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1 Introduction

The recent time series literature provides considerable evidence suggesting that many economic time

series are characterized by single or multiple shifts in the parameters of their conditional mean (see

Stock and Watson (1996, 1999), Bai (1997), Altissimo and Corradi (1999), Hansen (2001) among

numerous others). This upsurge in the econometrics of structural change followed the developments in

the theory of testing for breaks of unknown location developed in Andrews (1993) and Andrews and

Ploberger (1994) (see also Csörgo and Horvath (1997) and references therein for earlier developments

in the statistics literature).

Despite the growing applied and theoretical interest in structural change issues it is also the case that

most work in this area has operated under the assumption that structural instability may only occur in

the mean of a series, restricting higher order moments such as the variance to remain constant. Formal

theoretical research that concentrated on the potential presence of breaks in variance includes among

others the extension of cusum type tests to detecting shifts in the variance of stationary independent

series proposed in Inclan and Tiao (1994), the detection and estimation of multiple breaks in the

variance of independent gaussian series investigated in Chen and Gupta (1997) and more recently the

work of Wang and Zivot (2000) who proposed a Bayesian approach for the joint treatment of structural

instability in both the mean and variance. From an applied perspective the existence of breaks in

variance has also attracted considerable interest following the work of McConnell and Perez-Quiros

(2000) who documented the existence of a break in US output volatility occurring in the early mid 80s.

Building on this line of research, Van Dijk and Sensier (2001) also explored the existence of a break in

the volatility of a large database of US macroeconomic series and found that the vast majority of the

real series were also characterized by a variance shift that occurred during the early mid 80s (see also

Stock and Watson (2002, 2003a, 2003b)).

Despite strong empirical evidence about the presence of breaks in both the mean and variance of

economic time series our reading of the literature suggests that those two aspects have been mainly

investigated in isolation. Tests for a structural break in the regression parameters for instance are

typically conducted under the assumption of a constant error variance while tests of a break in variance

(usually implemented as tests of a shift in the mean of the squared residuals sequence obtained from a

model fitted via least squares) ignore the possibility of a break in the mean. The same also holds for

procedures used to estimate the timing of a shift in either the mean or variance (see Hansen (2001) for an
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overview of the economics and econometrics of structural change estimation and detection techniques).

Note that throughout this paper references to a break in either the mean or variance of a series are

also understood to refer to changes in the regression parameters characterizing the conditional mean

and error variance respectively.

A natural question that arises therefore is the extent to which the omission of the presence of a

break occurring in either the mean or variance of a series distorts inferences about structural break type

nonlinearities based on the conventional distributional theory developed in Andrews (1993). Similarly

it is also of interest to know how the large sample properties of the corresponding least squares based

change-point location estimators are affected when the estimation procedure fails to take into account

the possibility that both the mean and variance may shift at the same or different time periods. In

both McConnell and Perez-Quiros (2000) and Van Dijk and Sensier (2001) for instance the authors

recognized the possibility that inferences about the presence of a break in variance may be contaminated

by an omitted break in the mean of the series.

The plan of the paper is as follows. Section 2 focuses on the estimation of the location of a break in

mean when the analysis fails to take the presence of regime dependent heteroscedasticity into account

and that of the estimation of the location of a break in variance when a potential break in mean is

ignored. Section 3 concentrates on the distortions induced by the omission of either a break in mean

or variance when testing the null hypothesis of mean or variance linearity against the alternative of a

structural break. Section 4 concludes and all proofs are relegated to the appendix.

2 Least Squares Estimation of the Change-Point in Mean or Variance
under Misspecification

We consider the following data generating process

yt = x′tβt + σtεt t = 1, . . . , T (1)

where yt is the dependent variable, xt is a K×1 vector of regressors and βt the corresponding K×1 time

varying coefficient vector written as βt = β1I(t ≤ k0
1) + β2I(t > k0

1) with I(.) denoting the indicator

function and k0
1 the timing of the break. Writing

σt = σ1I(t ≤ k0
2) + σ2I(t > k0

2) (2)
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with σ1 > 0 and σ2 > 0, the disturbance term σtεt is also characterized by a break occuring in its

variance at some time k0
2. The model in (1) is thus characterized by a break in its conditional mean

parameters and error variance occurring at times k0
1 and k0

2 respectively. For simplicity in what follows

we will refer to the break in the β′s and σ′s as the break in mean and variance respectively. Throughout

this paper we operate under the following set of assumptions

Assumptions

(i) εt|Ωt ∼ i.i.d.(0, 1) with E(εt)4 < ∞,

(ii) k0
1 = [Tπ0

1] and k0
2 = [Tπ0

2] with π0
i ∈ Πi and Πi = [πi, π̄i] ⊂ (0, 1) for i=1,2,

(iii) sup
π∈[0,1]

