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1 Some preliminaries on ARCH and GARCH processes
Among the models for log-returns
Xt:]Og(Pt/Ptfl), t:1,2,... y

of stock indices, foreign exchange rates, share prices, etc., P;, t = 0,1, ..., the ARCH (autoregressive
conditionally heteroscedastic) processes have gained particular popularity. Besides the stochastic
volatility models (see for example Ghysels et al. [19] for a recent survey paper) they have become
the standard models in the financial econometrics literature. In particular, they appear in many
recent textbooks and monographs on time series analysis (see for example Brockwell and Davis
[10] or Embrechts et al. [17]) or econometrics (see Campbell et al. [11]). Thus many students of
statistics and virtually all students of econometrics have heard of them. The GARCH modules of
various software packages have certainly contributed to the increasing popularity of this kind of
econometric time series models as well.

The success story of the ARCH family started in 1982 when Engle introduced the ARCH(p)
processes (ARCH of order p)

(1.1) Xy =0t Zy,
where oy (the so-called stochastic volatility) obeys the recurrence equation
(1.2) of = ag + a1 X{ |+ + X,

with @;’s non-negative parameters, while (Z;) is a white noise process with variance 1, usually sup-
posed to be iid. (In what follows we always assume (Z;) to be iid.) This implies that, conditionally
upon X;_1,...,X;—p (the p past observations of the time series), X; has variance a?.

The basic idea behind the construction (1.1) is quite intuitive: for a “forecast” of the distribution
of X; we only have to know two ingredients: o; and the distribution of Z;. For example, if Z,
is normal N(0,1), then, given the past observations of the time series, X; ~ N(0,07). Hence,
conditionally upon X;_i,...,X;_p, the present value X; may assume values in [—1.960;,1.960;]
with 95% probability. Similarly, there is a 5% chance for the log-return X; to fall below the
threshold —1.640;. The 5%—quantile of the log-return distribution is considered as a measure of
risk for the underlying asset. In the financial area, this quantile is known under the name of Value
at Risk or VaR; see RiskMetrics [31].

These simple calculations show why models of type (1.1) have become so popular; in the presence
of non-Gaussian distributions for log-returns (this is a fact no specialist would doubt!) mixture

models such as (1.1) allow one to get updated (i.e. conditional) probability “forecasts” without too

much sophistication.



Empirical work has shown that the simple ARCH(p) process given by (1.1) and (1.2) has a
reasonable fit to real-life data only if the number of the parameters a; is rather large. Since the
rationale for the definition (1.2) is to take a time-changing weighted average of the past squared
observations as an approximation to the conditional variance o7 (an “updated estimate of the
variance”, if you like), it is quite natural to define o7 not only as a weighted average of past Xf’s
but also of past o3’s. This new idea resulted in Bollerslev’s [2] and Taylor’s [35] generalised ARCH
process of order (p,q) (GARCH(p, ¢)): the process (X;) is again given by (1.1), but now the squared

stochastic volatility satisfies

P q
(1.3) of = a0+ Y aj Xij+ Y B oy = a0 + a(L)X] + B(L)o},
=1 k=1

where the a;’s and f3;’s are non-negative parameters, L is the back-shift operator and (L), 3(L) are
the corresponding polynomials in L with coefficients o, 8. Clearly, o? could have been defined in
many other reasonable ways, and therefore it is perhaps not totally surprising that a wave of different
ARCH-type models has flooded the econometrics journals. Each of these models was introduced
in order to improve upon (1.2) or (1.3) in some sense. Some of them have gained popularity
such as Nelson’s [30] EGARCH (exponential GARCH) model while most of them remained only
of academic interest. From a mathematical point of view, not all of them are directly comparable
with the GARCH processes. However, we do not have here the space to discuss these modifications
in detail; see for example Bollerslev et al. [3] or Shephard [32] for review papers. In what follows,
we mostly stick to the GARCH model and we do so for two reasons. The first is that, although
apparently simple, its analytic study exemplifies the difficulties encountered when working with
this class of models. Secondly, it is one of the models heavily used in practice.

Notice that we call (X;) an ARCH or GARCH process and not the squared process (X?). (Since
both conventions have been used in the literature we want to make clear our preference.)

The connection with ARMA processes. It is straightforward that equation (1.3) can be

rewritten as an ARMA equation with noise v := X7 — o?:

(1.4) (1 - L)X} =ao+ (1 - BL)w, ¢(L):=a(L)+pB(L).

If (X;) is strictly stationary and EX? < 0o, (14) constitutes a strictly stationary martingale differ-
ence sequence. In the light of (1.4), the idea of viewing the GARCH process as an ARMA process
for the squares X? was certainly a father of thought.

