread and the bid and ask 

depths, we use quote data for all 30 stocks comprising the DJIA in 1995 and then repeat the analysis for 

1998.  The tick-by-tick quote data are extracted from TAQ, available from the NYSE.  Table 1 provides a 

breakdown of the thirty stocks in our sample in terms of the number of new quotes and average interval of 

time (SPAN, in seconds) between new quotes.   For a new quote to be recorded in our dataset, at least one 

of the four parameters (bid, bid depth, ask or ask depth) has to be different.  The average interval between 

new quotes declines sharply over the four years under study from 91 seconds in 1995 to 26 seconds in 

1998.  

The growth of market activity from 1995 to 1998 is also clear from the explosion in the number 

of quotes.  For example, a typical increase ranges from 61,737 quotes at 95-second mean intervals for 

Chevron in 1995 to 229,866 quotes at 32-second mean intervals in 1998.  In the current study, we 

consider only quotes originating from the NYSE.  Having avoided the measurement bias issues 

introduced by ECN and regional autoquotes, our data set still comprises an average of 74,058 quotes per 

stock in 1995 and 260,927quotes per stock in 1998. 
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 Table 1 also provides average spreads as well as the average bid depth and the average ask depth 

for each stock in 1995 and 1998.   Across all DJIA stocks, the quoted spread declined by 27% from 16.5 

to 12.1 cents.  Depth measured by ½ of the summed size quotes plummeted by 61% from 150 to 59 round 

lots.  Whether or not this massive decline in market liquidity that accompanied the tighter spreads over 

1995-98 had an impact on the relative role of spreads and depths in revealing new information is one of 

the questions we seek to address. 

 

5. Cointegration tests involving price quotes and depths  

If multiple times-series contain common stochastic trends, they will error correct to temporary 

idiosyncratic disparities and their difference (or some other linear combination)  will be a stationary 

stochastic process.  In such an event, the underlying series are cointegrated.   Thus, the notion of 

cointegration mimics the existence of a stable long-run equilibrium in economic systems that are not 

always in equilibrium.  Kroner and Ng (1998) use this property to distinguish cointegration equilirium 

from arbitrage equilibrium.  In cointegrated financial variables and markets, noise as well as news is 

generated continuously, and there is a lag with which the news can be incorporated.  This gives rise to 

temporary disparities (or disequilibrium) that weave in and out of any underlying long-run relationships 

between the variables.   A simple but effective way to capture both short and long-run effects of a system 

of economic variables, hypothesized to have such a relationship, is provided by a cointegration-error 

correction model.   

 In Table 2, we present Johansen’s (1991) cointegration tests and Gonzalo and Granger’s (1995) 

common factor weights for various combinations of price quotes and size quotes using all the TAQ data 

on IBM and AT&T in both 1995 and 1998.  These Johansen tests were preceded by augmented Dickey-

Fuller tests on the order of integration of the series.  All were I(1).  The Akaike Information Criterion was 

minimized for the set of VAR equations at six lags. We repeated all analyses with the other stocks in our 

DJIA sample (not reported for brevity).  In all cases, our statistical inferences were the same.      
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 In Panel A, testing for no cointegrating vector (r = 0) versus the alternative of one cointegrating 

vector (r = 1) in the bid and ask price series, the trace and Hmax (maximum eigenvalue) statistics indicate 

that the null is rejected at the 0.01 level.  The implication is that the two series represented by the bid and 

ask prices are themselves cointegrated.9      

Similarly, panel B provides cointegration test results of the bid depth and ask depth series for the 

same two stocks over 1995 and 1998.  The conclusion, again, is that bid and the ask depths are 

cointegrated C(1); trace and Hmax test statistics reject H0: r=0 at the 0.01 level.  We then examine the 

obvious next question as to whether all four price and depth quotes are cointegrated.  In the Appendix, we 

report results of Johansen’s (1991) test for all 30 Dow stocks.  In every case we are unable to reject the 

null hypothesis of zero as opposed to one or more cointegrating vectors.  No linear combination of all 

four series is a mean reverting stationary long-term equilibrium process.  The raw price quotes and depth 

quotes do not appear to error correct to discrepancies in one another’s separate equilibrating 

relationships.10 

Consistent with our earlier modeling discussion and with much of the direction of microstructure 

theoretical research, in panel C, we test for cointegration between the bid-ask spread (ask price – bid 

price) and the ask depth, while in panel D we test for cointegration between the spread series and the bid 

depth series.  Motivating these specifications was a finding that spreads and depths were both 1(1) while 

an error correction term that combines the spread and net depth was I(0).  Here, there is strong evidence 

suggesting that both spread and bid depth or spread and ask depth are, in fact, cointegrated.  Finally, in 

Panel E, we relate spreads to ½ the summed size quotes from both sides of the market.  Here, again, we 

see that spreads and depths are cointegrated C(1) with 99% confidence.  

                                                           
9 The γ⊥ ask or γ⊥ bid results, in the last two columns, are the common factor components which we discuss 
below. 
 
10 We looked for possible cointegration among the ask price and ask depth series.  Using again the trace and Hmax 
test, we are unable to reject the null of no cointegration for all stocks in 1995 and 1998.  The same is true for the bid 
price and bid depth series and for the bid price and ask depth series.   These results are available from the authors. 
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In summary, from our VECM specification analysis, with the intra-day quote data for DJIA 

stocks over calendar years 1995 and 1998, we conclude that the bid and ask quotes appear to be 

cointegrated as do the bid and ask sizes.  Importantly, however, individual price quote and depth quote 

series are not cointegrated while the quoted spread is significantly cointegrated with both the bid depth 

and the ask depth.   This result concerning the appropriate specification of the VECM is robust to several 

definitions of depths as individual size quotes or ½ the summed size quotes.   

 

6. Information Discovery Role of Depths over Spreads  
 
6.1 Cointegration tests involving spreads and synchronous, paired bid and ask depths 
 

Having found that the quoted spread and depths are cointegrated, we determine, in this section, 

the order of integration, optimal lag length, and cointegrating vectors for the system of three equations 

formed by the spread and the two depth series.   Table 3 provides tests of the cointegrating vectors for the 

quoted spread and the corresponding bid and ask depths.  These cointegrating vectors define the 

equilibrium errors that we subsequently employ in the systems estimation of the three-equation error 

correction model.   

For each of the 30 stocks in our sample, and in each of the years 1995 and 1998, we provide 

results of the trace test to determine the rank of the cointegrating vector matrix using Johansen’s (1991) 

analysis.  Examining the null hypothesis of r cointegrating vectors against r+1, we run two tests of r = 0 

against r = 1 and of r = 1 against r = 2.   Table 3 indicates that in all 30 cases in 1995, the null of 0 

cointegrating vectors is rejected in favor of the alternative of one cointegrating vector at the 99% level, 

and the null of one cointegrating vector is rejected in favor of the alternative of two cointegrating vectors 

at the 95% level in 10 of the 30 stocks.  We also find that for 1998, we reject the null hypothesis of zero 

cointegrating vectors (in favor of the alternative of r = 1) in 27 out of the thirty stocks at the 95% level.  

Three of the sixty cases (GT98, MO98 and XON98) have no cointegrating vectors.  The implication of 

these results is that in 47 of 60 stocks (20 in 1995 and 27 in 1998) the three-equation system of spread and 
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depths is characterized by one cointegrating vector and two common stochastic trends.11  For the ten cases 

in 1995 with two cointegrating vectors we infer one common trend. 

