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Abstract

The financial time series are often characterized by similar volatility structures. The
selection of series having a similar behavior could be important for the analysis of the
transmission mechanisms of volatility and to forecast the time series, using the series with
more similar structure. In this paper ametricsisdeveloped in order to measure the distance
between two GARCH models, extending well known results developed for the ARMA
modes. The statistic used to cdculate it follows known distributions, so that it can be
adopted asatest procedure. Thesetoolscan be used to devel ope an agglomerative d gorithm
in order to detect clusters of homogeneous series.
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1. Introduction

Thefinancial time series are generally subject to co-movementsand similar volatility struc-
tures, due to the strong influence among financial markets (see, for example, Bollerdev et
a., 1994). Generdly, “trouble” and “quiet” periods are transmitted from a market to an-
other, but some markets absorb more these effects. The classification of financia time
series in homogeneous clusters for similar volatility structures could be an important pur-
pose for the financial analysts, also because movements in a given time series could help
to forecast the movements of asimilar time series.

Inthis paper we extend the distance measure proposed by Piccolo (1990) for AR modd's
to the case of the GARCH (Generalized AutoRegressive Conditional Heteroskedasticity)
family. As stressed by Otranto and Triacca (2002), this distance compares the stochastic
properties of couples of series, or, in other words, the differences between the two data
generating processes. In practice, the basic ideais that the estimation of GARCH models
provides the statistical structure of the financia time series, so that the comparison of the
models underlying the data generating processes is equivalent to compare the volatility
structures of each series. The extension of this distance to the GARCH models is easy,
considering the correspondence between GARCH and ARMA processes; in practice we
express the residuals of a GARCH model in ARMA form and then we use, as in Otranto
and Triacca (2002), the representation of ARMA models in AR terms (see, for example,
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Brockwell and Davis, 1996) to apply the distance measure. This representation provides a
formulation of the distance measure as a function of the GARCH parameters. In addition,
the statistic caculated to measure the distance follows a known asymptotic distribution, so
that it is possible to use it as atest procedure. If we select the series having distance not
significantly different by zero, itispossibleto cluster the homogeneousseries. In particular,
we develop an agglomerative algorithm, based on the distance measure proposed and on
the results of the statistical test. The methodology is applied to classify the series of the
returns of the main financial markets.

In the next section we will illustrate the instruments adopted to explicit the distance
measure, with the study of the behavior of the distance proposed; we will pay a particular
atention to the GARCH(1,1) moddl, which isthe most popul ar model adopted for financial
time series. Section 3isdevoted to the explanation of the use of thisdistancein classifying
thevolatility of markets; we devel op an agglomerative algorithm and show an application of
the procedure to nine stock exchange indices. Final remarksfollow. Inthe final appendix,
there isareport of some details on the AR metrics proposed by Piccolo (1990).

2. Distance between GARCH Modes

The GARCH family is very popular intime seriesanalysisand it is composed of alarge set
of model's, which can represent different possible characteristics of financid time series; for
areview of these models and their applications see Bollerslev et al. (1992) and Bollerslev
eta. (1994).

For our purpose, we consider two time series following themodels (t = 1, ..., 7):

Y10 = Mg+ E1s
Y2t = Ho+ €24
wheree, ; and ez ; aremean zero heteroskedasti cindependent disturbances. In other terms,
the two series have a constant mean, whereas the variances are time-varying. We sup-
pose that the conditional variances h; ; and ho ; follow two different and independent
GARCH(1,1) structures:
Var(yiehe1) = hie=7+ Chgitq + B1h1-1 ey
Var(ys,llze1) = hae =17+ aze}, | + Bohai
where Iy ; and T, ; represent the information available at time¢ and v; > 0,0 < o; < 1,
0< B, <1,(a;+8;) <1(@=1,2). Thisisatypical representation for financid time
series.
Equation (1) impliesthat the squared residuals follow ARMA(1,1) processes:
512,15 =7;+ (i +5;) 5?,1571 -5, (512,1571 - hi,tfl) + (512,15 - hi,t) =12 (2
where eit — h; ; are mean zero errors, uncorrelated with past information. Substituting in



(2) the errors with their ARMA(1,1) expression, we obtain the AR(co)representation:

1—8;

Inthisform, thetwo GARCH(1,1) model scan be compared intermsof the distance measure
proposed by Piccolo (1990), explained in the final appendix. In particular, recalling that
the genera form of this metricsis:
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where 71; and 7o; are the autoregressive coefficients of two AR processes, using (3), we
can express the distance between two GARCH(1,1) models as:
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Devedoping the expression in square brackets:
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Note that in the previous developments the constant v, /(1 — 3;) was not considered; in
effect, it does not affect the dynamics of the volatility of the two series, expressed by the
autoregressive terms.