∣∣∣∣∣
∑[Tπ]

t=1 xtεt

T

∣∣∣∣∣ = op(1),

(iv) sup
π∈[0,1]

∣∣∣∣∣
∑[Tπ]

t=1 xtx
′
t

T
−Q(π)

∣∣∣∣∣ = op(1) with Q(π) denoting a positive definite matrix, absolutely con-

tinuous and monotonically increasing function of π,

where Ωt denotes the information set at time t and [.] is the greatest integer function. Assumptions

(i) and (ii) are standard in the change-point literature (see Bai (1997), Chong (2001)). Assumption

(ii) for instance requires the true change-point not to be located in the extreme top or bottom of the

sample. This ensures that there are enough observations at both ends of the sample so as to ensure

the identifiability of regime specific parameters (see Andrews (1993)). In applied work it is common

practice for instance to set the lower bound π1 to 5% or 10% and use π̄1 = 1− π1. Assumptions (iii)

and (iv) are high-level and correspond to unifom law of large number type requirements. They allow

for a wide range of specifications for the conditional mean equation, including stationary autoregressive

processes while trending and integrated regressors are ruled out.

At this stage it is also important to emphasise the limiting behaviour of the partial sum of the

second moments of the regressors as represented by the matrix functional Q(π) in (iv). Within the

specification given by (1)-(2) and unless the regressors are assumed to be exogenous or the size of the

shift in the β′s and σ′s is assumed to converge to zero with T , Q(π) will not be a linear functional

of π. The matrix functional Q(π) will typically be expressed as a nonlinear function of π with kinks

occurring at π = π0
1 and π = π0

2. Under π0
1 = π0

2 ≡ π0 for instance we will let

Q(π) = πQ1I(π ≤ π0) + [π0Q1 + (π − π0)Q2]I(π > π0) (3)

with Q1 = E(xtx
′
t) for t ≤ k0, Q2 = E(xtx

′
t) for t > k0. Under xt = yt−1 for instance we will have
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Q1 = σ2
1/(1 − β2

1) and Q2 = σ2
2/(1 − β2

2). This also highlights the fact that restricting Q(π) to be

linear in π as say when Q(π) = πQ for some Q � 0 ∀t would lead to a more restrictive framework for

the possible choice of the regressors in (1). Our formulation of Q(π) also extends naturally to the case

where the breaks in mean and variance do not occur at the same time. Under k0
1 < k0

2 for instance and

letting Q1 = E(xtx
′
t) for t ≤ k0

1, Q2 = E(x′txt) for k0
1 < t ≤ k0

2 and Q3 = E(xtx
′
t) for t > k0

2 we write

Q(π) = πQ1I(π ≤ π0
1) + [π0

1Q1 + (π − π0
1)Q2]I(π1 < π ≤ π0

2)

+ [π0
1Q1 + (π0

2 − π0
1)Q2 + (π − π0

2)Q3]I(π > π0
2). (4)

Throughout this paper our analyis will explicitly distinguish between the two scenarios described in

(3) and (4) together with the case where Q(π) = πQ. The formulation in (4) also extends naturally to

the case where k0
2 < k0

1.

2.1 Estimation of the Change-Point in the Mean under an Omitted Variance Shift

Our initial objective is to evaluate the properties of k̂1 an estimator of the location of the change-point

k0
1 in the slope parameters and intercept when the regime dependent heterogeneous structure of the

error process is ignored in the fitted specification. The estimator of the change-point is obtained as the

minimizer of the (misspecified) concentrated sum of squared errors function

S1T (k) =
k∑

t=1

(yt − x′tβ̂1(k))2 +
T∑

t=k+1

(yt − x′tβ̂2(k))2 (5)

where β̂1(k) and β̂2(k) denote the least squares estimators of the slope parameters within each regime

for given k. Alternatively and for greater technical convenience we can also reformulate k̂1 as k̂1 =

arg maxk G1T (k) with G1T (k) = ST − S1T (k) and ST =
∑T

t=1(yt − x′tβ̂)2 denoting the full sample

sum of squared errors. In Bai and Perron (1998) the authors established the weak consistency of

π̂1 = k̂1/T under a set of assumptions which allow for the error variances to also shift across regimes.

