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Abstract

Recently, the continuous double auction, i.e. the trading mechanism used in the majority
of the financial markets, is the subject of an extensive study. In the present paper, a model of
the continuous double auction with the completely random flow of the limit orders is studied.
The main result of the paper is an approximate formula for the distribution of the market price
and the traded volume at the time τ given the information available at t < τ .1

Keywords: limit order markets, continuous double auction, price and volume, forecasting,
market microstructure

AMS classification: 91B26,
JEL classification: C51,G10

1 Introduction

In the present paper, the trading mechanism with the following rules is studied:

1. At any time instant, each agent may place a buy (limit) order or a sell (limit) order, each
limit order containing a limit price and an order size (i.e. the required/offered amount of the
commodity). For simplicity, we assume the order size to be unit.2

2. If a newly arrived limit order matches with the best waiting limit order of the opposite type
(i.e. the one with the most favorable limit price, let us call it best counterpart) then a trade
is made for the limit price of the best counterpart (if there is more then one counterpart
with the best limit price then the oldest one, i.e. the one with the earliest placement date, is
executed).

3. If a newly arrived limit order finds no counterpart then it remains waiting until it is executed
or canceled by its submitter.

The trading mechanism, described here, is usually called continuous double auction (CDA), the list
of all the currently waiting buy orders is called buy limit order book, the highest limit price of the
orders contained in the buy limit order book is called (best) bid, the list of all the currently waiting
sell orders is called sell limit order book and the lowest limit price of the orders contained in the
sell limit order book is called (best) ask.

In reality, many markets possess the structure described above: many financial markets, first
of all, various marketplaces, real estate markets, trading made by means of the advertising in
newspapers etc.

In the present paper, the complete randomness of the agents’ actions is assumed. In particular,
the times of the arrivals of the limit orders are assumed to follow a Poisson process, their limit
prices are regarded as i.i.d. random variables independent of the arrival times and the lifetimes of
the limit orders are supposed to be exponentially distributed independent both of the arrival times
and of the limit prices.

The model introduced by the present paper is a generalization of the model of Smith et al.
[2003]; the generalizations consist in possibly non-uniform density of the limit prices and in possibly
continuous price space (the lack of ticks). The main result of the present paper is an approximate
formula for the future distribution of the market price and of the total traded volume.

The paper is organized as follows: in Section 2, the model of the CDA with complete randomness
is defined, in Section 3, the forecast of the price and the volume is constructed. Section 4 concludes
the paper.

1This work was supported by grant no. 402/04/1294 and by grant no. 402/03/H057 of the Czech Science
Foundation and by grant no. 454/2004/AEK/FSV of the Grant Agency of the Charles University.

2Cf. Smith et al. [2003] for a partial justification of the assumption of the unit order size.
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2 Continuous Double Auction with Complete Randomness

2.1 Definitions

Denote τ1
b? < τ2

b? < . . . the times of the arrivals of the buy orders. For each i ∈ N, denote xi the
limit price of the i-th buy order3 and denote τ i

b† the time at which the i-th buy order is canceled
provided that it is not executed until τ i

b† (τ i
b† will be called cancelation time). Analogously, denote

τ1
s? < τ2

s? < . . . the arrival times of the sell orders, yi the limit price of the i-th sell order and τ i
s†

its cancelation time for each i ∈ N.
According to the informal description of the CDA, given in Introduction, a buy order may find

itself in four possible states: prenatal (not yet arrived), waiting, executed and canceled.
Denote Xi

t , Y
i
t ∈ {prenatal, waiting, executed, canceled}, t ∈ R+, the state of the i-th buy

order, sell order respectively, at the time t for each i ∈ N, t ∈ R+. Further, denote NR the space of
all the counting measures4 on (R,B(R)). The buy limit order book may be mathematically described
as

Bt ∈ NR, Bt(A)
4
= |{i : xi ∈ A,Xi

t = waiting}|, A ∈ B(R)

(the symbol | • | denotes the number of elements of the set, B(Ξ) stands for the Borel σ-algebra of
a metric space Ξ). Symmetrically, we describe the sell limit order book as

St ∈ NR, St(A)
4
= |{i : yi ∈ A, Y i

t = waiting}|, A ∈ B(R).

Finally, define the i-th (best) bid as bi
t = max{p ∈ R : Bt[p,∞) ≥ i} and the i-th (best) ask

as ai
t = min{p ∈ R : St(−∞, p] ≥ i} for each i ∈ N (it is understood that max ∅ = −∞ and

min ∅ = ∞).

2.2 The Dynamics of the System

Assume, throughout the present subsection, that no pair of the events (i.e. the arrivals of the orders
and their cancelations) happens at the same time. According to the informal definition, the process
(X1

t , Y 1
t , X2

t , Y 2
t , . . . ) evolves according to the following rules:

• The i-th buy order is in the state prenatal at the time 0 for each i ∈ N.

• For each i ∈ N, Xi
t may jump only at the times τ i

b?, τ
i
b†, τ1

s?, τ
2
s?, . . . as follows:

– When t = τ i
b?: If xi < a1

t− then Xi
t = waiting, otherwise Xi

t = executed.

– When t = τ i
b†: If Xi

t− = waiting then Xi
t = canceled, otherwise Xi

t = Xi
t− (= executed).

– When t = τ j
s? for some j ∈ N: If the i-th buy order is currently the best buy order

(i.e. the oldest of all the waiting buy orders with the limit price b1
t−) and xj ≤ b1

t− then
Xi

t = executed, otherwise Xi
t = Xi

t−.

• The symmetric rules hold for the processes Y i, i ∈ N.

2.3 The Market Price and the Traded Volume

We naturally define the market price pt and the traded volume qt as follows:

• p0 = undefined,5 q0 = 0.
3i.e. the one with the arrival time τ i

b?
4The measure is counting if its values on the measurable sets are nonnegative integers.

5We take pt as a process taking values in the space Rundefined 4= R ∪ {undefined}.
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• The process (pt, qt) is piecewise constant right continuous and it they may jump only at the
times τ1

b?, τ1
s?, τ2

b?, τ2
s?, . . . as follows:

– When t = τ i
b? for some i ∈ N: If the newly buy arrived order was executed at t then

pt = a1
t− and qt = qt− + 1, otherwise (pt, qt) = (pt−, qt−).

– When t = τ i
s? for some i ∈ N: If the newly arrived sell order was executed at t then

pt = b1
t− and qt = qt− + 1, otherwise (pt, qt) = (pt−, qt−).

2.4 The Stochastic Properties of the Order Flow

Assume that there exist a probability measure π and positive constants u, c ∈ R+ such that xi ∼ π,
∆τ i

b?

4
= (τ i

b? − τ i−1
b? ) ∼ Exp(u) and ∆τ i

b†
4
= (τ i

b† − τ i
b?) ∼ Exp(c) for each i ∈ N (the symbol Exp(m)

denotes the exponential distribution with mean 1/m).
Analogously, suppose that there exist a probability measure ρ and positive constants v, d ∈ R+

such that yi ∼ ρ, ∆τ i
s?