6.2 Proportion of information discovery by spreads versus depths 

 The cointegration results of the previous section allow us to apply the Gonzalo-Granger common 

factor estimation and testing procedure to the three-variable model formed by the spread and the two 

depths.  Table 4 displays our estimates of the common factor weights that reflect the contribution to the 

common trend attributable to the spread versus the bid and ask depths.  For the 10 cases with two 

cointegrating vectors and one common trend (in boldface in Table 4), the common factor weights are 

derived from the third eigenvector of the common factor matrix orthogonal to the adjustment vector 

matrix (Gonzalo and Granger (1995)).   For the 47 of 50 remaining cases with r =1, the weights for the 

first common trend are also reported in Table 4, and the weights for the second common trend (available 

from the authors) derive from the second eigenvector of this same matrix.  We interpret the three elements 

of each of these eigenvectors as a factor weight—i.e., all reported weights are normalized to sum to 1.   

We test each of the separate elements of the vector of common factor weights for statistical 

significance.  In each case, the null hypothesis is that the individual factor weight of the indicated series is 

zero.   This Gonzalo-Granger Qgg test statistic is distributed chi-squared with one degree of freedom.   

 From Table 4, we reject the null hypothesis for the two depth series in all fifty-seven cases at the one 

percent level.  In contrast, for the quoted spread series, we reject the null of zero common factor weight 

(at the 1% level) in only one case out of 27 in 1998 and in only 8 cases out of 30 in 1995.  Our 

interpretation is that the (bid and ask) depths convey new information in literally every stock in the DJIA 

in 1995 and 1998 while the quoted spreads almost never convey information in 1998, and do so in only 8 

of the 30 cases in 1995.    

 Interestingly, in those eight cases in 1995 and one in 1998 where the common factor weight on 

spreads is significant, the percentage of information discovery attributable to the spread varies between 

                                                           
11 In addition to the Σ wt information arrivals for the first common trend, an illustration of a second common trend 
affecting these primarily multinational DJIA stocks might be the trade-weighted U.S. dollar exchange rate. 
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only 50 and 59%, with the depths revealing the remaining 41-50% of the information.  Since seven of 

these nine total cases indicate just one cointegrating vector among the three series and therefore two 

common trends, we can examine the factor weight on spreads in the second common trend as a further 

indication of the role of spreads versus depths in information discovery.  In each instance, the proportion 

of information discovery is decidedly smaller in spreads (the first number listed) than in depths (the last 

two numbers listed): (BA95: 0.255, 0.409, 0.336); (EK95: 0.023, 0.481, 0.495); (GE95: 0.042, 0.463, 

0.495); (IP95: 0.066, 0.484, 0.450); (MO95: 0.245, 0.408, 0.346); (XON95: 0.005, 0.466, 0.529); 

(WMT98: 0.076, 0.446, 0.478).  All depth numbers are statistically significant at the 1% level.  At the 

mean, in these seven cases, the second common factor weight on spreads is just 10.8% with depths 

accounting for 89.2%, and in no cases is γ⊥

                                                          

 SPREADS  ever significant. 

 To examine further the inference that depths rather than spreads predominantly convey new 

information, we present in Table 5 the Gonzalo and Granger (1995) Qgg statistic for the null hypothesis 

that the common factor weight for the quoted spreads is 1 and that the common factor weights of the two 

depths are both 0.  The test statistic is distributed chi-squared with two degrees of freedom.  The table 

indicates that we reject the null hypothesis at a 1% level of significance in 55 of the 57 cases and at 2% in 

the other two cases.12   

 The implication from Tables 4 and 5 is that, relative to the quoted bid-ask spreads, the depths 

appear to convey significantly more information.  The fact that our results are also consistent across the 

years 1995 and 1998 entailing dynamic institutional change in the NYSE attests to the robustness of our 

conclusions. 

6.3 Error Correction Model for A DJIA Stock 

In this section, we provide details of the VECM parameter estimates for IBM.  The purpose is to 

characterize the nature of the underlying equilibrium relationship between spreads and depths for a typical 

stock in our DJIA sample.  We detail exactly how information inherent in current changes in depth gets 

 
12 Recall that in three stocks listed as n.a., Johansen’s test indicated no cointegrating vectors. 
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incorporated in future adjustments of the spread more so than the reverse case of current changes in the 

spread getting incorporated in future adjustments of the depth(s).   

The Johansen procedure for IBM yields the following two equilibrium error relationships implied 

by the cointegrating vectors (in parenteses) for IBM95,  

(11)      - γ1 Z1t-1 =   - γ1 (0.0180 SPREADt-1  + 0.000922 ASKSIZEt-1 + 0.000876 BIDSIZEt-1) 

(12) - γ2 Z2t-1 =   - γ2 (0.000264 SPREADt-1 - 0.00337 ASKSIZEt-1  +  0.00334 BIDSIZEt-1), 

and for IBM98 the corresponding error correction terms are 

(13)      - γ2 Z1t-1 =   - γ2 (0.0115 SPREADt-1  + 0.00176 ASKSIZEt-1 + 0.00191 BIDSIZEt-1) 

(14)       - γ2 Z2t-1 =   - γ2 (0.00076 SPREADt-1 - 0.00395 ASKSIZEt-1  +  0.00365BIDSIZEt-1). 

 

In either year, an increase in BIDSIZE relative to ASKSIZE (an increased buy-side order 

imbalance) with no change in spread will increase both Z1 and Z2.  Remembering that error correction 

terms are specified by convention as -γ Zt-1 in the VECM, an increased Z1 and Z2 result in lower 

SPREAD, lower BIDSIZE and lower ASKSIZE if the estimated γi > 0.  With increased spreads (and no 

change in the order balance/imbalance), again both Z1 and Z2 increase with the same results for 

SPREAD, BIDSIZE and ASKSIZE.  ASKSIZE, on the other hand, raises Z1 but lowers Z2.  We should, 

therefore, expect opposite signs on the γ1 and γ2 parameters for the ASKSIZE equation in the VECM 

estimates.  For example, if increased ASKSIZE leads to sell order imbalance, we should expect changes in 

the SPREAD, ASKSIZE, and BIDSIZE error correction system that results in reduced size order 

imbalance.  With Z1 increased, γ > 0 on Z1 leads to ASKSIZE reduction whereas with Z2 diminished,  

γ < 0 on Z2 leads to ASKSIZE reduction.  We now examine Table 6 to look for this pattern of 

hypothesized results. 