It isvery smple to extend that to more general cases; in fact, the GARCH(p,q) model
(Bollerdev, 1986):

hy=~+ alsil... + ozps:?fp + Biht—1+ .o + ﬂqht,q
corresponds to the ARMA(p*,q) model, with p* = max(p, ¢):
&f = (a1 +B8y)er 1o (ap 4B, )t e —B1(ef 1—hio1)—. =By (7 ;—hi—g)+(e7—he).

Of coursg, if p > g, weput 8,y = ... = 3, = 0;if ¢ > p, then a1 = ... =y = 0.
The ARCH(p) model (Engle, 1982):

he=v+ael ...+ ozps:?fp
corresponds to the AR(p) moddl:
2 =qg4ae? .+ ozpsffp + (€2 — hy);
the IGARCH(1,1) mode (Engle and Bollerslev, 1986):
he=v+(1=8)ei 1+ Brhia
corresponds to the IMA(1,1) mode!:
(5? - 5?71) =7 51(5?71 —hy1) + (5? — he);



and so on.
In general, indicating with ¢,, the generic AR coefficient and 6; the generic MA coef-
ficient of an ARMA model, we have:

b = (o +0By), (6)
To apply (4) we need the AR representation of the ARMA model; following Brockwell
and Davis (1996), theiterative formula:

q
7Tk—|—Z€j7Tk,j:—¢k, k=0,1,..
j=1
with ¢, = 1, can be applied. For the GARCH case, the previous relationship is equivaent
to:

q g—1
T =—(ax+B) + D BiThj = —art+ > BT ;. )
Jj=1 j=1
Using (7) it is possible, applying (4), to compare every couple of GARCH models, not
necessarily of the same order. In the remain of the work we will refer to GARCH(1,1)
models, which are the most popular models for financial time series and for which the
simple form (5) can be applied.

2.1 AnlInvestigation about the GARCH(1,1) Distance

In this subsection we study morein detail the behavior of the distance (5), for various com-
bination of the coefficients «; and 3;. The behavior of the distance is clear when we pose
B; = 0fori = 1, 2, which is the case of two ARCH(1) models. In this case, the dis-
tance shows adoublelinear dynamics, symmetric with respect to the point representing the
equality of the two data generating processes. In Figure 1 the comparison of two ARCH(1)
models, with coefficients varying in [0.1,0.9] with steps of 0.1 is shown; each line repre-
sents the distance between an ARCH(1) model with coefficient indicated in the box, and
the ARCH(1) model s with coefficients equal to the corresponding points on the horizontal
axis.

When two GARCH(1,1) models are considered, the behavior iswell different; in fact,
for the contemporaneous presence of «; and 3;, similar processes can seem different. In
Figure 2 the behavior of the distance between two GARCH(1,1) mode sis shown; note that
thereisavast region (approximately when 0.1 < a; < 0.3and0.1 < 5, <0.8,fori =1,
2) inwhich the distance is approximately zero. Thiswould be clearer observing Figure 3,
inwhich the dark spotsindicate the zonesin which the distanceisnot significantly different
by zeroin the case of 7" = 3000. In addition, the equality of a; and a or 3, and 3, cuts
down the distance considerably; thisis more evident observing the detail of three profiles
in Figure 4.

1 The test used depends from the coefficients of the GARCH models and the number of observations; it is
described in thefina appendix. We have used alarge number of observations, generally being available large data
setsfor financial time series; increasing the number of observations, the spots will grow progressively narrower.
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Figure 1: Distance between two ARCH(1) modds
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Figure 2: Distance between two GARCH(1,1) models
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Figure 3: Regionswith non significantly different by zero distancefor GARCH(1,1) model
and T=3000.
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Figure 4: Profiles of three GARCH(1,1) distances
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3. Clusteringthe Returns. An Agglomerative Algorithm

How could it be used in practical cases the distance developed in the previous section?
The most obvious application is to create homogeneous groups having a similar volatility
structure. For this purpose an usual agglomerative algorithm for cluster analyses could be
used; it can be developed in the following steps:

1. choosean initial benchmark series;

2. insert in the group of the benchmark series all the series with a distance from it not
significantly different by zero;

3. sdect the series with the minimum distance from the benchmark significantly different
by zero; this serieswill be the new benchmark;

4. insert inthe second group all the remaining series with a distance from the new bench-
mark not significantly different by zero;

5. repeat steps 3 and 4 until no seriesremain.