4
= (τ i

s? − τ i−1
s? ) ∼ Exp(v) and ∆τ i

s†
4
= (τ i

s† − τ i
s?) ∼ Exp(d) for each i ∈ N.

Finally, assume that ∆τ1
b?, ∆τ1

b†, x
1, ∆τ1

s?, ∆τ1
s†, y

1,∆τ2
b?,∆τ2

b†, x
2,∆τ2

s?,∆τ2
s†, y

2, . . . are mutu-
ally independent.

Since both the arrivals of the buy orders and the arrivals and the sell orders follow the time-
spatial Poisson processes [Šmı́d, 2005a] and since, in both the cases, the cancelation times are
independent on the arrivals, we call our setting complete random arrival of the orders.

Denote (τ i)∞i=1 the increasing sequence of the elements of the set {τ i
b? : i ∈ N} ∪ {τ i

b† : i ∈
N} ∪ {τ i

s? : i ∈ N} ∪ {τ i
s† : i ∈ N} and put τ0 = 0. From the absolute continuity of the exponential

distribution it follows that the times τ0, τ1, . . . mutually differ almost sure hence the dynamics of
our system is well defined by subsection 2.2.

3 Forecasts of the Market Price and the Traded Volume
As it was already mentioned, our aim is a forecast of (pτ , qτ ) given the state of the system up to

the time t < τ . Since Ξt
4
= (Bt, St, pt, qt) is a continuous time Markov chain (Appendix, Theorem

1.), the forecast can be based solely on the state of the system at the time t. Moreover, when we
modify our definition so that Ξ0 may take other values then (0, 0, undefined, 0), we may assume
that t = 0.

Fix τ ≥ 0 and Ξ0 = (B0, S0, p0, q0) ∈ NR×NR×Rundefined×Z+, Rundefined 4
= R∪{undefined}.

To construct the forecast for the time τ , we shall use the usual technique, i.e. the expansion
according to the number of the events:

P((pτ , qτ ) ∈ A) =
∞∑

k=0

P((pτ , qτ ) ∈ A|nτ = k)P(nτ = k) (1)

where nτ is the number of the jumps of Ξ until τ . However, since the inter-event times of the process
Ξ are dependent on the state of the process, the evaluation of (1) could be quite complicated. Hence,
we have to modify the process Ξ so that its inter-event times are i.i.d. first.

3.1 Uniformization

Let N ∈ N be a sufficiently large constant and let (θi
v)∞i=1 be i.i.d. exponential variables with mean

one independent of Ξ. Let v be a counting process6 starting from zero. Denote (τ̄ i)∞i=1 the times

of the jumps of the process Ξ̄
4
= (Ξ, v) = (B,S, p, q, v) defined by the following rules:

6i.e. piecewise constant right continuous with unit increments
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• τ̄0 = 0,

• if there is no event of Ξ between τ̄ i−1 and τ̄ i−1 + ∆τ i
v, where ∆τ i

v = [(N − |Bτ̄ i−1 |)c + (N −
|Sτ̄ i−1 |)d]−1θi

v, then let the process v jump at τ̄ i−1 + ∆τ i
v, otherwise leave v unchanged at

τ̄ i−1 + ∆τ i
v.

It could be shown (Appendix, Theorem 2) that Ξ̄t is a Markov chain with

∆τ̄ i 4= τ̄ i − τ̄ i−1 ∼ Exp(r̄), r̄ = u + v + N(c + d), for each i ≤ Ñ (2)

where Ñ = Ñ(N)
4
= N −max(|B0|, |S0|) + 1 such that

(∆τ̄ i)Ñ
i=1 are i.i.d and independent of Ξ̄(k) = (B(k), S(k), p(k), q(k), v(k))

4
= Ξ̄τ̄k .7 (3)

3.2 The Expansion and a Truncation

Denote n̄τ the number of the jumps of Ξ̄ up to the time τ and let A ∈ Rundefined × Z+. Clearly,
we may write

P((pτ , qτ ) ∈ A) =
∞∑

k=0

P((p(k), q(k)) ∈ A|n̄τ = k)P(n̄τ = k) = UA,Ñ + η1

where

UA,Ñ =
Ñ∑

k=0

P((p(k), q(k)) ∈ A|n̄τ = k)P(n̄τ = k)
(2),(3)

=
Ñ∑

k=0

P((p(k), q(k)) ∈ A)P(Poisson(r̄) = k)

and where

η1 = η1(Ñ) ≤
∞∑

k=Ñ+1

P(n̄τ = k) = 1−
Ñ∑

k=1

P(n̄τ = k) = P(Poisson(r̄) ≥ Ñ + 1).

It is straightforward that, to compute P((pτ , qτ ) ∈ A) with a required accuracy, it suffices to choose
N sufficiently large and to evaluate UA,Ñ . We deal with the latter task in the next subsection.

3.3 Forecasting of the Embedded Chain

Fix k ≤ Ñ all through the present subsection. It follows from the basic probability theory that,
to specify the distribution of (p(k), q(k)), it suffices to evaluate P((p(k), q(k)) ∈ A) for all the sets
A = I × {0, 1, . . . , q̂} where q̂ ∈ N and where I = (−∞, p̂) for some p̂ ∈ R.

Hence, fix A = I × {0, 1, . . . , q̂}. Further, choose a disjoint partition M = {M1,M2, . . . ,Mm}
of R containing all the points of B(0) and all the points of S(0)

8 such that I = M1∪M2∪ · · ·∪Mm′

for some m′ ≤ m. Clearly,

P((p(k), q(k)) ∈ A) = P((φ(k), q(k)) ∈ B)

where B = B(A)
4
= {1, 2, . . . , m′} × {1, 2, . . . , q̂} and

φ(k) =





0 if p(k) = undefined

1 if p(k) ∈ M1

. . . .

7The process (Ξ̄(k))
∞
k=1 is usually called embedded chain).

8i.e. M⊇ {{y} : B(0){y} > 0 ∨ S(0){y} > 0}
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Further, define the random elements e(i) ∈ E
4
= {v, b1

?, s
1
?, b

1
†, s

1
†, b

2
?, s

2
?, b

2
†, s

2
†, . . . , b

m
? , sm

? , bm
† , sm

† },
i = 1, 2, . . . , k, such that e(i) = v if a void event happened, i.e. v was incremented, at the “time” i
and, for each 1 ≤ j ≤ m,

e(i) =





bj
? if a new buy order whose limit price lies in M j arrived at i

sj
? if a new sell order whose limit price lies in M j arrived at i

bj
† if one of the waiting buy orders whose limit price lies in M j was canceled at i

sj
† if one of the waiting sell orders whose limit price lies in M j was canceled at i.

After denoting e(1,k)
4
= (e(1), e(2), . . . , e(k)) and putting Ek 4

= ⊗k
ν=1E

ν , we may write

P((φ(k), q(k)) ∈ B) =
∑

ε∈Ek

P((φ(k), q(k)) ∈ B|e(1,k) = ε)P(e(1,k) = ε).