Representation (1.4) could give one the illusion that the theory for GARCH processes might be
as easy as for ARMA processes. (Naturally, the notion of “simplicity” is a relative one; a thorough
study of linear processes as provided by Brockwell and Davis [9] shows that simplicity can also have
a high dimension of complexity.) However, (1.1) makes (X;) a non-linear process. For this deviation

from a linear (ARMA) process one has to pay a price. After 15 years of ARCH modelling we know



it is a high one: we know very little about the theoretical (probabilistic) properties of ARCH and
GARCH processes. The “pure theorist” and the “practical econometrician” will certainly deny
this statement. However, just to give some examples of the difficulties one has to face: with a
few exceptions (the ARCH(1) and GARCH(1,1) models) we can in general not decide whether a
GARCH(p, q) process has a strictly stationary version, provided we know the distribution of the
Zy’s and the parameters, we do not know much about the tails of the marginal distributions of (X}),
and very little about the finite-dimensional distributions, i.e. the dependence structure. We know
almost nothing about the theoretical properties of multivariate extensions of ARCH-type models.

Surprisingly, the statistical estimation of the parameters a; and f is not too difficult. (This fact
is an essential argument in favour of GARCH processes.) Given the Z;’s are iid standard normal,
the likelihood function of the vector (Xi,...,X,) can be written down, and conditional maximum
likelihood theory yields consistent and asymptotically normal estimates of the parameters. This
theory remains valid even if one deviates from the Gaussianity of the Z;’s. The estimation theory
for GARCH processes is provided for example in Gourieroux [23].

The stationarity issue. The GARCH(p, ¢) equations (1.1), (1.3) with iid innovations Z; such
that EZ = 0 and EZ? = 1 have a strictly stationary finite first moment solution (¢?) (and hence

(X}) is strictly stationary as well and has finite variance) if

P q
(1.5) ap >0 and Zaj+2ﬁk<1.

j=1 k=1
See Nelson [29] for the GARCH(1,1) case and Bougerol and Picard [7] for the general case.
At this point it is worth to mention a possible source of confusion generated through borrowing
terminology from ARMA models. In analogy with ARMA and integrated ARMA (ARIMA) pro-
cesses, Engle and Bollerslev [18] coined the name integrated GARCH(p, q) (IGARCH(p, q)) process

for the situation when
P q
(1.6) op >0 and Zaj+2ﬁk:1.
j=1 k=1

Although this name seems to be quite intuitive in the ARMA modeling framework, it is misleading
from an ARCH perspective. Indeed, the name integrated suggests that there is a unit root problem,
as for integrated ARMA processes, concerning the stationarity of such GARCH processes. However,
this is not the case for the GARCH (1.1), (1.3) model. Bougerol and Picard [7] prove that, if all
a;’s and (’s are positive, (1.6) holds and the distribution of Z has unbounded support and no
atom in zero, then (1.1) with (1.3) has a unique strictly stationary causal solution (o?) (although
with infinite first moment) and hence (X}) is strictly stationary as well (albeit with infinite second
moment). In the GARCH case integrated does not mean non-stationary.

Though we do not know the most general conditions for strict stationarity of a GARCH(p, q)

process we gain some information about this problem by considering the ARCH(1) (see Goldie



[22] and Section 8.4 in Embrechts et al. [17]) and GARCH(1,1) (see Nelson [30], Mikosch and
Starica [26]) cases. Given that Z is standard normal, a strictly stationary solution (X;) exists in
the ARCH(1) case if ap > 0 and «; € (0,2¢e?), where v is Euler’s constant (e” = 3.5621...). For a
GARCH(1,1) process the conditions ag > 0 and EIn(a;Z2 + 1) < 0 are necessary and sufficient
for the existence of a strictly stationary version of (X;). Hence a1 + (31 > 1 is possible for certain
choices of a1 and ;. The general GARCH(p, q) case is very complicated: a strictly stationary
solution to (1.3) exists if the top Lyapunov exponent of the random matrices A; given in (2.4)
is negative; see Kesten [24], Bougerol and Picard [6, 7], Davis et al. [14] for more details on this

difficult problem.

2 Measures of dependence

Before talking about the main core issue of the present paper — long range dependence in volatility
— let us briefly remind the reader the more common ways of measuring the dependence of future
observations on their past which one encounters in the econometrics literature. We focus on three

such measures and their connections.