 Recall the vector error correction model is specified as, 
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(15) ∆SPREADt = αSP  + βSP, SP, t-1 ∆SPREADt-1 + βSP,SP  t-2 ∆SPREADt-2 + … + βSP, SP, t-p ∆SPREADt-p 

  + βSP, ASZ, t-1  ∆ASKSIZEt-1  + βSP, ASZ, t-2  ∆ASKSIZEt-2 + …+  βSP, ASZ, t-p  ∆ASKSIZEt-p 

+ βSP, BSZ, t-1  ∆BIDSIZEt-1  + βSP, BSZ, t-2  ∆BIDSIZEt-2 + …+  βSP, BSZ, t-p  ∆BIDSIZEt-p - γ11 Z1t-1 - γ12 Z2t-1 + u1t 

 

(16) ∆ASKSIZEt = c2  + b11 ∆SPREADt-1 + b12 ∆SPREADt-2 + …. + b1p ∆SPREADt-p 

   + b21 ∆ASKSIZEt-1  + b22 ∆ASKSIZEt-2 + ………+  b2p ∆ASKSIZEt-p 

 + b31 ∆BIDSIZEt-1  + b32 ∆BIDSIZEt-2 + ………+  b3p ∆BIDSIZEt-p - γ21 Z1t-1 - γ22 Z2t-1 + u2t 

 

(17) ∆BIDSIZEt = c3  + c11 ∆SPREADt-1 + c12 ∆SPREADt-2 + …. + c1p ∆SPREADt-p 

   + c21 ∆ASKSIZEt-1  + c22 ∆ASKSIZEt-2 + ………+  c2p ∆ASKSIZEt-p 

  + c31 ∆BIDSIZEt-1  + c32 ∆BIDSIZEt-2 + ………+ c3p ∆BIDSIZEt-p - γ31 Z1t-1 - γ32 Z2t-1 + u3t 

where p is the lag length.  If γ11 and  γ12 are insignificantly different from zero, then spreads do not 

respond to changes in depths, and spreads are considered the source of permanent stochastic trends.   

Similarly, if γ21 and γ22 (γ31 and γ32) are insignificantly different from zero, then ask depth (bid depth) does 

not respond to changes in spreads or bid depth (ask depth), and ask depth (bid depth) is considered the 

source of the permanent stochastic trend.  The cointegrating vectors define the long-run equilibrium 

relationship while the error correction dynamics characterize the information discovery process.  The 

possibility that one or two variables in a system of n cointegrated series might play this information 

discovery role motivates our use of error correction models.    

Table 6 Panel A provides the Seemingly Unrelated Regression (SUR) estimates for IBM95 of the 

three error correction equations with six estimated as the optimal lag length in the unrestricted system of 

VAR equations.  All starred coefficient estimates are significant at the 1% level.  The coefficient 

magnitudes of lagged SPREAD, lagged ASKSIZE, and lagged BIDSIZE all decline throughout the optimal 

lag structure, as expected.  The sets of variables are tested with an F test at the bottom of the table.  All 

three sets of lagged variables are statistically significant at the 1% level with the six lagged spreads most 
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influential in the spreads equation, and the six lagged depths most influential in each of the respective 

depth equations.  Each of the compound error correction terms Z1 and Z2 is statistically significant at 1% 

in all three equations. 

 Moreover, the Z terms have exactly the expected pattern of signs discussed above.  An increased 

Z1 results in lower spreads, asksizes and bidsizes (remembering again that the error correction terms are  

specified as -γ1 Z1t-1 and noting that we find γ1>0).  For example, an idiosyncratic (i.e., noise-related) 

increase in spreads results in a positive Z1 equilibrium error which is self-correcting in that SPREAD 

adjusts downwards in response.  Similarly, an idiosyncratic increase in either depth results in a positive 

Z1 equilibrium error that sets off self-correcting retrenchment in the corresponding depth.  The Z2 term is 

more complicated.  Because increased ASKSIZE in equations (11) through (14) raises Z1 but lowers Z2, 

we find that increased ASKSIZE reduces the sell order imbalance not only (as just explained) through 

higher Z1 but also, as expected, through the inverse effect of Z2.  That is, because of our finding 

throughout Table 6 of a negative γ2, ASZ  parameter on Z2 in the ASKSIZE equation, a lower Z2 also 

results in continuing downward adjustment of idiosyncratically high ASKSIZE.  On the other hand, the 

Z2 equilibrium error in the SPREAD and BIDSIZE equation operates through direct effects.  Higher 

idiosynchratic SPREAD or BIDSIZE increases Z2 which with γ2, S or γ2, BSZ > 0 and a -γ2 Z2 error 

correction term implies lower SPREAD or BIDSIZE, respectively. 

To confirm our VECM specification, we also provide in Table 7 the corresponding unrestricted 

vector autoregession (VAR) estimates for IBM95.   The only difference between the VAR and the VECM 

is the two error correction terms.  Comparing the R-square and regression F-statistics between the VAR 

and VECM models shows that the equilibrium errors (Z1t-1 and Z2t-1) are responsible for a significant 

proportion of the variation explained in ∆SPREAD, ∆BIDSIZE, and ∆ASKSIZE.  Thus, for example, with 

the addition of the error correction terms, R-square increases from 0.33 to 0.39 in the ∆SPREAD equation, 

from 0.19 to 0.24 in the ∆ASKSIZE equation and from 0.18 to 0.22 in the ∆BIDSIZE equation.   The F-

statistics for the Z1 and Z2 variable set are 4,231 and 2,488 and 2,174, respectively.  Clearly, the VECM 
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specification of this model is preferred over an unrestricted VAR in levels, providing confirmation of our 

error correction-common factor empirical methodology. 

Table 6 Panel B provides the VECM estimates for IBM 1998.  While in sign and significance of 

parameter estimates, IBM 1995 and IBM 1998 are almost identical, the magnitude of the parameter 

estimates themselves are significantly different, and this finding has some important implications 

discussed in the next section. 

6.4  Discussion of Results 

 Our consistent finding in essentially all the DJIA stocks in 1995 and 1998 is that depths convey 

new information first.  This finding is robust across several specifications of depth in the spreads-depth 

VECM.  Between the years 1995 and 1998, three differences in the results stand out.  All three relate to 

the role of spreads in information discovery.  First, the error correction parameters on lagged spreads in 

the ASKSIZE and BIDSIZE equations in Table 6 Panel A are approximately twice as large as the same 

parameters in Panel B that reports the same VECM for IBM in 1998.  Apparently the wider spreads in the 

earlier period (1995 in Table 6 Panel A) conveyed less accurate information and necessitated wider 

fluctuations of the depths to adjust to the possible multiple interpretations of the spread changes.  In 

contrast, with tighter spreads in 1998 (see Table 1 for a comparison stock by stock), specialists and limit 

order traders felt confident in making smaller depth adjustments in response to the order flow that 

warranted changing the spread.  This, of course, is an indirect role for spreads in the information 

discovery process since depth adjustment is where information-based, permanent innovations in the 

stochastic process first show up.   

 Second, however, we detect some evidence suggesting an enhanced direct role for spreads in 

1998 information discovery.  When the spreads tightened in 1998, the bottom three rows of Table 3 

convey that in 27 out of 30 DJIA stocks only one, not two, cointegrating vectors were statistically 

significant in the error correction process.  This cointegrating vector test result is mirrored in the error 

correction results in Table 6 Panel B for IBM 1998 where the second “equilibrium error” is not significant 

in the spreads equation.  This finding (which differs from the significance of the same term in Table 6 
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Panel A for IBM 1995) relates to our conjecture in section 6.1 that finding only one equilibrium error 

process in 1998 opens a role for a second stochastic common trend involving spreads.  Recall that in the 

pure case of two cointegrated variables and an error correction term expressed as their difference, the 

source of the common stochastic trend does not error correct to the equilibrium error (the Z term) whereas 

the subsidiary variable does.  Here, of course, we have a compound error correction term involving a 

linear function of all three variables.  Nevertheless, the insignificance result on Z2(t-1) in the SPREAD 

equation of Table 6 Panel B is suggestive of an enhanced information discovery role for the tighter 1998 

spreads that is not present in the 1995 data. 