Unfortunately, some of the summands of the latter formula are not easy to compute: Suppose,
for instance, that k = 4, p(0) = b1

(0), M = {(−∞, b1
(0)), {b1

(0)}, (b1
(0), a

1
(0)), {a1

(0)}, (a1
(0),∞)} and

ε = (b3
?, s

3
?, b

3
?, s

3
?). Here, P(φ(k) = 3|e(1,k) = ε) = P(at least one pair of the new orders matches)

which is not trivial but computable. However, after we add s3
† or b3

† into e(1,k), the evaluation starts
to lead to untractable combinatorial problems.

Fortunately, by the refinement of the partition M, the total probability of the “scenarios” e(1,k)

for which the conditional distribution is problematic to compute may be arbitrarily decreased:
Denote βj

ε = |{i ∈ N : i ≤ k : εi = bj
?}| and σj

ε = |{i ∈ N : i ≤ k : εi = sj
?}| for each 1 ≤ j ≤ m (εi

denotes the i-th component of ε) and put

Ẽk 4
= {ε ∈ Ek : βj

ε = 0 ∨ σj
ε = 0 for each j ∈ C}, C

4
= {1 ≤ j ≤ m : |M j | > 1}.

Clearly,
P((φ(k), q(k)) ∈ B) =

∑

ε∈Ẽk

P((φ(k), q(k)) ∈ B|e(1,k) = ε)P(e(1,k) = ε) + ηk
2 (4)

where ηk
2 = ηk

2 (M) ≤ P(e(1,k) ∈ Ek − Ẽk). It is relatively easy to compute both the conditional and
the unconditional probabilities in (4): For any real measure µ, denote µM the restriction of µ to
σ(M). Since e(i) is conditionally independent of e(1,i−1) given (BM

(i−1), S
M
(i−1)) for each 1 ≤ i ≤ k,9

since

P(e(i) = ε|BM
(i−1) = B, SM(i−1) = S) = γ(ε,B, S), γ(ε,B, S) =





uπ(Mj)
r̄ if ε = bj

? for some j
vρ(Mj)

r̄ if ε = sj
? for some j

cB(Mj)
r̄ if ε = bj

† for some j
dS(Mj)

r̄ if ε = sj
† for some j

(N−|B|)c+(N−|S|)d
r̄ if ε = v

for each pair of counting measures B, S defined on (R, σ(M)), each ε ∈ E and each i ≤ k and since
(by Appendix, Theorem 3) there exist (easily computable) mappings G1, G2, . . . , Gk−1 such that,
on the set [e(1,k) ∈ Ẽk], (BM

(ν), S
M
(ν)) = Gν(e(1,ν)) for each 1 ≤ ν < k, we have

P(e(i) = ε|e(1,i−1)) = E
[
P(e(i) = ε|BM

(i−1), S
M
(i−1), e(1,i−1))

∣∣∣ e(1,i−1)

]

E
[
P(e(i) = ε|BM

(i−1), S
M
(i−1))

∣∣∣ e(1,i−1)

]
= P(e(i) = ε|BM

(i−1), S
M
(i−1))

9The conditional independence could be shown similarly to the proof of the Markov property of the embedded
chain.
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for each ε ∈ E (the last “=” follows from the fact that σ(BM
(i−1), S

M
(i−1)) ⊆ σ(e(1,i−1))) which yields

P(e(1,k) = ε) =
k∏

i=1

P(e(k) = εi|e(1) = ε1, . . . , e(i−1) = εi−1) =
k∏

i=1

γ(εi, Gi−1(ε1, . . . , εi−1))

(we take G0 = (BM
(0), S

M
(0))).

The conditional probabilities in (4) are also easy to compute provided that ε ∈ Ẽk: Since
(φ(k), q(k)) = F (e(1,k)) on the set [e(1,k) ∈ Ẽk] for some (easily computable) mapping F (Appendix,
Theorem 3), we have

P((φ(k), q(k)) ∈ B|e(1,k) = ε) = 1B(F (ε)).

It remains to show that ηk
2 may be made arbitrarily small by the refinement of M: Indeed,

P(e(1,k) ∈ Ek − Ẽk) = P(βj
e(1,k)

> 0 ∧ σj
e(1,k)

> 0 for some j ∈ C) ≤
∑

j∈C

ζj (5)

where

ζj =P(βj
e(1,k)

> 0 ∧ σj
e(1,k)

> 0) = 1− P(βj
e(1,k)

= 0)− P(σj
e(1,k)

= 0) + P(βj
e(1,k)

= 0, σj
e(1,k)

= 0)

=1− (1− µj)k − (1− νj)k + (1− (µj + νj))k, µj = uπ(M j)/r̄, νj = vρ(M j)/r̄.

Since, by an easy calculation,

ζj =
k∑

i=2

(
k

i

)
(−1)i[(µj +νj)i−(µi

j +νi
j)] ≤

k∑

i=2

(
k

i

)
[2maxj∈C(µj∨νj)]i = o(maxj∈C(µj∨νj)) (6)

as maxj∈C(µj ∨ νj) → 0 and since the partition M may be constructed so that

maxj∈C(µj ∨ νj) ≤ 24max(u, v)
r̄(m− 2(|B(0)|+ |S(0)|)− 1)

= O(m−1)

as m →∞ for each j ∈ C (Appendix, Theorem 4 ), we get from (5) and (6) that

P(e(1,k) ∈ Ek − Ẽk) ≤ m · o(O(m−1)) =
O(m−1)

m−1

o(O(m−1))
O(m−1)

m→∞−→ 0

given a suitable choice of the partitions.

3.4 The Forecast

By summarizing the previous paragraphs, we are getting

P((pτ , qτ ) ∈ A) = er̄
Ñ∑

k=0

r̄k

k!

∑

ε∈Ẽk

1B(F (ε))
k∏

i=1

Γi(ε1, . . . , εi) + η1 + η2

for some easily computable mappings F, Γ1, . . . , Γk. Moreover, η1 may be made arbitrarily small
by increasing Ñ while η2

4
=

∑Ñ
k=1 ηk

2 may be arbitrarily decreased by a suitable choice of partition
M.
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3.5 Possible Further Refinements

Let us mention two ways of reducing the (possibly very large) computational complexity of the
algorithm designed in the previous paragraphs.