Persistence. This is a measure defined in the forecasting context. Formally, a process is said to
be persistent in variance (see Bollerslev and Engle [4]) if

(2.1) limsup e; := limsup |E(X?|Xo, X_1,...) — E(X?|X1,Xo,...)| > 0 a.s.

t—o0 t—o0

In words, a process (X;) is persistent in variance if the differences between the forecasts of the
conditional variances at times 0 and 1 will never disappear, or if shocks to conditional variance
persist indefinitely. In the case when the limit in (2.1) is 0, the rate at which shocks to conditional
variance ultimately die out (i.e. the rate at which e; goes to 0) is a measure of dependence in the
forecasting framework. The notion of persistence in variance refers to conditional variances and
not to the variance itself. Therefore it can still be defined in a meaningful way when the variance
of X} is infinite.

For example, consider a strictly stationary GARCH(1,1) process with iid noise sequence (Z;)

satisfying EZ = 0 and EZ? = 1. Using the recursion (1.4), direct calculation shows that
e =l o (0 +B) as, t>1.

Thus the stationary GARCH(1,1) process is non-persistent in variance if and only if o + 51 < 1,
i.e. when X; has finite variance. Shocks to conditional variance disappear at the exponential rate
(a1 + B1)t. The stationary IGARCH(1,1) model with oy + 81 = 1 is persistent in variance, i.e.

shocks to conditional variance never die out.

Mixing. In order to measure dependence in the theoretical setting of strictly stationary sequences



it is convenenient to use some kind of a mizing condition. Recall that a strictly stationary sequence
of random vectors Y, is strongly mizing, if there exist constants ¢y, (the mizing coefficients) such
that

(2.2) sup |[P(ANB) — P(A) P(B)| =: ¢ —» 0 as k — oc.
A€o(Ys,s<0),Beo(Ys,s>k)

The rate at which ¢ — 0 is a measure of the range of the memory of the time series . The slower ¢y,
goes to 0, the further in the past the memory of the process reaches. The sequence (Y}) is strongly
mizing with geometric rate if there exist constants K > 0 and a € (0,1) such that ¢, < K a* for all
k > 1. We refer to Doukhan [16] for a collection of facts on mixing properties. In words, strongly
mizing with geometric rate stands for a process that forgets its past quickly.

The squared processes (X7?) and (o?) satisfy the following stochastic recurrence (or difference)

equation:
(2.3) X; = Ay Xy 1 + By,
where
!
Xy = (X?527"'an—p—I—laU?a"'aUtZ—q—l—l) ’
( athZ O‘p—th2 apZt2 ﬂthZ IBq—IZt2 ﬁthz \
1 0 0 0 0 0
0 1 0 0 0 0
(2.4) A, = ,
(0751 Qp 1 Qp B /3qu /Bq
0 0 0 1 0 0
0 0 0 0 1 0
B; = (xZ?2,0,...,0,00,0...,0)".

Equation (2.3) allows one to embed the squared GARCH(p, q) process (X?) and the squared volatil-
ity process (07) in the Markov chain (X;), and so standard theory on the mixing properties of such
chains can be applied. This has been done in Davis et al. [14]. One conclusion of that paper is that,
under mild conditions on the distribution of Z and negativity of the top Lyapunov exponent of the
matrices Ay (which condition ensures stationarity), the Markov chain (X;) is strongly mixing with
geometric rate, which fact implies in turn that (X;) and (o}) are strongly mizing with geometric

rates.

The ACF. For any stationary sequence (Y;) define the autocorrelation function (ACF) as

vy (h) = corr(Yy,Yy), h€EZ.



We say that (Y;) exhibits long-range dependence (LRD) if

(2.5) 3" by (h)] = oo,
h=0

and short-range dependence otherwise.

A particular consequence of the strong mixing property with geometric rate of (X;) is that
[7¢(x)(R)| < constant a®  for some a € (0,1),

for any measurable function f, whenever these correlations are well defined. In particular, if x|

and yx2 are well defined these ACFs decay to zero at an exponential rate. Hence we may conclude:
GARCH models are not designed for modeling LRD.

Neither persistence nor non-persistence in variance with a slow rate of decay of e; to 0 are directly
comparable with the notions of LRD or mizing. Indeed, persistence in variance is defined via
conditional moments whereas LRD and mixing are defined in terms of unconditional moments and
probabilities. Also notice that LRD is defined only for finite variance stationary processes while
mixing does not depend on the second order structure of the time series. For example, the IGARCH
process is strongly mixing, i.e. “forgets” quickly in the sense of the unconditional probabilities.
Nevertheless it is also persistent, i.e. from the conditional variance stand point, its memory extends
indefinitely in the past. Moreover, it has infinite variance marginal distributions. Hence for such
a model it does not make sense to talk about LRD. When one uses the terms “long memory” or

“LRD”, one first needs to make clear in which sense they are used.

3 A closer look at real-life data

3.1 The LRD effect

Long log-return series (X;) of foreign exchange rates, stock indices and share prices have the

following properties in common:

e The sample ACF Jx of the data is tiny for all lags, save possibly the first ones; the sample

mean is not significantly different from zero. This indicates that (X;) is a white noise process.
e The sample ACFs 7| x| and Yx2 of the absolute values and their squares

— are all positive,
— decay fast for the first few lags,

— remain “almost constant” for larger lags.