 Third, this enhanced role for tighter spreads in information discovery is further suggested by the 

magnitude of the common factor weights in Panel E of Table 2.  There we were investigating the 

appropriate specification of a spreads and depths VECM model.  Recall that in Table 2 Panel E, the 

spreads were found to be cointegrated with ½ the summed depths for IBM in 1995 and 1998.  In addition, 

the last two columns report common factor weights for spreads and depths.  As in other specifications of 

the spreads-depth model reported throughout the paper, depths predominate and are statistically 

significant in setting the common trend.  Notice, however, that an overwhelming common factor weight 

on summed depths in 1995 (0.768) becomes a more nearly equal weight in 1998 (0.490).  The remainder 

of the common trend in 1998 -- namely, 51%-- is associated with innovations in the spread.  Although 

there is still too much noise in spread changes to allow the 0.510 factor weight to test out as statistically 

significantly different from zero, some increased role of these tighter 1998 spreads in information 

discovery is suggested.   

 Contrary to the intuition in the early theoretical microstructure models, our results also 

underscore the important role played by the limit order book in the price discovery process.  It appears 

that informed traders actively use the limit order book to effect all or part of their trades.  This execution 

strategy is consistent with the intuition modeled in Chakravarty and Holden (1995).  Optimal execution 

strategy would also lead the informed traders to choose their trade sizes (and, by extension, their 
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aggressiveness) as a function of uninformed trading properties (Admati and Pfleiderer (1988, 1989)), and 

this could also predominantly involve the limit order book.   

It is likely that the wider spreads in 1995 reflected in part a barrier to effective price competition 

perpetuated by the 1/8th minimum tick size.   Following the reduction in the minimum tick size from 

eighths to sixteenths in 1997, the resulting narrower spreads were significantly more informative than 

their earlier counterparts in 1995.  Nevertheless, our conclusion remains in place for 1998: Depths 

overwhelmingly account for the common stochastic trend(s).   

  

7. Concluding Summary 

We use a vector error correction framework and a long time-series of high frequency data to 

analyze the relative importance of bid-ask spreads and the associated bid and ask depths in revealing new 

information that affects quote revision.   The importance of the current work lies in the fact that the 

microstructure theory literature has traditionally recognized (changes in) the bid-ask spread as the primary 

measure of adverse selection and information-based trading in security markets (McInish and Wood 

(1992), Peterson and Fialkowski (1994), Huang and Stoll (1996), Bessembinder (1997)).   To our 

knowledge, our research is the first to investigate, within a cointegration/error correction framework, 

whether depths play an even more important role (than spreads) in this information revelation process. 

Our results indicate that new information is reflected overwhelmingly in (bid and ask) depth 

updates rather than in spread updates.   At first glance, our central result may appear to violate many 

researchers’ priors that prices should, in general, lead rather than follow. But perhaps it is not surprising 

to find that size leads and prices follow, especially when one remembers that size offers strategic limit 

order traders a variety of options including raising the aggregate depth statistic at the prevailing BBO 

simply by improving the best bid or offer prices one tick. 

An implication of our finding is that the emphasis on bid-ask spreads as a determinant of 

execution strategy and as a signal of information arrivals in financial market microstructure may have 
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been somewhat misplaced.  Our finding provides support for recent theoretical models that attempt to 

formalize the intuition that depths are at least as important as spreads in permanently incorporating new 

information arrival in the market. 
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Table 1.  Descriptive Statistics 
DJIA 30 stocks showing the number of quote observations in 1995 and 1998, the average time interval between observations, 
the average ask price minus bid price, and the average depths (expressed in round lots of 100 shares). 

  1995 1998 
Stock  No. 

Obs. 
Span 
(secs) 

Spread
(cents) 

Depth 
at Ask 

Depth 
at Bid 

No. 
Obs. 

Span 
(secs) 

Spread 
(cents) 

Depth at 
Ask 

Depth at 
Bid 

   AA 
ALD 
AXP 
BA 

CAT 
CHV 
DD 
DIS 
EK 
GE 
GM 
GT 

HWP 
IBM 

IP 
JNJ 
JPM 
KO 

MMM 
MO 

MRK 
MCD 
PG 
S 
T 

TRV 
UK 

UTX 
WMT 
XON 

 
Mean 

 

74,459 
42,900 
50,759 
54,028 
58,210 
61,737 

114,203 
104,717 
90,668 
97,823 
53,163 
56,868 

174,666 
122,705 
92,799 

101,870 
63,923 
98,629 
58,096 
79,982 
51,238 
53,251 
96,940 
51,507 
58,610 
43,659 
45,482 
50,958 
31,485 
86,392 

 
74,058 

  79 
136 
115 
108 
100 
  95 
  51 
  56 
  65 
  60 
110 
103 
  33 
  48 
  63 
  57 
  92 
  59 
101 
  73 
114 
110 
  60 
114 
100 
134 
129 
115 
186 
  68 

 
91.1 

18.8 
17.5 
15.5 
17.8 
17.8 
16.1 
15.9 
15.4 
15.8 
15.7 
16.3 
17.0 
19.0 
17.2 
17.6 
15.4 
17.5 
14.7 
17.2 
15.6 
15.5 
14.8 
17.0 
16.3 
15.6 
17.8 
16.4 
19.8 
15.0 
15.1 

 
16.5 

 

   80.6 
 110.3 
 261.5 
 100.6 
   75.0 
 163.9 
 135.3 
 181.9 
 105.7 
 205.3 
 198.2 
 109.9 
   61.3 
 131.6 
   91.3 
 120.3 
   57.2 
 178.5 
   95.3 
 157.2 
 324.0 
 254.4 
   81.9 
 184.9 
 316.9 
 106.9 
   92.6 
   60.4 
 522.4 
 214.7 
 
159.8 
 
 
 

  60.6 
  98.4 
240.4 
109.8 
  66.3 
118.4 
104.6 
138.7 
  88.6 
182.4 
210.9 
  94.7 
  47.6 
108.6 
  71.9 
  96.3 
  43.6 
157.9 
  80.6 
152.1 
292.3 
205.4 
  70.2 
147.8 
259.0 
  98.1 
82.9 
  57.6 
504.2 
176.1 

 
139.5 

165,322 
183,307 
290,043 
341,570 
184,673 
229,866 
425,811 
312,174 
224,131 
121,832 
260,588 
137,116 
391,003 
336,014 
199,380 
279,775 
232,834 
346,350 
197,681 
436,053 
173,082 
247,650 
392,998 
225,368 
236,918 
327,322 
133,489 
188,633 
294,922 
311,905 

 
260,927 

35 
33 
32 
20 
17 
32 
25 
14 
26 
48 
22 
43 
15 
17 
29 
21 
25 
17 
30 
13 
34 
24 
15 
26 
25 
18 
44 
31 
20 
19 

 
25.7 

13.6 
14.6 
14.7 
9.4 

11.1 
12.5 
12.4 
10.7 
12.3 
9.8 
9.9 

16.5 
11.0 
13.7 
12.0 
10.0 
19.3 
9.1 

14.6 
  9.4 
12.2 
10.6 
13.9 
11.8 
10.2 
10.0 
12.2 
16.4 
9.4 

10.7 
 

12.1 

  42.4 
  57.0 
33.7 
103.6 
67.3 
  47.3 
  55.3 
108.9 
  45.9 
  76.9 
  63.9 
  40.3 
64.9 
52.2 
59.1 
67.2 
  25.8 
83.6 
38.3 
153.4 
  41.5 
68.6 
47.1 
50.8 
127.2 
115.1 
50.0 
39.2 
77.1 
80.1 