First, not all the conditional distributions of (p(k), q(k)) given e(1,k) = ε, ε ∈ Ek − Ẽk, are non-
computable. As it was already mentioned, some of the distributions corresponding to the scenarios
from Ek − Ẽk may be computed after a more detailed analysis, some of them are even Dirac: when
we modify our example (subsection 3.3) so that ε = (v, v, b5

?, s
5
?), then p(k) = 4 independently of the

limit prices of the new orders. Hence, we may increase the number of the scenarios we take into
account to decrease the errors ηk

2 .
Second, it follows from the definition of the CDA that the quantities p(i), q(i), bκ

(i), . . . , b1
(i), a1

(i),
. . . , aκ

(i), depend only on p(i−1), q(i−1), b
κ+1
(i−1), . . . , b

1
(i−1), a

1
(i−1), . . . , a

κ+1
(i−1, . . . and on independent

random variables for each i, κ ∈ N which implies that only the quantities

p(k−1), q(k−1), b
1
(k−1), a

1
(k−1), p(k−2), q(k−2), b

2
(k−2), b

1
(k−2), a

1
(k−2), a

2
(k−2), . . . , b

k
(0), . . . , a

k
(0)

are relevant for the distribution of p(k), q(k). Hence, to reduce the number of the branches of our
computation, we may accumulate the scenarios having equal impact on the relevant quantities.

4 Conclusion

In the present paper, a way of computing the forecasts of the market price and of the traded
volume in the model of continuous double auction with complete randomness was suggested. With
a “sufficiently efficient” computer, the “future” distribution of the forecasted quantities may be
evaluated with an arbitrarily accuracy.

Appendix

Assume, throughout the Appendix, that all the random elements are defined on an underlying
probability space (Ω,A,P).

Theorem 1 Ξt
4
= (Bt, St, pt, qt) is a continuous time Markov taking values in X 4

= NR × NR ×
Rundefined × Z+.

The proof of the Theorem is a bit tedious exercise in the conditional probability calculus. We refer
the reader to ?, especially sections 6.7. and 6.8. or ?, chp. 6, for more on conditioning. We will
work both with the conditional probabilities (expectations) defined as random variables [?, (6.7.1.),
(6.7.2.)] and with the conditional probabilities (expectations) given fixed value [?, (6.7.6.))]. The
following Lemma formulates some auxiliary results concerning conditioning, not explicitly listed in
the textbooks, which we will use later on.

Lemma 1 Assume that regular conditional probabilities exist on Ω. Let X,Y, Z be random elements
taking values in measurable spaces (X ,B), (Y, C) and (Z,D) respectively

(i) Let S1, S2, . . . be a partition of Ω such that Si ∈ C for each i ∈ N. Let ξ, ξ1, ξ2, . . . be
real random variables such that ξ|Si = ξi|Si for each i ∈ N and let Y1, Y2, . . . be random
elements taking values in (Y, C) such that Y |Si = Yi|Si and Si ∈ σ(Yi) for each i ∈ N. Then
E(ξ|Y ) =

∑
i∈N 1SiE(ξi|1Si , Yi).

(ii) For any A,B ∈ A it holds that P(A, B|Y = y) = P (A|1B = 1, Y = y)P(B|Y = y) for
PY -almost every each y ∈ Y.
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(iii) If X is independent of (Y,Z), then P(X > Y |Z) = P(X > Y ).

(iv) If X is independent of (Y,Z), then

P(X ∈ A, Y ∈ B|Z) = P(X ∈ A)P(Y ∈ B|Z)

(v) Let (X, Y ) be independent of Z, let f : X × Z → R be a measurable function and let g :
Y × Z → Γ be a measurable mapping taking values in a measurable space (Γ,G). Denote

φ(B, γ, z) = P(f(X, z) ∈ B|g(Y, z) = γ).

Then
P(f(X, Z) ∈ B|g(Y,Z) = γ, Z = z) = φ(B, γ, z)

for Pg(Y,Z),Z-almost every (γ, z) ∈ (Γ,Z).

Proof. (i) The assertion is a variant of the well known local property of conditional expectations
[?, Lemma 6.2].

Let C ∈ C. Denote A = Y −1(C). First, we show that A∩Si ∈ σ(1Si , Yi) for each i ∈ N: indeed,
A ∩ Si = {ω ∈ Si : Y (ω) ∈ C} = {ω ∈ Si : Yi(ω) ∈ C} = Y −1

i (C) ∩ Si ∈ σ(1Si , Yi).
Now,

∫

A

E(ξ|Y )dP =
∫

A

ξdP =
∑

i∈N

∫

A∩Si

ξdP =
∑

i∈N

∫

A∩Si

ξidP

A∩Si∈σ(1Si
,Yi)

=
∑

i∈N

∫

A∩Si

E(ξi|1Si , Yi)dP =
∫

A

(∑

i∈N
1SiE(ξi|1Si , Yi)

)
dP

which suffices to prove (i).
(ii) Let P y = P y(•, •) be the conditional distribution of 1A,1B given Y = y and let P y

1B
= P y

1B
(•) be

conditional distribution of 1B given Y = y (which is simultaneously the second marginal distribution
of P y). Clearly

P(A,B|Y = y) = P y(1, 1) =
∫

{1}
P y(1|b)dP y

1B
(b) = P y(1|1B = 1)P y

1B
(1)

= P(A|1B = 1, Y = y)P(B|Y = y)

(the latter “=” is easy to show using the definition of conditional probability given fixed value).
(iii) The assertion follows from ?, (6.8.14).
(iv) Let B ∈ B, C ∈ C and D ∈ σ(Z). Then

∫

D

P(X ∈ B, Y ∈ C|Z)dP =
∫

D

1C(Y )1B(X)dP =
∫

D∩Y −1(C)

1B(X)dP

=
∫

D∩Y −1(C)

P(X ∈ B|Y, Z)dP = P(X ∈ B)
∫

D∩Y −1(C)

dP

= P(X ∈ B)
∫

D

P(Y ∈ C|Z)dP =
∫

D

P(X ∈ B)P(Y ∈ C|Z)dP.

(v) We show that φ(•, γ, z) fulfils the definition of the conditional probability given fixed value (it
suffices to assume Ω = X × Y × Z for the sake of the proof): Let B ∈ B(R), let G ∈ G and let
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C ∈ D. Then
∫

G×C

φ(B, γ, z)Pg(Y,Z),Z(γ, z) =
∫

1G(γ)1C(z)φ(B, γ, z)dPg(Y,Z),Z(γ, z)

H-J (3.15.1)
=

∫
1G(g(y, z))1C(z)φ(B, g(y, z), z)dPY,Z(y, z)

H-J (4.5.2)
=

∫ (∫
1G(g(y, z))1C(z)φ(B, g(y, z), z)dPY (y)

)
dPZ(z)

H-J (3.15.1)
=

∫

C

(∫

G

φ(B, γ, z)dPg(Y,z)(γ)
)

dPZ(z)

H-J (6.7.6)
=

∫

C

(∫

{(y,z):g(y,z)∈G}
1B(f(x, z))dPX,Y (x, y)

)
dPZ(z)

=
∫ (∫

1C(z)1G(g(y, z))1B(f(x, z))dPX,Y (x, y)
)

dPZ(z)

H-J (4.5.2)
=

∫

{(x,y,z):x∈X ,z∈C,g(y,z)∈G}
1B(f(x, z))dPX,Y,Z(x, y, z)

=
∫

(γ,I)−1(G×C)

1B(f(x, z))dPX,Y,Z(x, y, z)

where I is the identity mapping, which suffices for (v) (H-J stands for ?).
¤
The following Lemma is the core of the proof of the Theorem. Before we formulate it, however, let
us agree that Z(i) will stand for Zτ i for any continuous time process Z.