This is what we call the LRD effect.
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Figure 3.1 Left: Plot of 9558 S&P500 log-returns. The year marks indicate the beginning of the
calendar year. Right: The estimated values of a1 + B1 for an increasing sample of S&P500 log-
returns. An initial GARCH(1,1) model was estimated on the first 1500 observations. Then oy and
(1 were re-estimated on increasing samples of size 1500 4+ k x 100, k > 0. The labels on the x-azis
indicate the date of the latest observation used for the estimation procedure. The graph shows how
the IGARCH effect builds up when the sample size increases.
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Figure 3.2 Left: Sample ACF for the S&P500 log-returns. Here and in what follows, the hor-
izontal lines in graphs displaying sample ACF's are set as the 95% confidence bands (£1.96/y/n)
corresponding to the ACF of iid Gaussian white noise. Right: Sample ACF for the S&P500 absolute
log-returns.



The first mentioned empirical property of the sample ACF for the data fits nicely with the fact
that the X;’s from a GARCH(p, g) process are uncorrelated (provided their second moment exists).
Recalling that the GARCH(p, q) process actually has exponentially decaying autocorrelations, we
may doubt that a GARCH process can capture the particular behaviour of the sample ACFs of the
real-life | X;|’s and X?’s described as the LRD effect.

In order to illustrate the mentioned “stylized sample ACF facts” we consider the daily log-
returns of the Standard & Poor’s 500 composite stock index from January 2, 1953, to December
31, 1990. The sample ACF of the log-returns and their absolute values (called absolute log-returns
in what follows) are displayed in Figure 3.2. The same data set will be used in the sequel to
substantiate most of our statements.

Since the GARCH(p, q) process cannot describe the observed sample ACF behaviour in an
adequate way, we may ask for alternative explanations of this phenomenon. In the literature

various answers have been given which we now want to mention.

3.2 The IGARCH effect

The estimation of GARCH processes on log-return data produces with regularity the following

results:

e For longer samples, the estimated parameters ai,...,qp and fi,..., [, of the model (1.1),

(1.3) sum up to values close to one.

e When shorter subsamples are used for estimation, the sum of the coefficients, although not

small, stays away from 1.

We will refer to these two regularities as the IGARCH effect. Figure 3.1 illustrates the IGARCH(1, 1)}}
effect with the S&P500 data.

The first mentioned stylized fact motivated the introduction of the IGARCH(p, q) process (1.6)
by Engle and Bollerslev [18] as a possible generating process for log-returns. Under the assumptions
given above, in particular EZ? = 1, the IGARCH model has a strictly stationary solution, but the
X¢’s do not have a finite second moment. To see this take expectations in the defining equation
(1.6) and note that Eo? = EX?%:

p q
Eo®>=ao+ Y o EX*+ Y p Eo®> = ag + Eo”.
j=1 j=1

Since o > 0 is necessary for strict stationarity, Ec? = oo follows. For an IGARCH(1,1) process, if
the distribution of Z satisfies some mild assumptions (such as the existence of a density with infinite
support), it follows from a classical result of Kesten [24] (see also Goldie [22] for an alternative proof)

that

P(X > ) ~ constant 72, z — co.



We refer to Mikosch and Starica [26] for details and further references.

At this point it is important to notice that
the IGARCH model and the LRD notion are incompatible.

Indeed, our definition of LRD in terms of the ACF is not applicable since the ACF is not well
defined. Thus, if the IGARCH model was correct, in particular the variance infinite, the sample
ACFs of (X;), (|X;]) and (X?) would estimate nothing meaningful. A plausible explanation of the
empirically observed LRD effect would then be:

If the IGARCH model is the generating process of the log-returns, the LRD effect has nothing to

do with LRD; it is simply an artifact since the sample ACFs do not measure anything.

This point of view has been further explored in Mikosch and Staricd [26]. There we discuss the
behaviour of the sample ACF for the less extreme case of an “almost integrated” GARCH(1,1) model
when a; + (31 is less than, but close to 1. In this case, the ACFs for the log-returns and absolute
log-returns are well defined and the corresponding sample ACFs have, possibly, a meaning. The
outcome of this research is very much in line with the previous discussion and can be summarised

as follows.

e X has power law behaviour in the tails:

there exists k > 2 but close to 2 such that P(X > z) ~ constant 27 as £ — oo.

e If the ACF is well defined, the rate of convergence of the sample autocorrelations (of the X;’s,
| X¢|’s, X?’s) to their deterministic counterparts is extremely slow; it is the slower the smaller

the value of k.

e If the ACF is not defined (depending on «, this can happen for certain powers of the absolute

log-returns), the sample autocorrelations converge in distribution to a non-degenerate limit.

