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Abstract

The technique of Padé Approximants, introduced in a previous work, is applied to

extended recent data on the distribution of variations of interest rates compiled by the

Federal Reserve System in the US. It is shown that new power laws and new scaling

laws emerge for any maturity not only as a function of the Lag but also as a function of

the average inital rate. This is especially true for the one year maturity where critical

forms and critical exponents are obtained. This suggests future work in the direction of

constructing a theory of variations of interest rates at a more “microscopic” level.
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1 Introduction

Many models have been constructed to try to describe and/or predict the term
structure of interest rates. Recently, it has been shown on a specific set of data that
the empirical distribution of the variation of interest rates is rather well reproduced
by using the technique of Padé Approximants [1]. This article is a further step
in this direction. The classical approach is based on Brownian motions of various
kinds. It leads to exponential tails (or superposition of exponential tails) in the
distributions. These so called narrow tails are usually badly rejected by the data.
Levy-flight [2], [3], [4] distributions have also been proposed. In this case the tails
of the distributions decrease as the inverse of a small power of the variation of the
interest rates (see below (10)), in fact a power comprised between one and two. The
predicted tails are really too fat and are also rejected by the data. Sometimes rather
unjustified cuts have been used to sharpen the Levy tails.

In a recent paper [1], analyzing numerically the data (Data {1}) on the Ameri-
can daily spot interest rates compounded by the Federal Reserve System [5] between
February 15, 1977 and August 4, 1997 (Nevents = 5108 corresponding to 5108 open-
ing days), it was discovered that the fat tails, known to appear in the empirical
distributions, decrease essentially as a fourth power of the variation of the interest
rate and are thus naturally amenable to ratios of polynomials. It was shown that
the empirical distributions, averaged on the initial interest rates, are very well fitted
with simple Padé Approximants. More recently, articles taking into account the fat,
but not too fat, tails and power laws have been proposed [6]-[7].

In this paper, using more complete data (Data {2}) recently available, again from
the FRS between January 2, 1962 and December 27, 2002 (10230 opening days, see
(6) below), we have been able to study in a more detailed way the Padé fits. At
a first stage, we confirmed the preceding analysis. The results are summarized in
section 2. In section 3, we have refined the analysis by dividing the new data in
suitable subsets, restricting ourselves to intervals in the initial interest rate. This
has allowed us to confirm and to extend the validity of the preceding results, but
also and more importantly to suggest new scaling laws.

These results will be used in a forthcoming article [8] to try to build a “micro-
scopic model” of interest rates.
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2 Padé Approximants fits. Update of the Previ-

ous Results

In this section, we present briefly the notation and update the results, which have
been obtained in [1] for the Data {1}, using the full data set (Data {2}) available
today [5].

Suppose that, at some initial time t0, the interest rate (for some maturity [m])
is I0 and, at some later time tf , it is If . The lag and the variation of interest rates
were defined as follows

• The lag is the time interval between the initial and final times

L = tf − t0 . (1)

It should be stressed that the lag is expressed in consecutive opening days and
that non working days were simply discarded [9].

• The variation of interest rates is

v = If − I0 . (2)

Since, in the data, the interest rates are expressed exactly in basis points
(0.01 percent), the basis point has been chosen as the natural unit. When
discretized, the variables I and v are thus represented by integers, Î and v̂.

Let us denote by p[m](L, v, I0) the probability distribution and by p̂[m](L, v̂, Î0)
the corresponding discretized distribution. They are the probability that the interest
rate for maturity [m] has moved from I0 to If during the lag L. Their norms are

∫
∞

−∞

p[m](L, v, I0) dv = 1 , (3)

∞∑

v̂=−∞

p̂[m](L, v̂, Î0) = 1 . (4)

In the FRS Data {1} and {2}, the maturities [m] = 1, 2, 3, 5, 7, 10 and 30
years are given. All the daily interest rates are expressed exactly in basis points.
They vary roughly from 1.5 % = 150 basis points to 18 % = 1800 basis points. The
discrete empirical distributions ŵ(Î) of the initial interest rates, for a given maturity
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and for the two sets, are defined by