Lemma 2 Denote jν
b the index of the ν-th best buy order waiting at the time τ i−1 and jν

s the index
of the ν-th best sell order waiting at the time τ i−1 (if two orders have identical limit prices then the
one with lesser index is better), define

ϕi =





−∞ if τ i = τ j
b? for some j ∈ N

∞ if τ i = τ j
s? for some j ∈ N

−1 if τ i = τ
j1
b

b†
1 if τ i = τ

j1
s

b†
−2 if τ i = τ

j2
b

b†
. . .

and
θi 4= γ(|B(i−1)|, |S(i−1)|)∆τ i, γ(b, s) = u + v + bc + bd

for each i ∈ Z+. Denote
Υ
4
= (x1, y1, x2, y2, . . . ).

Then
P(θi > t, ϕi = k|θi−1, ϕi−1, . . . , θ1, ϕ1, Υ) = exp{−t}α(|B(i−1)|, |S(i−1)|, k) (7)

for each i ∈ N where

α(b, s, k)
4
=





γ(b, s)−1u if k = −∞
γ(b, s)−1c if −b ≤ k ≤ −1
γ(b, s)−1d if 1 ≤ k ≤ s

γ(b, s)−1v if k = ∞
0 otherwise.
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Proof. We proceed as follows: We set Υ to be non-random, we enrich the conditioning σ-field and
we find a suitable partition of the probability space so that the conditional probability (7) will be
easy to evaluate on each of the partitioning sets. The formula (7) will then follow from the local
property (Lemma 1 (i)) and from Lemma 1 (v).

Denote
Ψt

4
= (pt, qt, X

1
t , Y 1

t , X2
t , Y 2

t , . . . ).

Clearly, Ξt may be devised from (Ψt, Υ), i.e. there exists a measurable mapping f such that
Ξt = f(Ψt, Υ) for each t ∈ R+

0 (the measurability may be easily proved) and, in particular,

Ξ(i) = f(Ψ(i), Υ). (8)

Further, introduce a random element

ηi ∈ E, E
4
= {b, s} × {?, †} × N, i ∈ N

where b, s, ?, † are some labels10 such that

ηi =





(b, ?, 1) when τ i = τ1
b?

(b, †, 1) when τ i = τ1
b†

(s, ?, 1) when τ i = τ1
s?

(s, †, 1) when τ i = τ1
b?

(b, ?, 2) when τ i = τ2
b?

. . .

for each i ∈ N.
It follows from our definitions (Subsections 2.2 and 2.3) that Ψ(i) may be devised only from

Ψ(i−1), ηi and Υ, i.e. there exists a (non-random measurable) mapping g such that

Ψ(i) = g(Ψ(i−1), η
i, Υ) (9)

for each i ∈ N. Further, when we denote

Ii = I(Ψ(i−1)) = {(b, ?, ki
b)} ∪ {(s, ?, ki

s)}
∪ {(b, †, ν) : Xν

(i−1) = waiting} ∪ {(s, †, ν) : Y ν
(i−1) = waiting} (10)

ki
b = min{ν : Xν

(i−1) = prenatal}, ki
s = min{ν : Y ν

(i−1) = prenatal},
it can be easily seen that ϕi may be devised only from ηi, Ii and Υ11, i.e. there exists a (non-random
measurable) mapping h such that

ϕi = h(ηi, Ii, Υ). (11)

Moreover, hIi,Υ)(•) 4= h(•, Ii, Υ) is bijection for each realization of Ii and Υ.12

When we summarize (9), (10) and (11), we are getting, by induction, that a (non-random
measurable) mappings hi and Hi exist for each i ∈ N such that

ϕi = hi(η1, . . . , ηi, Υ), (12)
10An orthodox mathematician may think that b = 0, s = 1, ? = 0, † = 1
11From ηi, we get the index and the type of the forthcoming event. If the event is a new buy/sell order, then

ϕi = −∞/ +∞. If the event is a cancelation of a buy/sell order then we determine ϕi by means of the list of all the
waiting buy/sell orders, obtained from Ii, and of the list of the limit prices, obtained from Υ.

12If ϕi = −∞/+∞ then ηi = (b, ?, ki
b)/(s, ?, ki

s) (we get ki
b/ki

s from Ii). If ϕi ∈ −N/N then ϕi uniquely determine

the index of the canceled order (we get it from from Ii and from Υ).
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and
Ψi = Hi(η1, . . . , ηi,Υ). (13)

From (12), it follows that, to prove (7), it suffices to show that

P(θi > t, ϕi = k|θi−1, ηi−1, . . . , θ1, η1,Υ) = exp{−t}α(|B(i−1)|, |S(i−1)|, k). (14)

Let us do it: When we denote T
4
= {τ1

b?, τ
1
b†, τ

1
s?, τ

1
s†, τ

2
b?, . . . } and index the set T naturally by the

elements of E, we may write, for each i ∈ N,

τ i = min
j∈Ii

T j , ηi = argmin
j∈Ii

T j . (15)

Moreover, when we fix ζ ⊂ E and i ∈ N and agree that T ζ = (T η)η∈ζ (similarly for the other
subsets of E), we are getting

τ j |[T ζ>τ i−1] = τ j
ζ |[T ζ>τ i−1], τ j

ζ = min
ν∈Ij\ζ

T ν (16)

and
ηj |[T ζ>τ i−1] = ηj

ζ |[T ζ>τ i−1], ηj
ζ = argmin

ν∈Ij\ζ
T ν (17)

for each j < i. In other words, (16) and (17) say that the random element (τ j
ζ , ηj

ζ) may be expressed

as a function of T Ij\ζ and Ψ(j−1) given that T ζ > τ i−1.
Further, denote Θ = {∆τ1

b?, ∆τ1
b†, ∆τ1

s?, ∆τ1
s†, ∆τ2

b?, . . . }. Since

e ∈ Ij ⇒




T e = Θe +
∑k

p=1 Θ(b,?,p) for some k < kj
b

or
T e = Θe +

∑k
p=1 Θ(s,?,p) for some k < kj

s

(18)

for each j ∈ N, since kj
b ≤ ki

b and kj
s ≤ ki

s for each j < i and since

T e > τ i−1 ⇒ e /∈ {(b, ?, k) : k < ki
b} ∪ {(s, ?, k) : k < ki

s}

we can express each T e, e ∈ Ij \ ζ, j < i, as a function of ΘE\ζ and Ψ(j−1) given that T ζ > τ i−1.
Therefore and thanks to (16) and (17), (τ j

ζ , ηj
ζ) may be expressed as a function of ΘE\ζ and Ψ(j−1)

given that T ζ > τ i−1 for each j < i. Moreover, by (9) and by induction, (τ j
ζ , ηj

ζ) may be expressed
as a function of ΘE\ζ and Υ for each j < i which implies that (τ j

ζ , ηj
ζ) is independent of Θζ for each

j < i.
Put

Sζ
4
= [I(Ψ(i−1)) = ζ].