Note that, differently from the common cluster algorithms, in this case the number of
groupsis not fixed apriori or chosen after the clustering, but it derives automatically from
the dgorithm. Clearly, to classify the series we need a starting point, in the sense that the
result will be different, changing the series adopted asinitial benchmark. Alternatively, in
applications with asmall number of series, we can use each series asinitial benchmark in
different classifications and then verify if there are “ strongest” structures.

In order to explain this agorithm, we consider the series of the returns of nine stock
exchange indices from December 1, 1995 to February 5, 2001 (daily data, 7' = 1352);
they refer to the following indices: CAC40 (cac), NIKKEI300 (nik ), DAX30 (dax), SMI
(smi), FTSEL00 (fts), IBEX35I (ibe), DOW JONES (dj ), BEL20 (bel ), MIB30 (mib).
First, a GARCH(1,1) model is estimated for each series, then the matrix of distances for
each couple of seriesis calculated and finally the statistica test to verify the null of zero
distanceisapplied. Theestimations of coefficientsare shownin Table 1, whereas the matrix
of distancesin Table 2.

In Table 3 are shown the results of the diagnostic test for each couple of indices (A
indicates the case of acceptation of the null of distance 0, whereas R indicates the case of
rejection).

In our example, using each series as initiad benchmark, the 9 classifications provide
three possible alternative distinct groups. Using asinitial benchmark cac, dax, fts, bel and
mib, the 2 groups obtained are formed by (cac, nik, fts) and (dax, smi, ibe, dj, bel, mib);
using as initial benchmark smi, ibe and dj, the 2 groups are formed by (cac, fts) and (nik,
dax, smi, ibe, dj, bel, mib); using nik asinitial benchmark we separate (dax, bel, mib) from
(cac, nik, smi, fts, ibe, dj ). Combining the results we deduce that there are 2 strong groups,
congtituted by cac and fts on a hand and dj, dax, smi and ibe on the other hand. The nik
staysinthe middle, whereasbel and mib arevery similar tothedj group, but distant from
nik.



Table 1: GARCH(1,1) parameters estimation (standard errors in parentheses).

cac nik dax smi fts

~ | 00008 00009 00005 00006  0.0001
(0.0001) (0.0003) (0.0001) (0.0001) (3.86E-5)
a| 00540 00637 00965 00891  0.0443
(0.0081) (0.0094) (0.0129) (0.0147) (0.0076)
3| 09335 09191 08876 08775 009492
(0.0094) (0.0124) (0.0139) (0.0198) (0.0078)

ibe dj bel mib

~ | 00006 00005 0.003  0.0010
(0.0001) (0.0001) (8.91E-5) (0.0002)
a| 00838 00829 00989 01159
(0.0109) (0.0089) (0.0130) (0.0179)
3| 08920 08873 08863 08384
(0.0128) (0.0135) (0.0138) (0.0226)

Table 2: Distances matrix.

cac nik dax smi fts ibe dj bel mib

cac | 0.000 0019 0076 0063 0.022 0.054 0.053 0.080 0.101
nik | 0.019 0.000 0.057 0045 0.041 0.035 0035 0.062 0.084
dax | 0.076 0.057 0.000 0025 0.097 0.024 0030 0.004 0.041
smi | 0.063 0045 0.025 0000 0.084 0.012 0010 0.029 0.040
fts | 0.022 0.041 0.097 0084 0.000 0.076 0075 0101 0.121
ibe | 0.054 0.035 0.024 0.012 0.076 0000 0.007 0029 0.050

di | 0.053 0.035 0.030 0.010 0075 0.007 0.000 0.034 0.050
bel | 0.080 0.062 0.004 0.029 0101 0029 0.034 0.000 0.040
mib | 0.101 0.084 0.041 0040 0.121 0.050 0.050 0.040 0.000




Table 3: Test results.

cac nik dax smi fts ibe di bed mib

cac A R R A R R R R
nik | A R A A A A R R
dx | R R A R A A A A
smi| R A A R A A A A
fts | A A R R R R R R
ibe| R A A A R A A A
dj R A A A R A A A
bd | R R A A R A A A
mb| R R A A R A A A

4. Concluding Remarks

In this paper an extension of the distance measure used to compare couples of ARMA
models, developed by Piccolo (1990), is extended to the GARCH case. This extension
avoidsthepossihility to group thefinancia serieshavingasimilar volatility structureand an
agglomerative algorithm was devel oped to obtain homogeneous clusters. The final results
of the a gorithm depend on the series adopted as benchmark; anyway, thisisnot necessarily
aweak point, because generaly the behavior of the markets are evaluated with respect to
a“dominant” market (for example, the U.S. stock exchange market, which influences the
other markets or shares); on the other side, the detection of various clusters, obtained using
as benchmark each market iteratively, will conduce probably to some “strong” form, or
some interpretabl e behavior, as in the application of the previous section.