 
66.1 

  32.1 
  52.1 
26.2 

106.3 
38.4 

  35.5 
42.2 
76.7 

  38.1 
56.7 
56.6 
32.3 
52.8 
42.1 
42.9 
49.1 
19.6 
61.3 
30.2 

137.4 
  33.3 
56.7 
35.6 
45.6 
89.0 
81.9 
36.6 
25.6 
59.1 
72.1 

 
52.3 
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Table 2.   Specification Analysis for Quote Data. 
 The various panels of the table indicate the stock ticker and the year for which the cointegration tests are carried out; Hypothesis indicates the specific 
nature of the null and the alternative; Trace and Hmax are Johansen’s (1991) cointegration test statistics, and Conclusion summarizes whether the variables 
are cointegrated.   Σγ is the sum of the magnitudes of the cointegrating vector (suggesting the magnitude of possible arbitrage profit opportunities) while γ⊥ 

ask and γ⊥ bid are common factor weights for the ask and the bid (or the ask size and the bid size), respectively.  Note that γ⊥ ask + γ⊥ bid = 1.  The results are 
provided for IBM and AT&T, estimated over calendar years 1995 and 1998.  Similar results were obtained for other DJIA stocks.   
** (*) denotes significance at the 0.01 (0.05) level.   

Panel A: Price Quotes 
 

 Hypothesis    Trace Hmax Conclusion Σγ γ⊥ ask  γ⊥ bid 
IBM95        H0:r = 0, Ha:r =1 26.75** 26.74** C (1) 0.00003 0.496** 0.504**
IBM98 

          
H0:r = 0, Ha:r =1 19.64* 16.63* C (1) 0.0001 0.554** 0.446** 

T95 H0:r = 0, Ha:r =1 28.03** 28.02** C (1) 0.000006 0.237** 0.763**
T98 H0:r = 0, Ha:r =1 17.78* 17.75* C (1) 0.00023 0.553** 0.447* 
 
The estimated equations:  

∆ Ask t     =    α a  +∑
=

6

1i
itaa −,β ∑

=
− +

6

1i
itAsk itab −,β Bid t-i + γa(Ask - Bid)t-1 

 

∆ Bid t       =     α b   +∑
=

6

1i
itba −1

β ∑
=

− +
6

1i
itAsk itbb −,β Bid t-i + γb(Ask - Bid)t-1 

Panel B: Depth Quotes 
         

   Hypothesis Trace Hmax  Conclusion Σγ γ⊥ asz γ⊥ bsz 
IBM95          Ho:r = 0, Ha:r = 1 25.84** 16.75* C(1) 0.00008 0.414* 0.586*
IBM98          

 
Ho:r = 0, Ha:r = 1 29.75** 17.30* C(1) 0.00002 0.491* 0.509

T95 Ho:r = 0, Ha:r = 1 24.62** 16.81* C(1) 0.000002 0.421* 0.579* 
T98          Ho:r = 0, Ha:r = 1 22.93** 14.64* C(1) 0.000002 0.352 0.648*

The estimated equations: 

∆ Asksz t   =    α asz +∑
=

6

1i
itasza −,β ∑

=
− +

6

1i
itAsksz itaszb −,β Bid t - i    +  γasz(Asksz -Bidsz)t-1  

∆ Bidsz t    =    α bsz +∑
=

6

1i
itbsza −,β ∑

=
− +

6

1i
itAsksz 1, −tbszbβ  Bid t – i  +  γbsz(Asksz - Bidsz)t-1 
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Panel C: Spreads (Ask – Bid) and Ask Depth  
   

 Hypothesis     fTrace Hmax Conclusion Σγ fs asz 
IBM95 H0:r = 0, Ha:r =1 42.31** 28.35** C(1) n.a. 0.509 0.491** 
IBM98 

 
H0:r = 0, Ha:r =1 32.49** 19.21** C(1)    n.a. 0.572 0.428* 

T95 H0:r = 0, Ha:r =1 42.08** 27.53** C(1)    n.a. 0.573 0.427** 
T98 H0:r = 0, Ha:r =1 32.73** 21.30** C(1) n.a. 0.632 0.368** 
 

The estimated equations: 

∆ Spread t      =    α a +∑
=

6

1i
itSS −,β ∑

=
− +

6

1i
itSpread itSasz −,β Asksz t – i     +  γS(Spread -Asksz)t-1  

∆ Asksz t    =    α asz  +∑
=

6

1i
itaszS −,β ∑

=
− +

6

1i
itSpread 1, −taszaszβ  Asksz t – i  +  γasz(Spread - Asksz)t-1 

 
Panel D: Spreads (Ask – Bid) and Bid Depth  

   
 Hypothesis    Trace Hmax Conclusion Σγ γ⊥ S γ⊥ bsz 

IBM95 H0:r = 0, Ha:r =1 41.98** 28.56** C(1)    n.a. 0.460 0.540** 
IBM98 

 
H0:r = 0, Ha:r =1 32.03** 18.97** C(1)    n.a 0.580 0.420* 

T95 H0:r = 0, Ha:r =1 41.15** 27.40** C(1) n.a. 0.533 0.467** 
T98 H0:r = 0, Ha:r =1 32.14** 20.77** C(1) n.a 0.521 0.479** 
 

The estimated equations: 

∆ Spread t      =    α a +∑
=

6

1i
itSS −,β ∑

=
− +

6

1i
itSpread itSbsz −,β Bidsz t – i  +  γS (Spread -Bidsz)t-1  

∆ Bidsz t          =    α bsz   +∑
=

6

1i
itbszS −,β ∑

=
− +

6

1i
itSpread 1, −tbszbszβ  Bidsz t – i  +  γbsz (Spread - Bidsz)t-1 
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Panel E: Spreads (Ask – Bid) and ½ Summed Depths (Asksz + Bidsz) 

 
   

 Hypothesis    Trace Hmax Conclusion Σγ γ⊥ S γ⊥ ½ (asz + bsz) 
IBM95 H0:r = 0, Ha:r =1 31.65** 22.72** C(1)   n.a. 0.232 0.768** 
IBM98 

 
H0:r = 0, Ha:r =1 28.12** 16.32** C(1)  n.a 0.510         0.490* 

T95 H0:r = 0, Ha:r =1 35.54** 28.09** C(1)   n.a. 0.211 0.789** 
T98 H0:r = 0, Ha:r =1 26.70** 18.90** C(1) n.a 0.428         0.572** 
 

The estimated equations: 
 

∆ Spread t      =    α a +∑
=

6

1i
itSS −,β ∑

=
− +

6

1i
itSpread itbszaszS −+ ,,β 1/2 (Asz+Bsz) t – i  +  γS (Spread – ½ (Asz+Bsz))t-1  

∆ 1/2 (Asksz t  + Bidsz t)   =    α asz+bsk   +∑
=

6

1i
itSbszasz −+ ,,β ∑

=
− +

6

1i
itSpread 1, −+ tbszaszβ 1/2 (Asz+Bsz) t – i  +  γasz+bsk (Spread – ½ (Asz+Bsz))t-1  
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Table 3.  Estimates and tests of cointegrating vectors.  
For each Dow 30 stock, we estimate the cointegrating vectors for the quoted spread and the two depths at the quotes.  These cointegrating vectors define the 
equilibrium errors that we employ subsequently in the estimation of the error correction version of the model.  For each firm, we present results of the trace 
test of r = 0 against r ≥ 1 and of r = 1 against r ≥ 2.  The 99% critical values for rejecting the null hypotheses are 37.29 and 21.96 and for 95% 31.26 and 
17.84, respectively (Enders, 1995). Twenty of the thirty cases in 1995 and all thrity in 1998 fail to reject the null hypothesis of one cointegrating vector. In all 
sixty cases we can reject the null hypothesis of two cointegrating vectors and only one common factor.   
 