Thus, if one assumes an “almost integrated” GARCH model as log-return generating process, the
sample ACF is again not very meaningful.

Although a possible explanation for the LRD effect, taking the IGARCH effect at face value con-
tradicts other empirical findings. As we have already mentioned, assuming an estimated GARCH
model (i.e. an integrated or “almost integrated” GARCH) as generating process for log-returns
presupposes a tail index k of (or close to) 2. However the existing statistical evidence shows quite
convincingly that the tails of real log-returns are not so heavy; see for example Miiller et al. [28]
and Embrechts et al. [17].

We can offer two alternative explanations for the deviation of x from 2.



e The statistical estimates of k are poor.

e The IGARCH effect is spurious and occurs because the GARCH process is not a suitable
model for the data.

The first fact has been discussed in detail (see Embrechts et al. [17] and the references therein; see
also Starica [34]) and cannot be neglected. However, despite the large variation of estimators for

our experience shows:

The sum of estimated GARCH coefficients is close to 1 always when one uses a sufficiently long

log-return series, but it usually stays away from 1 when estimating on smaller subsamples.

(See for example Figure 3.1.) This observation seems to indicate that a GARCH process is not a
suitable model and that the IGARCH effect is just an artifact. Since changes of the structure in
long log-return series are much more likely than in short ones, the following hypothesis (which goes

back to Diebold [15] and Lamoureux and Lastrapes [25]) sounds plausible:
The IGARCH effect is due to non-stationarity in log-return series.

It is perhaps the time to soothe the worried reader who has not forgotten that our aim was to
explain the LRD effect in the absolute log-returns. It seems that instead of doing that we ended
up discussing possible connections between the IGARCH effect and non-stationarity. However, she
should rest reassured, the detour was deliberate and brought us close to the question we believe to

be central to the understanding of the issue at hand:

Is it possible that both, the LRD and the IGARCH effects, are caused by the same simple reason:

non-stationarity of the data?
A possible answer is given in the next section.

3.3 Checking the goodness of fit of GARCH processes

In order to verify in which period of time a GARCH(p, ¢) model gives a good fit to real-life data

we constructed a goodness of fit test statistic in the spectral domain:

n—1 ~ .
¥x (h) sin(\t)
(3.1) Sn = +/n sup
" relor [=4 [var(XoXp)]' /2t
Under the null hypothesis that (X;) comes from a GARCH(p, q) model with given parameters «;
and Sy, var(XoX}) can be calculated. Mikosch and Starica [27] proved under the null hypothesis
and assuming a finite 4th moment for X, that S,, converges in distribution to the supremum
of a Brownian bridge on [0,7]. Thus the limit theory for S, is very much the same as for the

classical Kolmogorov—Smirnov goodness of fit test statistic; cf. Shorack and Wellner [33]. In Figure

10



3.3 we show how one can apply S, in order to detect changes in the GARCH structure of the
S&P500 log-return series. The graphs show that the unconditional variance of the log-returns
varies strongly through time. A frequently re-estimated GARCH(1,1) model seems to capture the
change in variance.

A glance at Figures 3.3 and 3.4 shows quite convincingly:

One particular GARCH process is a good model for the log-return time series only for a relatively
short period of time, and therefore the underlying GARCH models have to be updated quite
frequently.

Since the classical tools of time series analysis such as the sample A CF and the periodogram together
with the results of parametric model estimation can be interpreted in a meaningful way only if the
underlying data can be thought of as coming from a strictly stationary process, we may question
everything we have done so far: the sample ACFs of Figure 3.2, in particular the LRD effect, and
the parameter estimates for the o;’s and fB’s, in particular the IGARCH effect. However, is there
a simple explanation for what we see in the data?

In [27] we considered a time series

(1) 1) (2
LRI (P

- ’Y'FL(Z) 7

where p € (0,1) is a fixed number. The two pieces of this time series come from distinct stationary
ergodic models. (We focus here on two time series, the case of a finite number of such pieces can
be treated completely analogously.) Simple calculation shows that as n — oo, the sample ACF at

lag h converges:
(3.2) Fy () 5 pyyw (h) + (1= p) W (h) +p(1 —p) (BYD — BEY@)2.