Since I(Ψ(i−1)) = ζ implies T ζ > τ i−1, we have, from (16) and (17), that

τ j |Sζ
= τ j

ζ |Sζ
, ηj |Sζ

= ηj
ζ |Sζ

, (19)

for each k < i which yields

Ψ(j−1)|Sζ
= Ψζ,(j−1)|Sζ

, Ψζ,(j−1) = Hj−1(η1
ζ , . . . , ηj−1

ζ , Υ) (20)

for each j < i and
θj |Sζ

= θj
ζ |Sζ

, θj
ζ = γ(G(Ψζ,(j−1)))[τ

j
ζ − τ j−1

ζ ] (21)
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for each i < j, where G is some mapping. Moreover, since {x : x ∈ A,F (x) ∈ B} = {x : x ∈
A,F |A(x) ∈ B} for any sets A,B and a mapping F and since T ζ > τ i−1 = minν∈Ij T ν is equivalent
to T ζ > τ i−1

ζ = minν∈Ij\ζ T ν we have

Sζ = [T ζ > τ i−1
ζ ] ∩ [I(Ψζ,(i−1)) = ζ] (22)

Further, when we put ∆T i
ζ

4
= T ζ − τ i−1

ζ , we may write

θi|Sζ
= θi

ζ |Sζ
θi

ζ |Sζ
= γζ min∆T i

ζ , γζ = γ(bζ , sζ), (23)

bζ = |{e ∈ ζ, e = (b, †, ν) for some ν ∈ N}|,
sζ = |{e ∈ ζ, e = (s, †, ν) for some ν ∈ N}|

and
ηi|Sζ

= ηi
ζ |Sζ

, ηi
ζ = argmin ∆T i

ζ (24)

which implies, together with (11), that

ϕi|Sζ
= ϕi

ζ |Sζ
, ϕi

ζ = h(ηi
ζ , ζ, Υ). (25)

Since, for any positive real vector w, we have

P
(
∆T i

ζ > w|1Sζ
, θi−1

ζ , ηi−1
ζ , . . . , θ1

ζ , η1
ζ ,Υ

)

(22)
= P

(
∆T i

ζ > w|1[T ζ>τ i−1
ζ ],1[I(Ψζ,(i−1))=ζ], θ

i−1
ζ , ηi−1

ζ , . . . , θ1
ζ , η1

ζ , Υ
)

= P
(
∆T i

ζ > w|1[T ζ>τ i−1
ζ ],Φζ

)

where Φζ is a random element independent of Θζ and since ∆T i
ζ = Θζ − Vζ for some vector Vζ

independent of Θζ , we are getting

P
(
∆T i

ζ > w|1[T ζ>τ i−1
ζ ] = 1, Φζ = ϕ

)

Lemma 1 (ii), (21)
=

P
(
Θζ > w + Vζ |Φζ = ϕ

)

P (Θζ > Vζ |Φζ = ϕ)
Lemma 1 (iii)

=
P

(
Θζ > w + Vζ

)

P (Θζ > Vζ)

=

∏|ζ|
j=1 P((Θζ)j > w + V j

ζ )
∏|ζ|

j=1 P((Θζ)j > V j
ζ )

=
|ζ|∏

j=1

P((Θζ)j > wj)

i.e. the conditional distribution of ∆T i
ζ given 1Sζ

, θi−1
ζ , ηi−1

ζ , . . . , θ1
ζ , η1

ζ , Υ is the same as the uncon-
ditional distribution of Θζ on the set Sζ .

Since, for any vector (s1, s2, . . . , sn) of independent exponential variables with parameters
r1, r2, . . . , rn it is well known that

P( min
i=1,2,...,n

> z, argmin
i=1,2,...,n

si = i) = exp{−(r1 + · · ·+ rn)z} ri

r1 + · · ·+ rn
,

we are getting

P(θi
ζ > t, ϕi

ζ = k|θi−1
ζ , ηi−1

ζ , . . . , θ1
ζ , η1

ζ , Υ)|Sζ

= P(min∆T i
ζ > γ−1

ζ t, argmin∆T i
ζ = h−1

ζ,Υ(k)|θi−1
ζ , ηi−1

ζ , . . . , θ1
ζ , η1

ζ , Υ))|Sζ

= exp{−t}α(bζ , sζ , k) (26)
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because

h−1
ζ,Υ(k) =





(b, ?, ki
b) if k = −∞

(s, ?, ki
b) if k = ∞

(b, †, j) for some j ∈ N if −bζ ≤ k < −1
(s, †, j) for some j ∈ N if 1 ≤ k ≤ sζ

and

The parameter of Θe is





u if (b, ?, j) for some j ∈ N
v if (s, ?, j) for some j ∈ N
c if (b, †, j) for some j ∈ N
d if (s, †, j) for some j ∈ N.

Thanks to (19), (20), (21), (23), (24) and (25), and (i) of Lemma 1 we are getting (14) (for the
case of non-random Υ). Finally, when we allow Υ to be random, the formula (14) keeps holding by
Lemma 1 (v).
¤

Proof of the Theorem. Denote ∆τ i = τ i − τ i−1. According to ?, Lemma 12.18, it suffices to
show that

(i) (Ξ(i))∞i=1 is a discrete time Markov chain

(ii) There exists a function γ : X→ R such that

γ(Ξ(0))∆τ1, γ(Ξ(1))∆τ2, . . .

are i.i.d. exponential with unit mean independent of (Ξ(i))i=1.

(iii)
∑∞

i=1 ∆τ i = ∞ a.s.

Before we deal with (i)-(iii), note that Ξ(i) may be devised from Ξ(i−1), ϕi and Υ for each i ∈ N,
i.e. there exists a (non-random measurable) mapping F such that

Ξ(i) = F (Ξ(i−1), ϕ
i, Υ)

for each i ∈ N which yields, by induction, that

Ξ(i) = Fi(ϕ1, . . . , ϕi, Υ), (27)

where Fi is a (non-random) mapping, for each i ∈ N.
(i) Surely, a function ρb,s : [0, 1] → Z ∪ {−∞,∞} may be constructed for each b, s ∈ Z+ such that

P(ρb,s(U) = k) = α(b, s, k). (28)

for U ∼ U[0, 1].
Let U1, U2, . . . be a sequence of i.i.d. uniform variables independent of Θ. When we put

ϕ̃i 4= ρ|B(i−1)|,|S(i−1)|(U
i) for each i ∈ N, and denote Jb,s

4
= [|B(i−1)| = b, |S(i−1)| = s], we have

P
(
θi > t, ϕ̃i = k|θi−1, ϕi−1, . . . , θ1, ϕ1

)∣∣
Jb,s

Lemma1,(i)
= P

(
θi > t, ρb,s(U i) = k|1Jb,s

, θi−1, ϕi−1, . . . , θ1, ϕ1
)∣∣

Jb,s

Lemma 1 (iv)
= P(ρb,s(U i) = k)P

(
θi > t|1Jb,s

, θi−1, ϕi−1, . . . , θ1, ϕ1
)∣∣

Jb,s

(27),Jb,s∈σ(Ξ(i−1))= P(ρb,s(U i) = k)P
(
θi > t|θi−1, ϕi−1, . . . , θ1, ϕ1

) |Jb,s

(26),(28)
= exp{−t}α(b, s, k)
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for each t ∈ R+, k ∈ Z ∪ {−∞,∞}, ζ ⊂ E and i ∈ N, i.e.