ŵ(Î) =
Nd(Î)

Nevents
, (5)

Nd(Î) = number of days the interest rate, for maturity [m],

was Î basis points in the FRS Data {1} or {2} ,

Nevents = 5108 in Data {1} for all [m] ,

[m] = 1 2 3 5 7 10 30 in Data {2} .
Nevents = 10230 6606 10199 10199 8323 10199 6214

(6)

As an example, the FRS empirical distribution ŵ for the maturity [m] = 1 year and
for the Data {2} is given in Figure (1). Obviously, we have for any such distribution

1800∑

Î=150

ŵ(Î) = 1 . (7)

The main subject of study in [1] was in fact the discrete average p̂[m]
average(L, v̂)

defined by

p̂[m]
average(L, v̂) =

1800∑

Î0=150

ŵ[m](I0) p̂[m](L, v̂, Î0) . (8)

The discretized averages can easily be extracted from the data for lags (in days) such
that 1 ≤ L ≤ 30 and for variations of interest rates v̂ (expressed in basis points)
included in the range Rv = [−200 ≤ v̂ ≤ 200]. Indeed, outside this range, the data
is always zero. The discrete normalization becomes

200∑

v̂=−200

p̂[m]
average(L, v̂) = 1 . (9)

It has been first shown empirically, using Data {1}, that the tail of the term
structure of the interest rates decreases essentially as a fourth power of the variation
of the interest rates i.e.

p[m]
average(L, v) ≈ κ

1

|v|d when |v| becomes large (10)

with a suitable constant κ and a power d

d ≈ 4 . (11)
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This means that the distributions decrease much faster than what Levy flight models
suggest (namely 1 ≤ d ≤ 2) but much more slowly than what Brownian models
paverage ≈ κ exp(−v2/σ2) predict.

Using detailed fits, it has been shown in [1] that the average distribution (8) can
be very well (amazingly well) approximated by a Padé Approximant P (0, 4), i.e.
with a constant numerator and a polynomial of fourth degree in the denominator.
More precisely, for all maturities [m] and for all lags L, the following Padé form of
the probability distributions, in terms of v̂,

p̂[m]
average(L, v̂) =

q1

π
(
1 + (q2

1 + 2q2)v̂2 + q2
2 v̂

4
) , (12)

fits the Data {2} (and the Data {1} set) rather well.
Let us enumerate a few of the properties of this form and of the two remaining

real parameters q1 and q2 which depend on the lag L and on the maturity [m].

1. The continuous distribution corresponding to (12) is, for q1 positive, a purely
positive real function. In fact it is constructed as the modulus square of the
complex function f

f [m]
average(L, v) =

√
q1√

π (1 + iq1v + q2v2)
, (13)

p[m]
average(L, v) = | f [m]

average(L, v) |2 . (14)

2. The normalization (3) of the distribution (14) is automatic by construction.

3. The distribution depends only on v2, hence it is symmetrical under the in-
terchange {v ↔ −v}. This symmetry was checked empirically to hold to a
very precise degree. In other words, violations of this symmetry are zero well
within one standard deviation.

4. The tail of the distribution (12) is of the form v−4. The Bayesian Hill estima-
tors [10] of the empirical tails favor an approximate decrease of this kind.

5. An estimate of q1 is given by

q1 = π p̂[m]
average(L, 0) (15)

and of q2 by
q2 = −σ−1 (16)

where σ stands for the variance of the data distribution.
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6. The parameters q1 and q2 have very simple regular forms in term of the lag
L when L varies from one day to about a month and for any maturity [m].
Essentially

qi ≈ βi

(
L

Lr

)
−µi

, i = 1, 2 (17)

where, for convenience, we have chosen one arbitrary reference value Lr =
15 days. The µi, which we call scaling parameters, and the less essential
multiplication constants βi depend on [m] but not on L. The Table (1) (resp.
Table (2)) shows the µi and the ratio µ2/µ1 that we have obtained for the 7
investigated maturities using the Data {2} (resp. Data {1}) set.

