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Abstract
The financial time series are often characterized by similar volatility structures. The

selection of series having a similar behavior could be important for the analysis of the
transmission mechanismsof volatility and to forecast the timeseries, using theserieswith
moresimilar structure. In thispaper ametricsisdeveloped in order to measurethedistance
between two GARCH models, extending well known results developed for the ARMA
models. The statistic used to calculate it follows known distributions, so that it can be
adoptedasatest procedure. Thesetoolscanbeusedtodevelopeanagglomerativealgorithm
in order to detect clustersof homogeneousseries.
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1. Introduction

Thefinancial timeseriesaregenerally subject toco-movementsandsimilar volatility struc-
tures, due to thestrong inf luenceamong financial markets (see, for example, Bollerslev et
al., 1994). Generally, ‘‘ trouble’’ and ‘‘quiet’’ periods are transmitted from a market to an-
other, but some markets absorb more these effects. The classification of financial time
series in homogeneous clusters for similar volatility structures could bean important pur-
pose for the financial analysts, also because movements in a given time series could help
to forecast themovements of asimilar timeseries.

In thispaper weextendthedistancemeasureproposedby Piccolo(1990) for ARmodels
to the case of the GARCH (Generalized AutoRegressive Conditional Heteroskedasticity )
family. As stressed by Otranto and Triacca (2002), this distance compares the stochastic
properties of couples of series, or, in other words, the differences between the two data
generating processes. In practice, the basic idea is that the estimation of GARCH models
provides the statistical structure of the financial time series, so that the comparison of the
models underlying the data generating processes is equivalent to compare the volatility
structures of each series. The extension of this distance to the GARCH models is easy,
considering the correspondence between GARCH and ARMA processes; in practice we
express the residuals of a GARCH model in ARMA form and then we use, as in Otranto
and Triacca (2002), the representation of ARMA models in AR terms (see, for example,
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Brockwell and Davis, 1996) to apply thedistancemeasure. This representation provides a
formulation of thedistance measureas a function of theGARCH parameters. In addition,
thestatistic calculated to measurethedistancefollowsaknown asymptotic distribution, so
that it is possible to use it as a test procedure. If we select the series having distance not
significantly different by zero, it ispossibletocluster thehomogeneousseries. Inparticular,
we develop an agglomerative algorithm, based on the distance measure proposed and on
the results of the statistical test. The methodology is applied to classify the series of the
returnsof themain financial markets.

In the next section we will illustrate the instruments adopted to explicit the distance
measure, with the study of thebehavior of thedistanceproposed; wewill pay aparticular
attention to theGARCH(1,1) model, which isthemost popular model adopted for financial
timeseries. Section 3 isdevoted to theexplanation of theuseof thisdistancein classifying
thevolatility of markets; wedevelopanagglomerativealgorithmandshow anapplicationof
theprocedure to ninestock exchange indices. Final remarks follow. In the final appendix,
there isa report of somedetails on theAR metricsproposed by Piccolo (1990).

2. Distance between GARCH Models

TheGARCH family isvery popular in timeseriesanalysisand it iscomposed of a largeset
of models, whichcanrepresent different possiblecharacteristicsof financial timeseries; for
a review of thesemodelsand their applicationsseeBollerslev et al. (1992) and Bollerslev
et al. (1994).

For our purpose, weconsider two timeseries following themodels (
���������	� �
���

):

���� � ��� ����� ��� � �

�� � � ��� ����� � � ���

where � ��� � and � � � � aremeanzeroheteroskedastic independent disturbances. Inother terms,
the two series have a constant mean, whereas the variances are time-varying. We sup-
pose that the conditional variances � ��� � and � � � � follow two different and independent
GARCH(1,1) structures:� ��!#" 
���� ��$	%���� �
&'�)( � � ��� � �+* ���+, � � � ��� �
&'����-�� � ��� �.&'� (1)� ��!#" 
 � � ��$	% � � �
&'�)( � � � � � �+* � �+, � � �� � �
&'����- � � � � �.&'�
where %���� � and % � � � represent the information available at time

�
and

*0/�1324�5276 , / 68���296 - / 68��� " , / ��- / ( 6:� ( ; �:����< ). This is a typical representation for financial time
series.