Although not explicitly stated the weak consistency result π̂0
1

p→ π0
1 continues to hold if the break in

the conditional mean parameters and that in the variance do not occur at the same time. Despite this

desirable limiting property of π̂1, it is difficult to analytically quantify the loss of efficiency that arises

from the omission of the break in variance since the limiting distribution of change-point estimators

is not easily tractable under fixed shift magnitudes and is not invariant to numerous model specific

features such as the distribution of the ε′ts (see Hinkley (1970)). Instead the common approach in the

literature has been to proceed within a small shift asymptotic framework, allowing the magnitude of

the jump to converge to zero at a prespecified rate.
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Being aware of the finite sample properties of π̂1 is important not only because of the direct economic

implications that the accurate dating of a structural break in the mean may entail but also for the

subsequent analysis such as the search for further breaks in the variance. In this latter case for instance

obtaining residuals that are not contaminated by an omitted break in the conditional mean is crucial

for properly locating the potential presence of a break in volatility (see Stock and Watson (2002)).

Here we initially aim to highlight the important distortions that characterise π̂1 even in moderately

large sample sizes, when the data generating process is as in (1)-(2). Specifically we consider an

autoregressive process of order one given by yt = (β(1)
0 + β

(1)
1 yt−1)I(t ≤ k0

1) + (β(2)
0 + β

(2)
1 yt−1)I(t >

k0
1)+σtεt and where σt = σ1I(t ≤ k0

2)+σ2I(t > k0
2). In McConnell and Perez-Quiros (2000) for instance

the authors have advocated such a specification for the growth rate in US GDP. Our experiments are

conducted across N = 5000 replications using T ∈ {250, 500, 1000} and (σ1, σ2) ∈ {(1, 1), (1, 2), (2, 1)}

thus covering both increases and decreases in the error variances together with the constant variance

benchmark case. Regarding the positioning of the structural breaks we consider two scenarios. One

that imposes the break date to be the same, setting π0
1 = π0

2 ∈ {0.25, 0.50, 0.75} and one that allows

the breaks to occur at different periods with (π0
1, π

0
2) ∈ {(0.25, 0.75), (0.75, 0.25)}. Throughout all our

experiments the random error term εt is taken to be a standard normally distributed random variable.

For the choice of the autoregressive parameters we set β
(1)
0 = 1, β

(2)
0 = 2, β

(1)
1 = 0.4 and β

(2)
1 = 0.1.

The latter correspond to an unconditional mean equal to 1.67 for the first regime and 2.22 for the

second regime.

Results are presented in Table 1 which displays the empirical means and standard deviations of

the change-point estimator π̂1. For the correctly specified fitted model corresponding to the DGPs

with σ1 = σ2 = 1 we can observe that the empirical biases of π̂1 are small, virtually vanishing for

T ≥ 500. The corresponding empirical standard deviations also decline with T reaching a common

magnitude of approximately 0.024 across all true locations of the break dates. The picture is different

however when the true models are characterized by a break in variance and the latter is ignored during

the estimation stage. Despite the clear progression of the estimator π̂1 towards its true value π0
1 as

T grows we can observe important finite sample biases even for sample sizes as large as T=500. The

direction of the biases depends jointly on whether the underlying error variance increased or decreased

from one regime to the other and on the location of the true break point. Under the common break

date scenarios, the changepoint estimator displays a tendency to overestimate the location of its true

counterpart when σ1 < σ2 and to underestimate it when σ1 > σ2. The most pronounced negative bias
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occurs when the true break point occurs towards the end of the sample (i.e. under π0
1 = 0.75) while

the greatest positive bias occurs when the true break point locates at the beginning of the sample (i.e.

π0
1 = 0.25). In this latter case and under T=250 the bias might translate into mislocating the timing

of the structural break by more than a decade when the data are quarterly for instance. We also note

that the magnitudes of the biases are affected by whether the breaks in mean and variance occur at

the same time compared with scenarios where one precedes or succedes the other.