L (
θi, ϕ̃i|θi−1, ϕi−1, . . . , θ1, ϕ1

)
= L (

θi, ϕi|θi−1, ϕi−1, . . . , θ1, ϕ1
)

for each i ∈ N which yields, by induction,

L(θ1, ϕ1, θ2, ϕ2, . . . ) = L(θ1, ϕ̃1, θ2, ϕ̃2, . . . )

hence, by (27),

L(θ1,Ξ(1), . . . ) = L(θ1, Ξ̃(1), . . . ), Ξ̃(i) = Fi(ϕ̃1, . . . , ϕ̃i,Υ), (29)

so that it suffices to prove (ii) for Ξ̃ instead of Ξ, which is easy: Since

Ξ̃(i) = F (Ξ̃(i−1), ρ|B(i−1)|,|S(i−1)|(U
i), Υ)

there exists a mapping F ′Υ for each realization of Υ such that

Ξ̃(i) = F ′Υ(Ξ̃(i−1), U
i).

When Υ is non-random, Ξ̃(1), Ξ̃(2), . . . is Markov by ?, Proposition 8.6. i.e.

P(Ξ(i) ∈ A|Ξ(i−1) = ξi−1, . . . , Ξ(1) = ξ1) (30)

for each ξi−1, . . . , ξi ∈ X and each measurable A ∈ X given that Υ is non-random. Because the
relation (30) keeps holding even for random Υ by Lemma 1 (v) (we naturally assume that Υ is
independent of U1, U2, . . . ), the part (i) is proved.
(ii): Denote Γi = (θi−1, ϕi−1, . . . , θ1, ϕ1, Υ). Since

P(θi > t|Γi) =
∑

k∈Z∪{−∞,∞}
P(θi > t, ϕi = k|Γi)

(7)
= exp{−t} (31)

for each i ∈ N, the variable θi is surely exponential with unit mean for each i ∈ N. Further, since

P(θi > t|θj) = E(P(θi > t|Γi)|θj) = exp{−t} = P(θi > t)

for each j < i, we are getting the mutual independence of θ1, θ2, . . . . Finally, the independence
of θ1, θ2, . . . and the embedded chain follows from (27) and from the independence of θ1, θ2, . . . of
Υ, ϕ1, ϕ2, . . . guaranteed by (31).
(iii): Since

∞∑

i=1

∆τ i a.s. ⇔
∞∑

i=0

1
γ(Ξ(i))

a.s.

(see the proof of the first part of ?, Proposition 12.19.) and since

∞∑

i=1

1
γ(Ξ(i−1))

≥
∞∑

i=1

1
u + v + i(c + d)

= ∞

the part (iii) is proved as well.
¤

Theorem 2 Ξ̄t is a Markov chain, ∆τ̄ i ∼ Exp(r̄) such that (∆τ̄ i)Ñ
i=1 are i.i.d and independent of

Ξ̄(k) (see Section (3.1) for the notation).
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Proof. Denote γ̃(b, s) = min(N, u + v + bd + sc) and θ̃i = γ̃(|B(i−1)|, |B(i−1)|)∆τ̄ i. Analogously
to the proof of Theorem 1, it may be shown that θ̃1, θ̃2, . . . are i.i.d. exponential with unit mean
independent of Ξ̄(1), Ξ̄(2), . . . which itself is a Markov chain and that

∑∞
i=1 γ̃(|B(i−1)|, |B(i−1)|) = ∞

which proves the Markov property of Ξ̄.
Further, since max(|B(i), S(i)|) ≤ N for each i ≤ Ñ − 1 (the number of the orders in the limit

order book may jump at most by one), we have γ̃(|B(i−1)|, |B(i−1)|) = r̄ for each i ≤ Ñ which
yields r̄∆τ̄ i ∼ Exp(1) i.e. ∆τ̄ i ∼ Exp(r̄), i ≤ Ñ . Both the mutual independence of (∆τ̄ i)∞i=1 and
their independence of the embedded chain follows from the fact that, for any random variable X
and random element Y independent of X, also cX and Y are independent.
¤

Theorem 3 There exist mappings F , G1, G2, . . . , Gk such that, on the set [e(1,k) ∈ Ẽk],

(φ(k), q(k)) = F (e(1,k)) (32)

and that
(BM

(i) , S
M
(i) ) = Gi(e(1,i)) (33)

for each 1 ≤ i ≤ k (see Section 3.3 for the notation).

Proof. First we show that there exists a mapping Φ such that

(φ(i), q(i), B
M
(i) , S

M
(i) ) = Φ(e(i), φ(i−1), q(i−1), B

M
(i−1), S

M
(i−1)) (34)

for each i ≤ k. We shall proceed case by case.
When e(i) = v then Φ(e(i), φ(i−1), q(i−1), B

M
(i−1), S

M
(i−1)) = (φ(i−1), q(i−1), B

M
(i−1), S

M
(i−1)) i.e. the

resulting values equal to the arguments.
When e(i) = bj

† for some j then

Φ(e(i), φ(i−1), q(i−1), B
M
(i−1), S

M
(i−1)) = (φ(i−1), q(i−1), B

′, SM(i−1))

where
B′ = (B(i−1)(M1), . . . , B(i−1)(M j)− 1, . . . , B(i−1)(Mm))

i.e. the resulting values equal to the arguments except for B(i−1)(M j) which is decreased by one.

Similarly when e(i) = sj
† for some j.

When e(i) = bj
? and the best ask lied in Mν for some ν > j at the previous step then the

resulting values equal to the arguments except for B(i−1)(M j) which is increased by one.

When e(i) = bj
? and the best ask lied in Mν for some ν < j at the previous step then the

resulting values equal to the arguments except for S(i−1)(Mν), q(i−1) and φ(i−1) where S(i−1)(Mν)
is decreased by one, q(i−1) is increased by one and φ(i−1) is set to ν.

When e(i) = bj
? and the best ask lied in M j at the previous step then necessarily |M j | = 1

(otherwise the best ask is a limit price of a newly arrived sell limit order which would violate
the definition of Ẽk) so the newly arrived order matches with the best ask and the arguments are
transformed into the resulting values the same way as in the previous paragraph.

The situation is completely symmetric in the case of a newly arrived sell order.
Since we have exhausted all the possibilities, the relation (34) is proved. The formula (32) then

follows easily by induction (recall that we have fixed (B(0), S(0))).
The proof of (33) is analogous.
¤
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Theorem 4 The partition M may be constructed so that

max(µj , νj) ≤ 24max(u, v)
r̄(m− 2(|B(0)|+ |S(0)|)− 1)

(see Section 3.3 for the notation).