Clearly, the case of clustering is just a possible application of this instrument; another
purpose could be to forecast assets, shares or stock exchange indices of the financial mar-
kets ; aswell known, for the volatility transmission mechanisms, the information deriving
from amarket can influence the behavior of another market. Using the distance measure,
it is possible to detect the most similar volatility structure for a certain series among a set
of leading series, so that the knowledge of the latter could be used to forecast the volatility
structure of the former.

Appendix: The AR Metrics

In this appendix there is a brief description of the AR metrics introduced by Piccolo
(1990) and the considerations above its distribution devel oped in Corduas (1996) with ex-
tensionsto the GARCH(1,1) case.

Let V; be azero-mean ARMA invertible process; then, it exists a sequence {r; } such

that -
Z |7 < o0
=1

and
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where ¢, is awhite noise process with variance o2.
Piccolo (1990) defines the distance between two ARMA invertible and independent
processes V;; and Vy; as

1/2
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d= Z(T(lj—ﬂzj)z . (9)
j=1

From (9) we have derived the GARCH(1,1) distance (5).

Piccolo (1989) shows that the asymptotic distribution of d2, given the independence
hypothesis, is alinear combination of independent Chi-Square variables. In order to deal
with the distance measure as atest procedure, Corduas (1996) proposesto approximate the
distribution of d? with a single Chi-Square random variable. Under the null hypothesis:

T15 = 25 foreachj:],Q,..., (10)
this distribution can be approximated with ax? + b, where x? is a chi-squared random
variable with ¢ degree of freedom and, setting t; = trace (f]i):

a=t3/ts, b=t —13/ts3, c=13/t2. (1)
This approximation has a good performance, as showed in Corduas (1996). In this case
3 = X, + X and represents the covariance matrix of the AR coefficientsin (9) under the
null hypothesis. 33, and X5 represent respectively the estimated covariance matrices of the
coefficients 7ty = {7y, } and wo = {m4; }, obtained as functions of the maximum likeli-
hood estimators of the parameters of the GARCH models, as showed in (7). For practical
purposes, the vectors 7, and 72 will contain only the first & autoregressive coefficients of
the representation (8), with & suitably high (in our applicationswe will use & = 100). The
covariances matrices X; and X, can be obtained by:
3 =1, Vil
where \Nfi isthe covariance matrix of the estimated GARCH coefficientsand I'; isa matrix
containing the derivatives of the functions 7;; with respect the GARCH coefficients. For
example, for the case of GARCH(1,1) model, the estimated parameters modelizing the
~ ! ~ ~k—
volatility structure will be (ai,ﬁi) , Whereas 7; = (ai,aiﬁi, ...,aiﬂf 1).
Note that, to map out Figure 3, we have not performed estimation procedures, having
used the theoretical covariance matrix of ARMA(1,1) processes (Brockwell and Davis,

1996). For an ARMA(1,1) process with AR coefficient equal ¢ and MA coefficient equal
6, the covariance matrix is expressed by:

1+ 98 [ (1 = %) (1 +00) —(1—92)(1—0?2)}:0[“11 @12

VARMA:W —(1-63)(1=¢%) (1-6%)(1+00) aiz  a22
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(1
(2
(3]
(4
(9]
(6]
(7
(8]
(9
(10]

taking into account (6), we obtain that:

Var (a; + 8;) = Var(a;) +Var(8;) +2Cov (ay, 8;) = ar;
Var(8;) = ag
Cov(a; +B;,—08;,) = —Cov(w,B;)— Var(B,) = ais

As aconsequence;
(a11 + ag2 + 2a12)  — (@12 + ag2)
— (a12 + a22) 22

In thisway we can apply thetest considering hypothetical GARCH(1,1) processes, without
estimation step; the only sample information we need is the length of the series 7.

Vgarcu =c¢
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