In other words, as illustrated by the Figures (2) and (3) for [m] = 2 years, as
an example, in a ln(qi) versus ln(L) plot the data points align along a straight
line with slope −µi. The plots for the other [m]’s follow analogous straight
lines.

7. Moreover, one may note that one critical exponent is approximatively related
to the other exponent by (see Tables (1) (2))

µ2 ≈ 1.8 µ1 , (18)

8. It should be stressed that this scaling law (17) seems to be an important
discovery [1] which had escaped attention.

3 Padé Approximants fits. Initial Interest Rate

Dependence

More recently, we have studied the extended set of data (Data {2}) and performed
a more refined analysis.

Indeed, the new data having often a higher statistics, meaningful subsets of
data can be defined with initial interest rates limited to intervals. We have found
that subsets containing about two thousand events are large enough to lead to a
sufficiently precise determination of the parameters.

A detailed numerical analysis of the distributions restricting the data to an al-
most fixed initial interest rate I0 has convinced us that the same Padé behavior
prevails. An approximate determination of the dependence of the Padé parameters
qi on initial interest rate I0 follows. It suggests that new scaling laws are at work.

Let us summarize our results
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1. We have first divided the Data {2} set in subsets where I0 is restricted to
regions (overlapping or not)

∆ = [Î0min, Î0max] . (19)

The total probability ω∆ to be inside ∆ and the total numbers of events N∆

inside ∆ are given by

ω∆ =
Î0max∑

Î=Î0min

ŵ(Î) , (20)

N∆ = ω∆Nevents . (21)

In the present analysis, the regions have be chosen in such a way that the
N∆’s are around two thousands. If the number of events is chosen to be
smaller than about two thousand, the accuracy in the determination of the
parameters becomes hazardous. On the other hand, there seems to be no need
to select larger regions with more events in them. The events in Data {2}
can thus, for example for [m] = 1 year, be separated in five non overlapping
intervals covering the full Î0 range.

2. Let us define I0 as the empirical average of Î in a given region ∆

I0 =

∑Î0max

Î=Î0min

ŵ(Î) Î

ω∆
. (22)

3. The distributions, for the events within a region ∆ (see (24) for a precise
definition), are then supposed, in first approximation, to be represented by
normalized (3) Padé forms

p(L, v̂, I0) =
q1

π(1 + (q2
1 + 2q2)v̂2 + q2

2 v̂
4)

. (23)

4. The parameters qi appearing in Eq.(23) (for a given maturity [m]) are thus
evaluated as functions of L and I0. They are obtained from the data by
minimizing a χ2 function. In about all instances the fits are very good as
exemplified by the χ2 values.

5. In Figure (4), as an example using the Data {2} with L = 1 and [m] = 1 year,
two thousand points in the region ∆ =[420 basis points, 553 basis points]
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(see (19)) have been selected and the empirical points are plotted versus the
best Padé fit. The average initial interest rate (22) is about I0 = 502 basis
points. In this case, the values of qi evaluated in their respective units are
q1 = 38.6 ± 1.3(%)−1 and q2 = −308 ± 19(%)−2. The obtained χ2 is 61 with
83 degrees of freedom. In almost all L, [m] cases an eye check of the curves is
as satisfactory and the computed χ2 are as good.

6. At this point, an important remark is worth making. It should be stressed
that the parameters qi obtained this way are not really those at I0 = I0 itself
but a complicated average of the approximate qi in the corresponding ∆ range.
Indeed, it is obvious that the superposition of two or more Padé forms is, at
best, only approximatively of a Padé form. Since this is an important point,
let us explain it more precisely. If p̂(L, v̂, Î) is known for any Î, then the
average probability p(L, v̂, I0) (23) on ∆ is defined by

p(L, v̂, I0) =

∑Î0max

Î=Î0min

ŵ(Î) p̂(L, v̂, Î)

ω∆

. (24)

If it then were true that p̂(L, v̂, Î) is exactly of the Padé form (which is anyhow
not a correct statement but, at best, an approximate one), the ∆–average
probability p(L, v̂, I0) would not exactly be of a Padé form.