Firm symbol AA95 ALD95 AXP95 BA95 CAT95  CHV95   DD95 DIS95 EK95 GE95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
    40.84** 

17.65 

 
    40.97** 

15.80 

 
 48.30** 
21.02* 

 
   40.67** 

15.77 

 
  41.64** 

17.97* 

 
  44.73** 

18.92* 

 
   40.76** 

17.37 

 
   40.64** 

16.19 

 
   42.44** 

17.67 

 
   43.55** 

17.25 

Firm symbol GM95 GT95 HWP95 IBM95 IP95 JNJ95 JPM95 KO95 MMM95 MO95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
    45.82** 

17.20 

 
   39.07** 

16.23 

 
    36.91** 

15.60 

 
  45.29** 

18.13* 

 
    38.72** 

15.94 

 
    42.54** 

16.45 

 
    41.80** 

17.55 

 
    41.60** 

15.15 

 
  42.40** 

18.23* 

 
    42.16** 

17.82 
 

Firm Symbol    MRK95  MCD95    PG95     S95    T95    TRV95    UK95   UTX95   WMT95     XON95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  48.87** 

20.76* 

 
  46.97** 

19.95* 

 
   38.98** 

16.62 

 
  44.76** 

18.64* 

 
  48.62** 

21.23* 

 
    40.65** 

16.06 

 
    41.26** 

17.24 

 
  34.91* 
14.11 

 
  48.92** 

20.64* 

 
    44.27** 

17.68 

Firm symbol AA98 ALD98 AXP98 BA98 CAT98  CHV98   DD98 DIS98 EK98 GE98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  30.84* 
17.65 

 
  34.21* 
15.80 

 
  31.32* 
13.77 

 
  33.01* 
13.84 

 
  37.20* 
15.97 

 
  35.50* 
15.51 

 
  35.65* 
16.24 

 
  33.98* 
16.21 

 
  34.59* 
15.67 

 
  31.36* 
13.36 

Firm symbol GM98 GT98 HWP98 IBM98 IP98 JNJ98 JPM98 KO98 MMM98 MO98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  34.67* 
13.94 

 
30.41 
13.36 

 
  33.21* 
14.31 

 
  35.37* 
16.89 

 
  32.63* 
14.30 

 
  35.58* 
14.78 

 
  31.36* 
16.01 

 
  31.32* 
12.83 

 
  34.42* 
14.35 

 
26.16 
11.58 

Firm Symbol    MRK98  MCD98    PG98     S98    T98    TRV98    UK98   UTX98   WMT98     XON98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  34.28* 
16.74 

 
    37.31** 

16.93 

 
  32.29* 
14.02 

 
  32.36* 
13.70 

 
  35.33* 
14.62 

 
  34.37* 
15.92 

 
  31.86* 
13.11 

 
    32.26** 

14.21 

 
    38.06** 

16.14 

 
29.37 
10.66 

**Significant at 0.01, *Significant at 0.05 
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Table 4.  Proportion of information discovery by spreads versus depths at the quote.  For each of the three series (spreads, asksizes, bidsizes), 
we present the common factor weights (in percent), which are normalized so that for a given stock for a given year, the weights sum to 100%, except for rounding 
errors.  With two cointegrating vectors (r = 2) there is only one common factor--i.e., one relevant vector of the common factor matrix orthogonal to the adjustment 
vectors.  We test each of the elements of this last eigenvector of the common factor matrix for significance using the methodology developed by Gonzalo and Granger 
(1995).  In each case the null hypothesis is that the factor weight for the indicated series is 0.  The test statistic is distributed chi-squared with one degree of freedom.  In 
all sixty cases, we reject the null hypothesis for depths.  The boldface stocks are those for which the Johansen test statistics in Table 3 indicate two cointegrating vectors 
and therefore one common trend.  The factor weights and tests for the second common trend for the non-boldface stocks are available from the authors.   
 
 1995  1998
Stock Symbol  Spread Ask size          Bid size           Spread Ask size          Bid size 
AA 
ALD 
AXP 
BA 
CAT 
CHV 
DD 
DIS 
EK 
GE 
GM 
GT 
HWP 
IBM 
IP 
JNJ 
JPM 
KO 
MMM 
MO 
MRK 
MCD 
PG 
S 
T 
TRV 
UK 
UTX 
WMT 
XON 

0.523 
0.475 

    0.568** 
    0.522** 

0.532 
0.530 
0.565 
0.514 

    0.548** 
    0.503** 

0.461 
0.552 
0.482 
0.419 

    0.532** 
0.496 
0.513 
0.542 
0.516 

    0.587** 
    0.505** 

0.537 
0.518 
0.477 
0.491 
0.498 
0.499 
0.482 
0.557 

    0.518** 

0.234** 
0.274** 
0.213** 
0.200** 
0.220** 
0.234** 
0.211** 
0.230** 
0.218** 
0.238** 
0.261** 
0.220** 
0.265** 
0.268** 
0.222** 
0.248** 
0.246** 
0.208** 
0.252** 
0.186** 
0.232** 
0.228** 
0.234** 
0.253** 
0.240** 
0.264** 
0.247** 
0.250** 
0.220** 
0.238** 

0.242** 
0.251** 
0.219** 
0.278** 
0.246** 
0.236** 
0.229** 
0.236** 
0.234** 
0.259** 
0.278** 
0.228** 
0.263** 
0.313** 
0.246** 
0.246** 
0.244** 
0.250** 
0.232** 
0.227** 
0.263** 
0.235** 
0.248** 
0.270** 
0.268** 
0.238** 
0.254** 
0.268** 
0.223** 
0.244** 

          0.520 
          0.490  
          0.522 
          0.535 
          0.520 
          0.517  
          0.550 
          0.484 
          0.550 
          0.547  
          0.446 
           n.a. 
          0.541 
          0.486  
          0.515 
          0.511 
          0.509 
          0.524  
          0.512 
            n.a. 
          0.469 
          0.532  
          0.538 
          0.556 
          0.500 
          0.479  
          0.429 
          0.483 
          0.589** 
            n.a. 

0.252** 
0.284** 
0.252** 
0.226** 
0.221** 
0.259** 
0.236** 
0.242** 
0.206** 
0.208** 
0.239** 

n.a. 
0.212** 
0.252** 
0.262** 
0.259** 
0.255** 
0.224** 
0.231** 

n.a. 
0.261** 
0.220** 
0.230** 
0.206** 
0.233** 
0.224** 
0.294** 
0.271** 
0.201** 

n.a. 

0.228** 
0.226** 
0.226** 
0.229** 
0.229** 
0.224** 
0.214** 
0.274** 
0.244** 
0.245** 
0.315** 

n.a. 
0.247** 
0.272** 
0.223** 
0.230** 
0.236** 
0.252** 
0.257** 

n.a. 
0.270** 
0.258** 
0.232** 
0.248** 
0.267** 
0.227** 
0.277** 
0.246** 
0.210** 

n.a. 
Mean 0.5154          0.2351           0.2489           0.5131          0.2393          0.2447 
**Significant at the 0.01 level.       
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Table 5.  Test of the null hypothesis that no information discovery occurs in depths.   
Using the Gonzalo and Granger (1995) QGG statistic, we test the null hypothesis that the common factor weight 
for spreads is 1.0 and that the common factor weights for the two depths are both 0.0.  The test statistic is 
distributed chi-squared with two degrees of freedom.  We reject the null hypothesis at 99% in 58 of the 60 sixty 
cases. 
  