Lemma 3 Let µ be a finite real measure and let n ∈ N. Then a partition (Aj)m
j=1 of R may be

found such that m ≤ n and

µ(Aj) ≤ |µ|12
n

(35)

for each |Aj | > 1.

Proof. Without loss of generality, we may assume that |µ| = 1 (if the measure is non-probability
then it suffices to apply the Lemma to µ/|µ| and multiply both sides of (35) by |µ| ).

Let x1, . . . , xα be all the points such that µ{xi} > 3/n, 1 ≤ i ≤ α. Further, denote

µ′ = µ−
α∑

i=1

µ({xi})δxi

(δx denotes the Dirac measure concentrated in x). Let F be the (left-continuous) distribution
function of µ′. Define (Cj)n−2α

j=1 = ([cj−1, cj))n−2α
j=1 where

cj = F−1

(
|µ′| j

n− 2α

)

for each 1 ≤ j ≤ n − 2α (we define F−1(α) = inf{x : F (x) ≥ α}, we take [a, a) = ∅). Since
F (F−1(α)) ≤ α and F (F−1(α)+) ≥ α for each α ∈ [0, |µ′|] (both the relations may be easily
proved by contradiction), we have

µ′[(cj−1, cj)] = F (F−1(cj))− F (F−1(cj−1)+) ≤ |µ|′
n− 2α

.

Moreover, since it has to be |µ′| ≤ 1 − (3/n)α and since µ′({x}) ≤ 3/n for each x ∈ R, we may
estimate

µ′([cj−1, cj)) ≤ |µ|′
n− 2α

+
3
n
≤ 1− (3/n)α

n− 2α
+

3
n

=
1− (3/n)α + (3/n)(n− 2α)

n− 2α

=
4− (9/n)α

n− 2α
≤ 4

n− 2α

(3/n)α≤1

≤ 4
n− 2(n/3)

=
12
n

. (36)

Put (Xi)2α+1
i=1 = ((−∞, x1), {x1}, (x1, x2), {x2}, . . . , {xα}, (xα,∞)) and define

A = {A 6= ∅ : A = Xi ∩ Cj for some i ≤ 2α + 1 and j ≤ n− 2α}.

Since any non-singleton from A is contained in some non-singleton from (Cj) and since the measures
µ and µ′ coincide on R \ {x1, . . . , xα}, we have µ(A) = µ′(A) ≤ 12/n for each A ∈ A, A /∈
{{x1}, . . . , {xA}} by (36). It remains to prove that the partition A has at most n points: By the
definitions, the partition (Xi) contains α singletons while no singleton is contained in (Cj). Since
all the non-degenerated intervals from both (Xi) and (Cj) are open on the right-hand side, no
singleton in A may have risen as an intersection of two non-singletons, hence A has to contain
exactly α singletons. Further, it is clear from the definitions that the set of all the upper boundary
points of the sets from (Xi) has α + 1 elements while (Cj) possesses no more than n − 2α upper
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boundaries, hence A has to have no more than (n − 2α) + (α + 1) − 1 = n − α upper boundaries
(we could subtract one because both (Xi) and (Cj) have +∞ among their boundaries). Finally,
since the number of the elements of each finite partition of R consisting of intervals is equal to the
number of its upper boundaries plus the number of its singletons, the Lemma is proved.
¤

Proof of the Theorem. Denote ς(M) = uπ(M)/r̄ and σ(M) = vρ(M)/r̄ for each M ∈ B(R). By

Lemma 3, there exists a partition A 4
= (Aj)nb

j=1, nb ≤ b[m− 2(|B(0)|+ |S(0)|)]/2c such that

ς(A) ≤ |ς| · 12
b[m− 2(|B(0)|+ |S(0)|)]/2c ≤ |ς| 24

m− 2(|B(0)|+ |S(0)|)− 1
(37)

for each non-singleton A ∈ A (the symbol bxc denotes the greatest integer less or equal to x).
Similarly, there exists a partition B = (Bj)ns

j=1, ns ≤ b[m− 2(|B(0)|+ |S(0)|)]/2c such that

σ(B) ≤ |σ| · 24/(m− 2(|B(0)|+ |S(0)|)− 1) (38)

for each non-singleton B ∈ B.
Clearly, any disjoint partition of R consisting of (possibly degenerated) intervals may be repre-

sented by the set of (open or closed) intervals such that each interval from the original partition is
represented by the interval with the same upper bound of the same type (open or closed) and with
the infinite lower bound. Let A′ and B′ be such representations of A, B respectively.

Denote Z = (z1, . . . , zp), z1 < · · · < zp = ∞ the set containing all the (upper) bounds of the
intervals from A′, all the (upper) bounds of the intervals from B′, all the points of B(0) and all the
points of S(0). Further, denote Z = {(−∞, zi) : 1 ≤ i ≤ p} ∪ {(−∞, zi] : 1 ≤ i ≤ p} and construct

a one to one mapping G : Z → N/2
4
= {1/2, 1, 3/2, . . . } such that

G(I) =

{
i if I = (−∞, zi]
i− 1/2 if I = (−∞, zi)

Denote s ∈ Rq the vector of all the points of B(0) and S(0) and define

T =
q⋃

i=1

{G((−∞, si)), G((−∞, si])}.

Obviously |T | ≤ 2(|B(0)| + |S(0)|), hence |T ∪ G(A′ ∪ B′)| ≤ nb + ns + 2(|B(0)| + |S(0)|) ≤ m, i.e.
the partition M represented by M′ = G−1(T ∪G(A′ ∪ B′)) has no more than m elements.

Thanks to the construction of the set T , all the points of the initial order books find themselves
in M. It remains to show that for each M ∈M there exists A ∈ A, B ∈ B, such that M ⊆ A and
M ⊆ B which would guarantee

ς(M) ≤ ς(A) (39)

and
σ(M) ≤ σ(B) : (40)

Let k = G(I) where I is the interval with the same upper bound as M and let k = G(J) where J
is the interval with the same upper bound as the lower bound of M . Since no image of a set from
A′ may lie between k and k (it is because M is disjoint), the set A ∈ A represented by

max{G(A), A ∈ A′ : G(A) ≤ k}, min{G(A), A ∈ A′ : G(A) ≥ k}
has to contain M . The situation with B is symmetric.
The assertion of the Theorem now follows from (37), (38), (39) and (40).
¤
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Revision history

Rev.2

• The note dropped that my model generalizes Smith et al. [2003] by allowing continuous time domain
- in fact, Smith et al. [2003] also assume the continuity of the time.

• Definition of price and volume corrected (wrong: pt = a1
t , right: pt = a1

t−, similarly b1
t

• Added a missing er̄ in the “final” formula.

• The definition of B(A) corrected (the set where φ should fall should not contain zero).

• In Lemma (1) (i), Si ∈ C is required

• In the same Lemma (v), misprint was corrected.
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