Equation (1) implies that thesquared residuals follow ARMA(1,1) processes:
� �/ � � �=* / � " , / ��- / ( � �/ � �.&'��> - /0? � �/ � �
&'��> � / � �.&0�)@ � ? � �/ � �0> � / � �.@ � ; ������< (2)

where � �/ � �0> � / � � aremean zero errors, uncorrelated with past information. Substituting in
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(2) theerrors with their ARMA(1,1) expression, weobtain theAR( � )representation:

� �/ � � � * /
� > - / �+, /

����� � - � &'�/ � �/ � �.& � � ? � �/ � � > � / � �.@ � (3)

Inthisform, thetwoGARCH(1,1) modelscanbecomparedintermsof thedistancemeasure
proposed by Piccolo (1990), explained in the final appendix. In particular, recalling that
thegeneral form of this metrics is:�� ����� � "	� � � > � � � ( ��
�

��
 �
�

(4)

where
� � � and

� � � are the autoregressive coefficients of two AR processes, using (3), we
can express thedistancebetween two GARCH(1,1) modelsas:� � �� ��������� , � - � ��> , � - � ��� � 
�

��
 �
�

Developing theexpression in squarebrackets:� � ��
, � �

�� ����� - � �� ��, �� ������� - � �� > < , � , � ������� " -���- � ( � 
�
��
 �
��� , � �

� > - � � �
, ��

� > - �� >
< , � , �
� > -���- ��� ��
 �
(5)

Note that in the previous developments the constant
*0/�� " � > - / ( was not considered; in

effect, it does not affect the dynamics of the volatility of the two series, expressed by the
autoregressive terms.

It is very simple to extend that to more general cases; in fact, theGARCH(p,q) model
(Bollerslev, 1986):

� � �=* ��, � � ��
&'� �	� � ��,�� � ��
& � ��-�� � �.&'� � �	� � � -! � �.&� 
corresponds to theARMA(p " ,q) model, with p " �$#&%(' " ) ��* ( :
� �� �=* � " , � � -�� ( � ��
&'� � �	� � " ,��,+ � - � + ( � ��.& �,+ > -�� " � ��.&'� > � �
&'�)( > �	� � > -! " � ��.&� > � �.&� )( � " � �� > � ��( �

Of course, if
) 1-*

, weput -! �.'� � �	� � � - � �+2 ; if
* 1 )

, then ,/� .�� � � �	� � ,  �=2 .
TheARCH(p) model (Engle, 1982):

� � �=* �+, � � ��.&'� �	� � �+,/� � ��.& �
corresponds to theAR(p) model:

� �� �=* ��, � � ��.&'� �	� � �+,/� � ��
& � � " � �� > � ��( �
the IGARCH(1,1) model (Engleand Bollerslev, 1986):

� � �=* � " � > -�� ( � ��
&'����-�� � �
&'�
corresponds to theIMA(1,1) model:" � �� > � ��
&'� ( �=* > -�� " � ��
&'� > � �.&'��( � " � �� > � ��( �
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and so on.
In general, indicating with ��� the generic AR coefficient and � � thegeneric MA coef-

ficient of an ARMA model, wehave:

� � � " , � � - � ( � (6)

� � � > - � �
To apply (4) weneed theAR representation of theARMA model; following Brockwell

and Davis (1996), the iterative formula:� � �  ���� � � � � � & � � > ��� ��� �+24�5� �)� �	�

with � � � � , can beapplied. For theGARCH case, theprevious relationship isequivalent
to: � � � > " , � � - � ( �  � ��� � - � � � & � � > , � �  �&'����� � - � � � & � � (7)

Using (7) it is possible, applying (4), to compare every couple of GARCH models, not
necessarily of the same order. In the remain of the work we will refer to GARCH(1,1)
models, which are the most popular models for financial time series and for which the
simple form (5) can beapplied.