1995 
 

1998 

 
Stock  
 

 
χ2 

    
p-value 

 

 
χ2 p-value 

 
AA 
ALD 
AXP 
BA 
CAT 
CHV 
DD 
DIS 
EK 
GE 
GM 
GT 
HWP 
IBM 
IP 
JNJ 
JPM 
KO 
MMM 
MO 
MRK 
MCD 
PG 
S 
T 
TRV 
UK 
UTX 
WMT 
XON 

12.61 
15.71 
18.96 
14.97 
13.85 
15.80 
15.03 
15.71 
15.11 
17.56 
18.99 
13.74 
12.71 
15.87 
16.40 
17.89 
14.94 
17.50 
15.70 
15.75 
18.84 
16.97 
13.71 
17.71 
17.97 
15.15 
14.05 
12.62 
14.29 
18.04 

  
 
 
 
 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

7.29 
8.93 
9.27 
9.95 
8.73 

10.59 
9.41 
6.60 
9.77 
9.61 

11.33 
n.a. 

9.38 
5.48 
8.77 

11.61 
5.39 

10.73 
6.78 
n.a. 

8.18 
11.98 
8.05 
9.61 

10.51 
8.58 

10.21 
7.11 

12.67 
n.a. 

  0.01
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
n.a. 

0.01 
0.02 
0.01 
0.01 
0.02 
0.01 
0.01 
n.a. 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
n.a. 
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Table 6.  Error-correction models.  For each series in the three-variable information structure, we present Seemingly 
Unrelated Regression (SUR) estimates of the error correction model for log changes.  In each case, the error-correction term z  
specified as - (Spread + AskSize - BidSize) has the expected sign and is statistically significant at the 0.05 level (signified by a 
single-asterisk) 

PANEL A 
      IBM 1995 

              VECTOR ERROR CORRECTION MODEL           

∆SPREADS ∆ASKSIZE ∆BIDSIZE 
Constant 
∆SPREADS (t-1) 
∆SPREADS (t-2) 
∆SPREADS (t-3) 
∆SPREADS (t-4) 
∆SPREADS (t-5) 
∆SPREADS (t-6) 
∆ASKSIZE (t-1) 
∆ASKSIZE (t-2) 
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3) 
∆BIDSIZE (t-4) 
∆BIDSIZE (t-5) 
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(T-1) 

-0.699  (-90.85)* 

-0.103  (-14.96)* 
-0.115  (-17.95)* 
-0.105  (-17.84)* 
-0.087  (-16.36)* 
-0.062  (-13.65)* 
-0.035  (-9.47)* 
0.015   (8.27)* 
0.018  (-1.31) 
0.015  ( 8.35)* 
0.016   (9.49)* 
0.011   (6.74)* 
0.006   (4.36)* 
0.021 (10.52)* 
0.023   (11.64)* 
0.022   (11.37)* 
0.019  (10.15)* 
0.016  (8.97)* 
0.010  (6.13)* 
 

61.2 (91.97)* 
1.38 (3.38)* 
 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(T-1) 

-0.645 (-36.35)* 

0.226 (14.24)* 
0.138  (-9.3)* 
0.111  (-8.12)* 
0.087  (-7.16)* 
0.061  (-5.78)* 
0.047   (5.47)* 
-0.207  (-46.96)* 
-0.138   (9.3)* 
-0.116  (-27.29) 
-0.086  (-21.27)* 
-0.063   (16.25)* 
-0.038   (-10.75)* 
-0.115   (24.72)* 
-0.075 (-16.15)* 
-0.054   (-11.94)* 
-0.040   (-9.09)* 
-0.033  (-8.07)* 
-0.027  (-7.00)* 
 

 62.0 (40.35)* 
-54.1 (-57.22)* 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6)
 
Z1(t-1) 
Z2(T-1) 

-0.664 (-40.31)* 
0.248 (16.86)* 
0.165 (12.01)* 
0.122 (9.64)* 
0.096 (8.46)* 
0.069 (7.03)* 
0.048 ((6.02)* 
-0.104 (-25.60)* 
-0.072 (-17.95)* 
-0.057 (-14.57)* 
-0.042 (-11.18)* 
-0.033 (-9.21)* 
-0.023 (-7.15)* 
 -0.234 (54.13)* 
-0.165 (-38.4)* 
-0.123 (-29.25)* 
-0.097 (-23.83)* 
-0.069 (-17.89)* 
-0.041 (-11.65)* 
 
53.59 (37.58)* 
48.07 (54.76)* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 

0.393 
2592* 
61.6* 
23.2* 
35.1* 
4231* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.235 
1231* 
37.9* 
380* 
104* 
2488* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.223 
1150* 
50.92* 
113.75* 
510.30* 
2174* 
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Table 6   PANEL B 
      IBM 1998 

              VECTOR ERROR CORRECTION MODEL           

∆SPREADS ∆ASKSIZE ∆BIDSIZE 
Constant 
∆SPREADS (t-1) 
∆SPREADS (t-2) 
∆SPREADS (t-3) 
∆SPREADS (t-4) 
∆SPREADS (t-5) 
∆SPREADS (t-6) 
∆ASKSIZE (t-1) 
∆ASKSIZE (t-2) 
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3) 
∆BIDSIZE (t-4) 
∆BIDSIZE (t-5) 
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(T-1) 

-0.363  (-68.10)* 

-0.272  (-52.60)* 
-0.174  (-34.61)* 
-0.134  (-27.71)* 
-0.098  (-21.60)* 
-0.071  (-17.07)* 
-0.045  (-12.74)* 
0.017   (7.80)* 
0.016  (-7.44)* 
0.014  (6.87)* 
0.007  (3.72) 
0.010  (5.18)* 
0.005  (3.07) 
0.022 (10.15)* 
0.017 (7.84)* 
0.014 (6.56)* 
0.010 (5.17)* 
0.009 (4.81)* 
0.009 (5.17)* 
 

28.7 (70.68)* 
-1.20 (-2.95) 
 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(T-1) 

-0.309 (-29.49)* 

0.099 (9.82)* 
0.061 (-6.15)* 
0.052 (-5.48)* 
0.046 (-5.18)* 
0.046 (-5.65)* 
0.030 (4.36)* 
-0.213 (-48.85)* 
-0.153 (-35.57)* 
-0.110 (-26.25)* 
-0.086 (-21.27)* 
-0.061 (16.04)* 
-0.040 (-11.55)* 
-0.079 (-18.17)* 
-0.060 (-14.04)* 
-0.053 (-12.68)* 
-0.048 (-11.95)* 
-0.043 (-11.25)* 
-0.026  (-7.19)* 
 

23.9 (29.96)* 
-43.2 (-54.04)* 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6)
 
Z1(t-1) 
Z2(T-1) 

-0.372 (-36.56)* 
0.107 (10.91)* 
0.078 (8.13)* 
0.055 (6.05)* 
0.055 (6.37)* 
0.047 (5.93)* 
0.035 (5.24)* 
-0.062 (-14.73)* 
-0.049 (-11.87)* 
-0.043 (-10.69)* 
-0.033 (-8.43)* 
-0.064 (-17.07)* 
-0.042 (-11.87)* 
-0.172 (40.70)* 
-0.135 (-32.44)* 
-0.108 (-26.52)* 
-0.085 (-21.54)* 
-0.064 (-17.07)* 
-0.042 (-11.87)* 
 
29.9 (38.59)* 
39.0 (50.31)* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 

0.2924 
1652* 
465* 
14.5* 
20.4* 
2502* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.1953 
970* 
17.5* 
415* 
68.1* 
1908* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.1768 
858.5* 
21.4* 
41.4* 
317* 
2009* 

 
 
 
 
 

 37



 
Table 7.  Unrestricted VAR.  For each series in the three-variable information structure, we present SUR estimates of the 
vector autoregressions (VAR) for log changes. In each equation, this misspecification results in sign switches on several lagged 
variables and a substantially reduced R2

 relative to the correct specification of this model as a VECM (Table 6). 
 