Now assume that the two subsamples are also uncorrelated. Let \; = 27j/n, j = 1,2,..., denote
the Fourier frequencies. Then the periodogram Iy ();) (the natural estimator of the spectral density
fy of a stationary process (Y;); see Brockwell and Davis [9]) at the Fourier frequencies satisfies as

n — oo and Aj — 0
Ely (X))

2 .
(3.3) ~ p2rfyay(N) + (1 —p) 21y (Nj) + W(EYU) — EY@)2(1 — cos(273p)).
J

Let us apply our findings to a sample that consists of two subsamples from different GARCH(p, ¢)l}
processes, Xt(l),t =1,...,[np], and X§2),t = [np] + 1,...,n. Since all these variables have mean

zero, we conclude from (3.2) and (3.3) that
x5 pyxw(h) +(1=p) v (h) =0,
Ely(A) ~ p2nfxa(X)+(1—p) 2nfxe(Aj) = pvar(XD) + (1 p) var(X?)).

11
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Figure 3.3 Left: The goodness of fit test statistic Si25 (see (3.1)) calculated on a weekly basis from
previous 125 observations (approzimately 6 months) of the S&P500. Based on estimation of the
parameters from the first 1500 observations, we check the null hypothesis O't2+1 = 8.58 x 1076 +
0.072X; + 0.75902. The horizontal line is set at 3.6, the 99% quantile of the limit distribution
of Sn. Values above the confidence bound correspond to 6 months periods when the hypothesised
model is inappropriate. FEssentially, high wvalues of the statistic S, signal higher unconditional
variance than that of the supposed model. The dotted vertical lines mark the beginning and end
of economic recessions as determined by the National Bureau of Economic Research. They nicely
show the coincidence between the recession periods and the intervals of higher unconditional variance
detected by our tool. Right: The implied GARCH(1,1) unconditional variance of the S&P500 data.
A GARCH(1,1) model is estimated every 6 months using the previous 2 years of data. The graph
displays the variances Ui- = ap/(1 — a1 — B1). The similarities between the two graphs seem to
show that a frequently re-estimated GARCH(1,1) model captures to a certain extent the changing
unconditional variance of the log-returns.
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Figure 3.4 A GARCH(1,1) model is fitted to every block of 6 months data. The fit is based on the
previous 2 years of data. Estimated oy (left) and [y (right).
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Thus we expect that the sample ACF estimates zero at all lags and the periodogram estimates a
constant; see Figure 3.6. This is in agreement with the empirical findings for log-return series; see
Figure 3.2.

Similar calculations for the absolute values and squares of the time series predict a totally
different behavior. For example, assume that E|X()| # E|X®)| (the case of the squared time

series is analogous). Then (3.2) implies that
~ P
Fx = pyxa (B) + (1—p) vx@)(B) +p(1 - p)(EIXV| - B XP)))2.
Since the ACF of the absolute values of a GARCH process decays to zero exponentially the terms

P xw (h) + (1 =p) vx@ (h)

decay to zero at an exponential rate, and so we may expect that we see a fast decay of the sample
ACF at the first few lags. This is indeed in agreement with the sample ACF of the absolute values
of various log-return series. The typical shape of the sample ACF at large lags of such a time series

is however characterised by the constant term
p(1—p) (BIX| - E|X®)))?,

which forces the sample ACF to stay positive and almost constant for a large number of lags and
which produces the LRD effect in the absolute log-returns; see Figure 3.6.

Now consider the expected periodogram at small Fourier frequencies. From (3.3),
2 .
Elx|(Aj) ~ p2nfxa (X)) + 1 =p)2nfxe (X)) + W(EP{(U\ — E|X®)%(1 - cos(2mjp)).
J

Assume that p = r1/re for two relatively prime integers. Notice that the term with the cosine is
either zero for some frequencies or bounded away from zero for the remaining Fourier frequencies.
Since the ACF of the absolute values of a GARCH process decays exponentially, the corresponding

spectral density is a continuous function on [0, 7]. Hence

p2rfixay(Aj) + (1 —p) 27 f x(Xj) = p 27 fx)(0) + (1 — p) 27 f|x(2)(0) = constant .

On the other hand, for m\? — 0 the second term
2 .
W(E|X<1>| — E|XP))2(1 — cos(2nj r1/r2))
J

will give very large values for “almost all” such Fourier frequencies, and this will create the impres-
sion of a spectral density which has a singularity at zero.

The above discussion shows:
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Figure 3.5 Left: Two independent realizations of length 1000 of two GARCH(1,1) processes with
parameters ag = 0.13 x 1076, oy = 0.11, B = 0.52, respectively oy = 0.17 x 1075, a; = 0.20,
B1 = 0.65, are juztaposed. Right: Sample ACF for |Xy|, t = 1,...,1000. The other sample ACF
for | X, t =1001,...,2000, looks similar. The sample ACF quickly decreases to 0.
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Figure 3.6 Left: Sample ACF for X;, t = 1,...,2000. The sample ACF is tiny. Right: Sample
ACF for | X, t =1,...,2000, with the LRD effect.
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Non-stationarity of a time series could be responsible for the spurious LRD effect in the behavior
of the sample ACF and the periodogram of absolute log-returns. The LRD effect might have
nothing to do with LRD as defined in (2.5).