2.1 An Investigation about the GARCH(1,1) Distance

In thissubsectionwestudy morein detail thebehavior of thedistance(5), for variouscom-
bination of thecoefficients , / and - / . The behavior of thedistance is clear when wepose- / � 2

for ; � ���#<
, which is the case of two ARCH(1) models. In this case, the dis-

tanceshowsadoublelinear dynamics, symmetric with respect to thepoint representing the
equality of thetwo datagenerating processes. InFigure1 thecomparison of twoARCH(1)
models, with coefficients varying in [0.1,0.9] with steps of 0.1 is shown; each line repre-
sents the distance between an ARCH(1) model with coefficient indicated in the box, and
theARCH(1) modelswith coefficientsequal to thecorresponding points on thehorizontal
axis.

When two GARCH(1,1) models areconsidered, the behavior is well different; in fact,
for the contemporaneous presence of , / and - / , similar processes can seem different. In
Figure2 thebehavior of thedistancebetween two GARCH(1,1) modelsisshown; notethat
there isavast region (approximately when

2#�
��� , / �+2 � � and
2#�
��� - /	�+2 � 
 , for ; �����<

) in which thedistance is approximately zero. This would be clearer observing Figure3,
inwhich thedark spotsindicatethezonesinwhich thedistanceisnot significantly different
by zero in thecaseof

�=��� 2�2�2 � 1 In addition, theequality of , � and , � or -�� and - � cuts
down the distance considerably; this is more evident observing the detail of threeprofiles
in Figure4.

�
The test used depends from the coeff icients of the GARCH models and the number of observations; it is

described in thefinal appendix. Wehaveused alargenumber of observations, generally being available largedata
sets for f inancial time series; increasing the number of observations, the spotswil l grow progressively narrower.
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Figure1: Distancebetween two ARCH(1) models
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Figure2: Distancebetween two GARCH(1,1) models
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Figure3: Regionswithnonsignificantly different by zerodistancefor GARCH(1,1) model
and T=3000.
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Figure4: Profilesof threeGARCH(1,1) distances
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3. Clustering the Returns: An Agglomerative Algorithm

How could it be used in practical cases the distance developed in the previous section?
Themost obvious application is to create homogeneous groups having a similar volatility
structure. For this purposean usual agglomerativealgorithm for cluster analyses could be
used; it can bedeveloped in the following steps:

1. choosean initial benchmark series;
2. insert in the group of the benchmark series all the series with a distance from it not

significantly different by zero;
3. select theserieswith theminimum distance from thebenchmark significantly different

by zero; thisserieswill be thenew benchmark;
4. insert in thesecond group all the remaining serieswith adistance from thenew bench-

mark not significantly different by zero;
5. repeat steps 3 and 4 until no series remain.

Note that, differently from the common cluster algorithms, in this case the number of
groups isnot fixed apriori or chosen after theclustering, but it derivesautomatically from
the algorithm. Clearly, to classify the series we need a starting point, in the sense that the
result will bedifferent, changing theseries adopted as initial benchmark. Alternatively, in
applications with asmall number of series, wecan use each series as initial benchmark in
different classifications and then verify if thereare ‘‘strongest’’ structures.

In order to explain this algorithm, we consider the series of the returns of nine stock
exchange indices from December 1, 1995 to February 5, 2001 (daily data,

� � � � � <
);

they refer to the following indices: CAC40 (cac ), NIKKEI300 (nik ), DAX30 (dax ), SMI
(smi ), FTSE100 (fts ), IBEX35I (ibe ), DOW JONES (dj ), BEL20 (bel ), MIB30 (mib ).
First, a GARCH(1,1) model is estimated for each series, then the matrix of distances for
each couple of series is calculated and finally the statistical test to verify the null of zero
distanceisapplied. Theestimationsof coefficientsareshowninTable1, whereasthematrix
of distances in Table2.

In Table 3 are shown the results of the diagnostic test for each couple of indices (A
indicates the case of acceptation of the null of distance 0, whereas R indicates the case of
rejection).