7. After the fits have been performed, we find that the new parameters qi depend
effectively and importantly on I0.

8. In a first approach, we have chosen to minimize the natural χ2 leaving q1 as
free parameter and by determining q2 from the experimental variance using
the relation (16). The interested reader can find the precise definition of the
χ2 in the reference [1], in and after their Eq.(22).

9. We defer to the next section a detailed discussion of the parameters qi, obtained
from the data, as functions of the lag L and of the average interest rate I 0.

4 Padé parameters as a function of the lag, of the

maturity and, of the initial interest rate

In this section, we summarize the scaling law and the I0 dependence that are sug-
gested by the empirical data.
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4.1 General considerations and scaling laws

The first scaling law and the I0 dependence can be summarized as follows. For each
maturity, the empirical qi are given by the approximate forms (compare to (17))

qi ≈ βi

(
L

Lr

)
−µi

Fi

(
I0

Ir

)
. (25)

where the Fi are functions depending of the initial interest rate. For convenience,
we have chosen two arbitrary reference values

Lr = 15 days

Ir = 600 basis points . (26)

In (25), the lag L is in days, the average initial rate I0 is in basis points, the
parameters q1 and β1 are in inverse basis points, the parameters q2 and β2 are in
inverse basis points squared while the scaling parameters µi are pure numbers.

The scaling law (25) says that, for every maturity [m], each of the parameters
qi is the product of two functions. One function depends on the lag L only and has
the form of a power law as (17). The second function, Fi, depends on I0 only.

The best values for the parameters µi are given in Table 1 as a function of the
maturity. The form of the Fi can be found in the fourteen plots given in Figures (5)-
(8). In Figure (5), for [m] = 1 year and L = 1 day, the ln(q1) is plotted versus I0/Ir.
In Figure (6), for [m] = 1 year and L = 1 day, the ln(q2) is plotted versus I0/Ir. In
Figure (7) there are six plots where for L = 1, ln(q1) is given versus I0/Ir for [m] =
2, 3, 5, 7, 10, 30 years. Finally, in Figure (8) there are six plots where for L = 1,
ln(q2) is given versus I0/Ir for [m] = 2, 3, 5, 7, 10, 30 years.

We have shown that the assumption in (25) that the qi factorize (separation of
variables) is favoured by the data. Hence, for a given maturity, the distributions of
ln(qi) as a function of I0 for different L values just differ by a constant shift. This
shift on the ln(qi) axis is equal to

ln(qi) − ln(q′i) = µi ln(L′/L) . (27)

To illustrate this, the Figures (9) and (10) show the distributions of ln(qi), for
[m] = 5 years as a function of I0 for 3 different L values (1, 10 and 30 days). To make
the comparison easier, the L=10 days and the L=30 days distributions have been
moved upwards by their respective shift term (µi ln(10) and µi ln(30) respectively).
For the other maturity, one obtains similar plots.

It has to be emphasized that this variable separation in the approximate forms
may be a hint of a scaling law which is at work.
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4.2 The scaling laws for the [m] = 1 year case

For the [m] > 1 year data, no particular simple shape for the function Fi can be
extracted. In the [m] = 1 year data, the functions Fi have a very simple shape. The
ln(qi) distributions as function of I0 (see Figures (5)(6) for L = 1 day) can be fitted
with straight lines and the following extremely simple approximate forms hold

qi ≈ βi

(
L

Lr

)
−µi

exp

((
I0

Ir

)
−νi
)

. (28)

where

ln(β1) = 3.14 ± 0.02, µ1 = 0.657 ± 0.005, ν1 = 1.32 ± 0.02 (29)

ln(β2) = 4.51 ± 0.02, µ2 = 1.197 ± 0.005, ν2 = 2.19 ± 0.02 . (30)

Hence, for the particular case of [m] = 1 year, we obtain an interplay of two simple
scaling laws with critical exponents µi and νi.