Finally, we also claim that the IGARCH effect might be due to non-stationarity as well. In
[27] we showed that the Whittle estimate of a3 and ¢; = a3 + (1, based on the squares of a
GARCH(1,1) process, is consistent, provided X has a finite 4th moment. Moreover, if, as above,
we assume that the sample consists of pieces from different GARCH(1,1) models, we showed that
the Whittle estimate ¢}” of ¢ is of the order

C1
o + [var(X(1)) — var(X®)])2°

QY ~1—

where ¢; and cg are positive constants depending on the coefficients of both GARCH models. Notice
that the estimate of ¢, is the closer to one the larger the difference between the variances of the
two models. This might explain the IGARCH effect since the longer the time series the larger the
chance that strong non-stationarity will affect it and hence the closer to one the estimated value of
1 (see Figure 3.1 for an example of how the IGARCH effect builds up in longer time series).

It is not very realistic to assume that a real-life time series consists of disjoint pieces from
distinct parametric models. It is more natural to think of a sample that, besides sharp switches
from a certain regime to another, also contains periods described by models where the parameters
change continuously. To understand this kind of behavior in log-returns more detailed research is
needed. However, our simplistic model has already shown that LRD-type behavior of the sample
ACF of absolute log-returns can be due to non-stationarity in the sample, and more sophisticated

models will certainly support this hypothesis.

4 Description of LRD by using infinite ARCH models

i From the theory discussed above we have learnt that ARCH(p) and GARCH(p, q) processes cannot
explain LRD. If one wants to introduce LRD in the ARCH framework, one might be tempted to

consider more general models of type (1.1), (1.2) with infinitely many parameters a;, i.e.

00
(4.1) of =ag+ Y X7,
j=1
for non-negative parameters ;. The ARCH(p) and GARCH(p, ¢) processes are particular cases.
Models of type (4.1) were introduced, among others, by Baillie et al. [1] and Ding and Granger
[12]. Both references are frequently quoted in the LRD econometrics literature. The former authors
proposed the fractionally integrated GARCH model (FIGARCH) in analogy to FARIMA processes.

They focus on the issue of persistence in variance and aim at a model that is non-persistent in
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variance but for which shocks to conditional volatility vanish slower than in the case of the GARCH
model, i.e at a polynomial rate. The latter authors define the Long Memory ARCH models (LM-
ARCH) as the limiting case (as N — o00) of a model with N volatility components (which is a
GARCH(N, N) model). Their aim is a model which displays LRD in powers of absolute log-returns.

A careful reading of the two papers reveals that both models were introduced with insufficient
analytic description. Most noticeable, neither group of authors prove that a stationary version of
their model exists. ([12] does not address this issue leaving open how they define LRD; [1] gives a
vague argument for stationarity; see the discussion below.) This step, i.e. proving that the model
has a stationary version, is the prerequisite for discussing any estimation and inference procedures,
as well as for attempting any data analysis.

The authors of [1] attempt to define the FIGARCH model by the difference equation

(4.2) HL)(1- L)X} =ao+ (1 - BL)r, v=X}—o07,

where ¢(L), 1 — B(L) are polynomials in the lag operator L with zeros outside the unit circle,
d € [0,1] and ag > 0. This definition is meant to remind one that of a FARIMA process (cf.
Brockwell and Davis [9], Section 13.2) with X2 on the left-hand side replacing a stationary sequence
(Y:) and (v¢) on the right-hand side an iid noise sequence. We want to emphasize here that this
connection is purely formal and it cannot be used as a waiver of rigourous proofs. Complications
due to the formal nature of the relation between the two classes of processes surface in the very
definition (4.2) of the FIGARCH process. While in the definition of the FARIMA process we may be
assured that the iid noise sequence exists, in the definition (4.2) one constructs the noise sequence
(v¢) from the process (X;) itself, i.e. from the process one tries to define! Next, it is claimed in [1]

that the defining equation (4.2) can be rearranged into the following representation

(87 - d (87
(4.3) of = 1_75(1) + (1 — %) X? = —— 4 ML)X?.

In fact, the existence of a stationary solution for (1.1) together with (4.3) must be proved first in
order to obtain the representation (4.2) of the FIGARCH process. In other words, representation
(4.2) cannot serve as a definition. Moreover, it could be derived from (4.3) only if the time series
defined by (1.1) together with (4.3) has a strictly stationary version (and, as we will see in the
sequel, that it is still to be shown). Rearranging (4.3) to look like (4.2) would also need a formal
proof (the same way as, for instance, the linear process representation with respect to the noise
sequence of a FARIMA (p, d, q) process with d € (—0.5,0.5) requires a formal proof; see [9], Theorem
13.2.1.)