In our example, using each series as initial benchmark, the 9 classifications provide
threepossiblealternativedistinct groups. Using as initial benchmark cac, dax, fts, bel and
mib, the 2 groups obtained are formed by (cac, nik, fts ) and (dax, smi, ibe, dj, bel, mib );
using as initial benchmark smi, ibe and dj, the2 groups are formed by (cac, fts ) and (nik,
dax, smi, ibe, dj, bel, mib ); using nik asinitial benchmark weseparate(dax, bel, mib ) from
(cac, nik, smi, fts, ibe, dj ). Combining theresultswededucethat thereare2 strong groups,
constituted by cac and fts on a hand and dj, dax, smi and ibe on the other hand. The nik
staysin themiddle, whereasbel and mib arevery similar to thedj group, but distant from
nik.
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Table1: GARCH(1,1) parametersestimation (standard errors in parentheses).

cac nik dax smi fts*
0.0003 0.0009 0.0005 0.0006 0.0001

(0.0001) (0.0003) (0.0001) (0.0001) (3.86E-5), 0.0540 0.0637 0.0965 0.0891 0.0443
(0.0081) (0.0094) (0.0129) (0.0147) (0.0076)- 0.9335 0.9191 0.8876 0.8775 0.9492
(0.0094) (0.0124) (0.0139) (0.0198) (0.0078)

ibe dj bel mib*
0.0006 0.0005 0.0003 0.0010

(0.0001) (0.0001) (8.91E-5) (0.0002), 0.0838 0.0829 0.0989 0.1159
(0.0109) (0.0089) (0.0130) (0.0179)- 0.8920 0.8873 0.8863 0.8384
(0.0128) (0.0135) (0.0138) (0.0226)

Table2: Distancesmatrix.

cac nik dax smi fts ibe dj bel mib
cac 0.000 0.019 0.076 0.063 0.022 0.054 0.053 0.080 0.101
nik 0.019 0.000 0.057 0.045 0.041 0.035 0.035 0.062 0.084
dax 0.076 0.057 0.000 0.025 0.097 0.024 0.030 0.004 0.041
smi 0.063 0.045 0.025 0.000 0.084 0.012 0.010 0.029 0.040
fts 0.022 0.041 0.097 0.084 0.000 0.076 0.075 0.101 0.121
ibe 0.054 0.035 0.024 0.012 0.076 0.000 0.007 0.029 0.050
dj 0.053 0.035 0.030 0.010 0.075 0.007 0.000 0.034 0.050
bel 0.080 0.062 0.004 0.029 0.101 0.029 0.034 0.000 0.040
mib 0.101 0.084 0.041 0.040 0.121 0.050 0.050 0.040 0.000
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Table3: Test results.

cac nik dax smi fts ibe dj bel mib
cac A R R A R R R R
nik A R A A A A R R
dax R R A R A A A A
smi R A A R A A A A
fts A A R R R R R R
ibe R A A A R A A A
dj R A A A R A A A
bel R R A A R A A A
mib R R A A R A A A

4. Concluding Remarks

In this paper an extension of the distance measure used to compare couples of ARMA
models, developed by Piccolo (1990), is extended to the GARCH case. This extension
avoidsthepossibility togroupthefinancial serieshavingasimilar volatility structureandan
agglomerativealgorithm was developed to obtain homogeneous clusters. The final results
of thealgorithm dependon theseriesadoptedasbenchmark; anyway, thisisnot necessarily
a weak point, because generally the behavior of the markets areevaluated with respect to
a ‘‘dominant’’ market (for example, theU.S. stock exchangemarket, which inf luencesthe
other marketsor shares); on theother side, thedetection of variousclusters, obtained using
as benchmark each market iteratively, will conduce probably to some ‘‘strong’’ form, or
some interpretablebehavior, as in theapplication of theprevious section.