5 Conclusion

In this paper, we have extended an earlier work aimed at approximating the term
structure of interest rates by ratios of polynomials called Padé Approximants. The
form which is used is a purely positive Padé P [0, 4] with a constant numerator and
a fourth degree denominator in the variation of interest rates.

We have shown that for any maturity, for any lag and for initial interest rates
restricted to regions, the form holds to a very good degree of approximation, better
than what should have been hoped a priori.

The empirical parameters are represented by functions which point toward the
existence of scaling laws and scaling exponents at a more “microscopic level”. These
scaling laws were already discovered and discussed [1] in terms the lag variable. In
this paper, using the extended FRS data [5] now available, we have shown that
scaling laws seem also to be at work not only in the lag, as was shown previously,
but also in the initial interest rate. This is true especially for [m] = 1 year maturity
where simple critical forms (28) appear both in the lag L and in the average interest
rate I0 and critical exponents can be extracted.

In a forthcoming paper, we will try to use this result and the scaling laws which
are suggested by the data to build a theory of the term structure of interest rates
at a “microscopic level”.
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Figure Caption

Figure 1.

The FRS empirical weight distribution ŵ of the interest rates (see (5)) for the
maturity [m] = 1 year and for the Data set {2}.

Figure 2.

Distribution of ln(q1) as a function of ln(L/15) for [m] = 2 years using Data
set {2}.

Figure 3.

Distribution of ln(q2) as a function of ln(L/15) for [m] = 2 years using Data
set {2}.

Figure 4.

One example of a fit to the Data set {2} for [m] = 1 year and L = 1 day
by a Padé Approximant (continuous curve). The chosen subset (see (19))
corresponds to 2000 points in the region I0min = 420 and I0max = 553. The I0

is computed to be 502 basis points. The empirical points are plotted versus
the best Padé fit. In this case, the values of qi evaluated in their respective
units are q1 = 38.6 ± 1.3(%)−1 and q2 = −308 ± 19(%)−2. The obtained χ2 is
61 with 83 degrees of freedom.

Figure 5.

The parameter ln(q1) as a function of I0/600 for [m] = 1 year and L = 1
day. These points have been obtained by minimizing the χ2 as a function of
parameter q1. Each point corresponds to a subset of data containing close
to two thousand points with average I0 value equal to I0. The subsets are
overlapping so that the points are not independent. The unit used for q1

is (%)−1. For I0 it is the basis point. The straight line is a linear fit. Its
equation is ln(q1) = ln(β1) − ν1(I0/600) − µ1 ln(1/15) with ν1 = 1.32 ± 0.02
and ln(β1) = 3.14 ± 0.02.

Figure 6.
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The parameter ln(q2) as a function of I0/600 for [m] = 1 year and L = 1
day. These points have been obtained using the relation defined in (16). Each
point corresponds to a subset of data containing close to two thousand points
with average I0 value equal to I0. The subsets are overlapping so that the
points are not independent. The error on ln(q2) is computed by propagating
the error on the estimate of the variance. The unit used for q2 is (%)−2. For
I0 it is the basis point. The straight line is a linear fit. Its equation is ln(q2) =
ln(β2)−ν2(I0/600)−µ2 ln(1/15) with ν2 = 2.19±0.02 and ln(β2) = 4.51±0.02.

Figure 7.

The parameter ln(q1) as a function of I0/600 for [m] = 2, 3, 5, 7, 10, 30
years and L = 1 day. These points have been obtained by minimizing the
χ2 as a function of parameter q1. Each point corresponds to a subset of data
containing close to two thousand points with average I0 value equal to I0. The
subsets are overlapping so that the points are not independent. The unit used
for q1 is (%)−1. For I0 it is the basis point.

Figure 8.

The parameter ln(q2) as a function of I0/600 for [m] = 2, 3, 5, 7, 10, 30 years
and L = 1 day. These points have been obtained using the relation (16). Each
point corresponds to a subset of data containing close to two thousand points
with average I0 value equal to I0. The subsets are overlapping so that the
points are not independent. The unit used for q2 is (%)−2. For I0 it is the
basis point. The error on ln(q2) is computed by propagating the error on the
estimate of the variance.

Figure 9.