Regarding the stationarity issue of FIGARCH, one reads on p. 158 of [5]: “Since the coefficients
in the infinite lag polynomial, A\(L), are dominated by the coefficients in the infinite ARCH rep-
resentation of an appropriately defined high-order IGARCH model, it follows from Bougerol and

16



Picard [7] and Nelson [29] that the FIGARCH(p, d, q) model is strictly stationary and ergodic.” We
find this argument hard to follow : what is an “appropriately defined high-order IGARCH model”
and how could one bound the coefficients in the infinite lag polynomial, A(L), which decay to 0 at a
polynomial rate with the exponentially decaying coefficients in an infinite ARCH representation of
an IGARCH model? To the best of our knowledge, a rigorous proof of the existence of a stationary
version of the FIGARCH process is still not available. Recent efforts in this direction by Giraitis
et al. [20] fell short of achieving it.

It is claimed on p. 8 of [1] and p. 158 of [5], and cited in various other papers, that a FIGARCH
process has infinite variance marginals and, therefore, cannot be covariance stationary. If this was
the case, one would immediately ask: which sense does it make to talk about LRD in the context of
such a time series model and how should one interpret the sample ACF plots on pp. 153-155 in [5]7
There we get presented the sample ACF plots of the absolute returns of the S&P500 data, their
first and fractional differences with d = 0.5. In addition to that, the FIGARCH model would be at
odds with the existing statistical evidence on tail estimation of log-returns which suggest that an
infinite variance for log-returns is extremely unlikely. These questions would raise serious doubts
about how appropriate it is to take the FIGARCH model as a log-return generating process.

Before turning to the LM-ARCH model of [12], we want to mention recent work by Giraitis
et al. [20] which gave some needed theoretical insight into the class of ARCH(oco) models. They
showed that the ARCH(co) model (1.1), (4.1) with EZ? = 1, EZ = 0 has a strictly stationary

non-degenerate version (0?) with finite first moment if

00
ap >0 and Zaj<1.
j=1

This condition looks very much the same as in the GARCH case, see (1.5). Giraitis et al. [20] also
establish a link between the rate of convergence to 0 of the coefficients a; and the rate at which
the ACF vanishes.

As we have mentioned, Ding and Granger [12] introduced the LM-ARCH process with the aim
to reproduce the LRD effect in the powers of absolute log-returns. One possible specification of

their volatility process is the following:
(4.4) of =o*(1—p) +pu(l - (1 - L)HX7

where 0 <y <1 and 0 < d < 1/2. The authors claim in their equation (4.26) that corr(X7?, X? ;)
is of the order h?¢~! provided X has a finite 4th moment. In contrast to this statement, it is proved
in Giraitis et al. [20] that, for 0 < u < (EX*)"!, the ACF yx2(h) cannot decay at the rate h?? 1,
with d € (0,1/2). Hence for certain parameter choices which ensure stationarity, the LM-ARCH
model (4.4) does not ezhibit LRD. Giraitis et al. [20] mention that for other parameter choices
in (4.4) it is not known whether the LM-ARCH model has a strictly stationary version and that
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“further research is needed”. In the light of the discussion for the GARCH case this problem is
a very delicate one since the parameter choice in the ARCH(co) model heavily influences the tail

behavior of X.

5 Some concluding remarks

So far we have argued that:
e Standard GARCH models cannot explain LRD.

¢ GARCH models give a reasonable fit to log-returns only for short time horizons. The models

have to be updated frequently.
e LRD and IGARCH effects in log-returns series might be both due to non-stationarity.

This point of view is not shared by many authors who wrote papers on long memory in absolute
log-return series. To the contrary, the empiricially observed sample ACF and periodogram behavior
of such time series made absolute log-returns one of the warhorses of the LRD community.

We are aware that other models, for example stochastic volatility models (see for example Breidt
et al. [8]) or the ARCH(00) version of Giraitis et al. [21], can model the LRD-type behavior in the
absolute log-returns and their squares.

However, common sense may allow one to ask at least two questions.
e Which economic reasons exist for LRD in absolute log-returns?
e What would we gain if we knew that there is LRD in absolute log-returns?

We have tried hard to find in the literature any convincing rational /economic argument in favor of
long-range dependent stationary log-returns, but we did not find any, and so the above questions
remain, to the best of our knowledge, unanswered. Since one cannot decide about the stationarity
of a stochastic process on the basis of a finite segment (sample) the question as to whether there is
LRD in the absolute log-returns or not will certainly keep a part of the academic community busy

also in the future.
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