Clearly, the case of clustering is just a possible application of this instrument; another
purposecould be to forecast assets, shares or stock exchange indices of the financial mar-
kets ; aswell known, for thevolatility transmission mechanisms, the information deriving
from amarket can inf luence thebehavior of another market. Using the distance measure,
it is possible to detect the most similar volatility structure for a certain series among a set
of leading series, so that theknowledgeof the latter could beused to forecast thevolatility
structureof theformer.

Appendix: The AR Metrics
In this appendix there is a brief description of the AR metrics introduced by Piccolo

(1990) and theconsiderationsabove itsdistribution developed in Corduas (1996) with ex-
tensions to theGARCH(1,1) case.

Let
� � be a zero-mean ARMA invertible process; then, it exists asequence � � ��� such

that �� ��� � $ � � $ 6 �
and
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� � �
�� ��� � � � � �
& � ��� � � (8)

where � � is awhitenoiseprocess with variance �
�
.

Piccolo (1990) defines the distance between two ARMA invertible and independent
processes

� ��� and
� � � as � � �� ����� � "	� � � > � � � ( ��
�

��
 �
�

(9)

From (9) wehavederived theGARCH(1,1) distance (5).
Piccolo (1989) shows that the asymptotic distribution of

� �
, given the independence

hypothesis, is a linear combination of independent Chi-Square variables. In order to deal
with thedistancemeasureasatest procedure, Corduas(1996) proposesto approximatethe
distribution of

� �
with asingleChi-Square random variable. Under thenull hypothesis:� � � � � � � for each

� ������<#���	� �
�
(10)

this distribution can be approximated with
��� �� ��� , where

� ��
is a chi-squared random

variablewith � degreeof freedom and, setting
� / � � !�� �	� � 
� / � :

� � �
� � � � � � � � � > � �� � �
� � � � �
�� � � �� � (11)

This approximation has a good performance, as showed in Corduas (1996). In this case
� � 
� � � 
� � and representsthecovariancematrix of theAR coefficients in (9) under the
null hypothesis.


� � and

� � represent respectively theestimatedcovariancematricesof the

coefficients

� � � � � � � � and


� � � � � � � � , obtained as functions of the maximum likeli-
hood estimators of the parameters of the GARCH models, as showed in (7). For practical
purposes, thevectors


� � and

� � will contain only the first

�
autoregressivecoefficients of

the representation (8), with
�

suitably high (in our applicationswewill use
� � �)2�2

). The
covariances matrices


� � and

� � can beobtained by:
� / ��� / 
� / ���/��

where

� /

isthecovariancematrix of theestimatedGARCH coefficientsand
� /

isamatrix
containing the derivatives of the functions

� / � with respect the GARCH coefficients. For
example, for the case of GARCH(1,1) model, the estimated parameters modelizing the

volatility structurewill be � 
 , / � 
- / � � , whereas

� / � � 
, / � 
, / 
- /��)� �	�	� 
, / 
- � &'�/ � .

Note that, to map out Figure 3, we have not performed estimation procedures, having
used the theoretical covariance matrix of ARMA(1,1) processes (Brockwell and Davis,
1996). For an ARMA(1,1) process with AR coefficient equal � and MA coefficient equal
� , thecovariancematrix is expressed by:

��������� � � � ����+? � � � � @
� ?�� > �

� @ " � � ��� ( > ?�� > �
� @ ?�� > � � @> ? � > � � @ ? � > � � @ ? � > � � @ " � � � � ( � � � � � ��� � � �� � � � ��� � �
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taking into account (6), weobtain that:� ��! " , / ��- / ( � � ��! " , / ( � � ��! " - / ( � <������ " , / � - / ( � � ���
� ��! " - / ( � � ���

����� " , / � - / � > - / ( � > ����� " , / � - / ( > � ��! " - / ( � � � �
Asaconsequence:

��� ���
	�� � � � ".� ��� � � ��� � < � � � ( > ".� � � � � ��� (
> ".� � � � � ��� ( � ��� � �

In thisway wecanapply thetest consideringhypothetical GARCH(1,1) processes, without
estimation step; theonly sample information weneed is the length of theseries

�
.
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