Distribution of ln(q1), for [m] = 5 years as a function of I0/600 for 3 different
L values (1,10 and 30 days) where the L= 10 and 30 days distributions have
been shifted on the ln(q1) axis by the correcting term (27).

Figure 10.

Distribution of ln(q2), for [m] = 5 years as a function of I0/600 for 3 different
L values (1,10 and 30 days) where the L= 10 and 30 days distributions have
been shifted on the ln(q2) axis by the correcting term (27).
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Table Caption

Table 1.

The values of the best fits to the parameters µi (see (25)) using Data set {2}.
These parameters are given as a function of the maturity [m]. The standard
errors correspond to a unit deviation in the χ2.

Table 2.

The values of the best fits to the parameters µi (see (25)) using Data set {1}.
These parameters are given as a function of the maturity [m]. The standard
errors correspond to a unit deviation in the χ2.
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Figure (1)
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Figure (3)

ln(q2)  versus  ln(L)  ([m] = 2 years)
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Figure (5)
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Figure (7)
ln(q1) versus I

—

0  (L= 1 day & [m] = 2 years)

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

0.6 0.8 1 1.2 1.4 1.6 1.8 2

 I
—

0/(600bp)

L
n(

q 1)

ln(q1) versus I
—

0 (L= 1 day & [m] = 3 years)

2.8

3

3.2

3.4

3.6

3.8

4

4.2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

 I
—

0/(600bp)

L
n(

q 1)

ln(q1) versus I
—

0  (L= 1 day & [m] = 5 years)

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

0.6 0.8 1 1.2 1.4 1.6 1.8

 I
—

0/(600bp)

L
n(

q 1)

ln(q1) versus I
—

0  (L= 1 day & [m] = 7 years)

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

0.8 1 1.2 1.4 1.6 1.8

 I
—

0/(600bp)

L
n(

q 1)

ln(q1) versus I
—

0  (L= 1 day & [m] = 10 years)

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

0.6 0.8 1 1.2 1.4 1.6 1.8

 I
—

0/(600bp)

L
n(

q 1)

ln(q1) versus I
—

0  (L= 1 day & [m] = 30 years)

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

 I
—

0/(600bp)

L
n(

q 1)

17



Figure (8)
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Figure (9)

ln(q1) versus I
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Table (1)

Data set {2}

maturity (yrs) µ1 (%−1) µ2 (%−2) µ2/µ1 (%−1)
1 0.657 ± 0.005 1.197 ± 0.005 1.82 ± 0.02
2 0.627 ± 0.006 1.178 ± 0.007 1.88 ± 0.03
3 0.653 ± 0.005 1.164 ± 0.006 1.78 ± 0.02
5 0.638 ± 0.005 1.139 ± 0.005 1.79 ± 0.02
7 0.626 ± 0.005 1.111 ± 0.005 1.78 ± 0.02
10 0.636 ± 0.005 1.100 ± 0.005 1.73 ± 0.02
30 0.578 ± 0.006 1.068 ± 0.006 1.85 ± 0.02

Table (2)

Data set {1}

maturity (yrs) µ1 (%−1) µ2 (%−2) µ2/µ1 (%−1)
1 0.607 ± 0.006 1.209 ± 0.009 1.99 ± 0.03
2 0.644 ± 0.004 1.200 ± 0.007 1.86 ± 0.03
3 0.652 ± 0.004 1.172 ± 0.007 1.80 ± 0.02
5 0.622 ± 0.006 1.139 ± 0.005 1.83 ± 0.02
7 0.606 ± 0.006 1.109 ± 0.004 1.83 ± 0.02
10 0.597 ± 0.005 1.093 ± 0.005 1.83 ± 0.02
30 0.588 ± 0.005 1.074 ± 0.004 1.83 ± 0.02

20



References

[1] Nuyts, J. and Platten, I., Physica A 299 (2001) 528-546.

[2] Mandelbrot, B.B., Journal of Business, 36 (1963) 394-419.

[3] Mandelbrot, B.B., Fractals and Scaling in Finance, Springer (1997).
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