 
      IBM 1995 

              VECTOR AUTOREGRESSIONS           

∆SPREADS ∆ASKSIZE ∆BIDSIZE 
Constant 
∆SPREADS (t-1) 
∆SPREADS (t-2) 
∆SPREADS (t-3) 
∆SPREADS (t-4) 
∆SPREADS (t-5) 
∆SPREADS (t-6) 
∆ASKSIZE (t-1) 
∆ASKSIZE (t-2) 
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3) 
∆BIDSIZE (t-4) 
∆BIDSIZE (t-5) 
∆BIDSIZE (t-6) 

6.16E−7 (0.00) 

-0.647 (-174.77)* 
-0.576  (-134.97)* 
-0.477 (-104.76)* 
-0.368 (-80.69)* 
-0.255 (-59.30)* 
-0.141 (-37.80)* 
-0.022 (-13.94)* 
-0.012 (-7.12)* 
-0.008 (-4.89)* 
-5.03E−4 (-0.29) 
1.61E−4 (0.09) 
0.002 (1.20) 
-0.027 (1-15.83)* 
-0.016 (-8.59)* 
-0.009 (-4.72)* 
-0.004 (-2.33)* 
-6.58E−5 (0.04) 
0.001 (0.90) 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6) 
 

2.47E−5 (0.01) 

-0.317 (-37.86)* 
-0.321 (-33.26)* 
-0.259 (-25.22)* 
-0.193 (-18.70)* 
-0.130 (-13.40)* 
-0.057 (-6.84)* 
-0.389 (-107.09)* 
-0.292 (-75.76)* 
-0.243 (-61.85)* 
-0.187 (-47.65)* 
-0.138 (-35.90)* 
-0.086 (-23.88)* 
-0.021 (-5.47)* 
0.007 (1.86) 
0.016 (3.88)* 
0.019 (4.46)* 
0.012 (3.06) 
0.006 (1.70) 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6)

6.06E−6 (0.00) 
-0.234 (-30.23)* 
-0.242 (-27.21)* 
-0.207 (-21.76)* 
-0.153 (-16.09)* 
-0.101 (-11.32)* 
-0.046 (-5.93)* 
-0.017 (-5.07)* 
0.004 (1.29) 
0.008 (-2.39) 
0.012 (3.43) 
0.010 (2.92) 
0.008 (2.44) 
-0.397 (-109.84)* 
-0.303 (-78.75)* 
-0.237 (-60.28)* 
-0.188 (-47.83)* 
-0.137 (-35.64)* 
-0.085 (-23.61)*  

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 

0.329 
2180* 
5649* 
37.1* 
45.7* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
 

0.187 
1027* 
289.3* 
2309* 
13.2* 

R2 
F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
 

0.181 
983* 
189.9* 
9.8* 
2402* 

*Significant at 0.05 
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APPENDIX 

 
 
Estimates and tests of cointegrating vectors involving bid and ask quotes and bid and ask depths.  For each Dow 30 stock, we estimate the 
cointegrating vectors for the four-variable model of the two price quotes and the two depths at the quotes and present results of the trace test of r = 0 against 
r ≥ 1,  r = 1 against r ≥ 2, and r = 2 against r ≥ 3.  The 90% critical values for rejecting the null hypothesis of no cointegration are 45.24, 28.44, and 15.58, 
respectively (Enders, 1995). 
 
Firm symbol AA95 ALD95 AXP95 BA95       CAT95 CHV95 DD95 DIS95 EK95 GE95
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
36.05 
14.36 
8.42 

 
38.46 
14.51 
8.63 

 
43.14 
16.53 
8.48 

 
37.84 
13.73 
8.95 

 
36.73 
14.78 
7.72 

 
38.45 
14.55 
7.11 

 
36.06 
14.18 
5.54 

 
36.06 
14.18 
5.54 

 
35.84 
12.96 
6.89 

 
40.28 
14.10 
7.57 

Firm symbol GM95 GT95 HWP95 IBM95 IP95 JNJ95 JPM95 KO95 MMM95 MO95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
42.82 
14.03 
8.51 

 
34.50 
12.72 
7.19 

 
31.73 
11.96 
8.33 

 
39.30 
16.46 
9.39 

 
32.27 
11.61 

     7.08 

 
38.82 
13.59 
7.21 

 
37.02 
13.54 
8.12 

 
38.72 
12.39 
7.46 

 
38.09 
14.39 
7.15 

 
36.74 
13.85 
7.13 

Firm Symbol MRK95 MCD95 PG95 S95 T95 TRV95 UK95 UTX95 WMT95 XON95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
  45.62* 
17.05 
9.78 

 
43.77 
16.38 
9.47 

 
35.43 
13.48 
7.31 

 
42.30 
15.46 
6.80 

 
  45.35* 
16.90 
8.13 

 
40.53 
13.99 
9.14 

 
35.17 
13.21 
8.95 

 
31.65 
12.23 
6.22 

 
45.11 
17.32 
11.02 

 
39.77 
13.18 
6.03 

Firm symbol AA98 ALD98 AXP98 BA98       CAT98 CHV98 DD98 DIS98 EK98 GE98
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
25.58 
10.24 
7.43 

 
25.99 
10.79 
8.63 

 
28.41 
12.17 
7.99 

 
28.19 
10.95 
7.11 

 
28.10 
11.24 
6.40 

 
29.52 
12.29 
8.56 

 
29.80 
13.10 
7.80 

 
30.21 
13.7 
9.29 

 
27.67 
11.24 
6.78 

 
24.95 
8.75 
5.54 

Firm symbol GM98 GT98 HWP98 IBM98 IP98 JNJ98 JPM98 KO98 MMM98 MO98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
28.98 
10.34 
7.23 

 
24.19 
10.23 
7.51 

 
28.29 
11.81 
7.81 

 
33.66 
16.59 
11.94 

 
28.25 
11.87 
7.62 

 
30.79 
11.53 
7.13 

 
30.37 
12.80 
9.38 

 
27.09 
9.66 
5.73 

 
26.16 
10.08 
8.59 

 
20.93 
8.45 
5.25 

Firm Symbol MRK98 MCD98 PG98 S98 T98 TRV98 UK98 UTX98 WMT98 XON98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
29.08 
12.84 
8.04 

 
27.33 
10.75 
7.11 

 
25.85 
9.91 
6.37 

 
27.33 
10.75 
7.11 

 
31.12 
12.12 
7.65 

 
29.22 
12.93 
8.74 

 
26.67 
9.71 
5.43 

 
28.27 
11.50 
8.33 

 
29.11 
10.34 
5.89 

 
29.46 
9.04 
7.23 
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