Table 1 about here

Regarding the behaviour of the empirical standard deviations of π̂1 we can also note that for both small

and large sample sizes they are substantially higher than their counterparts under σ1 = σ2. These

differences in the magnitudes of the standard deviations persist as T is allowed to grow. Regardless

of the true locations of the break points they are always substantially higher than their i.i.d errors

based counterparts even under T=1000. This also reflects the fact that the limiting distribution of π̂1

is different from that obtained under the i.i.d errors case. Overall, omitting the presence of a break in

the error variance induces an important increase in the variability of π̂1. The magnitude of the effect

appears to depend jointly on the location of the true break points and on whether the error variance

increased or decreased following the occurence of the break.

2.2 Estimator of the Change-Point in the Variance under an Omitted Mean-Shift

We next focus on the estimation of the change-point in the error variance when the potential presence

of a break in mean is ignored. A common approach for estimating k0
2 involves treating the break in

variance problem as a break in the mean of a relevant squared sequence (see Csörgo and Horváth

(1997), Hansen (2001)). This is justified by the fact that under a correctly specified conditional mean

equation the ensuing residuals are consistent for the true errors. It is also important to stress that our

key interest here is the estimation of the location of the change-point rather than that of the various

parameters characterizing each regime.

When ignoring the presence of the shift in the slopes the squared residuals are given by zt =

(yt − x′tβ̂)2. The estimator of the change-point in the variance is then defined as

k̂2 = arg max
k

G2T (k) (6)
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with

G2T (k) =
k(T − k)

T
(z̄2 − z̄1)2 (7)

and where z̄1 =
∑k

t=1 zt/k and z̄2 =
∑T

t=k+1 zt/(T − k). Note that the objective function in (7) is

equivalent to one that would arise if we were to estimate the location of a mean shift in the scalar

sequence zt. Under the present scenario where zt absorbs the omitted shift in the β′s that occurs

at time k0
1 the limiting behaviour of π̂2 will crucially depend on whether or not the breaks in mean

and variance occurred at the sime time (i.e. whether k0
1 = k0

2 or k0
1 6= k0

2) and on the location of k0
1.

Under k0
1 6= k0

2 for instance we can intuitively expect that the zt sequence will be characterised by two

structual breaks in its mean locating at k0
1 and k0

2 respectively. Thus by proceeding as in (6)-(7) to

obtain the timing of the break in zt our analysis will be omitting the presence of a second underlying

break. It is then unclear whether the resulting break date estimator will be consistent for its true

counterpart or that that has been ignored.

2.2.1 Common Break Dates

We initially concentrate on the case where the breaks in mean and variance occurred at the same time,

setting k0
1 = k0

2 ≡ k0 in model (1) and first focus on the limiting behaviour of a normalised version of

the objective function in (7). This preliminary result is summarised in the following lemma.

Lemma 1 Under assumptions (i)-(iv) with Q(π) as in (3) we have

sup
π∈[0,1]

∣∣∣∣G2T ([Tπ])
T

−G2∞(π)
∣∣∣∣ p→ 0

as T →∞, where G2∞(π) is a nonstochastic continuous function of π given by

G2∞(π) =

[
π(1− π0)2

1− π
+

(
(π0)2(1− π)2 − π2(1− π0)2

π(1− π)

)
I(π > π0)

]

×
[
∆ + (π0)2λ′Q1M

−1Q2M
−1Q1λ− (1− π0)2λ′Q2M

−1Q1M
−1Q2λ

]2
(8)

with ∆ = (σ2
2 − σ2

1), λ = (β2 − β1), and M = [π0Q1 + (1− π0)Q2] ≡ Q(1).

The above lemma summarises the uniform probability limit of the objective function in (7) which will

play a key role in the evaluation of the asymptotic properties of π̂2. From the expression in (8) we also

note that under a framework where Q(π) = πQ in assumption (iv), G2∞(π) is given by

G2∞(π) =

[
π(1− π0)2

1− π
+

(
(π0)2(1− π)2 − π2(1− π0)2

π(1− π)

)
I(π > π0)

]

×
[
∆− (1− 2π0)λ′Qλ

]2
. (9)
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The next proposition presents the limiting properties of π̂2 = k̂/T when estimated as in (6)-(7).

Proposition 2 Under assumptions (i)-(iv) and letting k0
1 = k0

2 ≡ k0 in model (1) we have π̂2
p→ π0 as

T →∞.

According to the above proposition omitting the presence of a break in the β′s does not affect the

consistency of the change-point estimator in the variance when the latter is estimated using the squared

residuals of the fitted mispecified model and provided that the omitted break in mean occurs at the

same time as that characterizing the error variance.

To further explore the properties of the estimator described in proposition 2 we reconsider the same

Monte-Carlo exercise as in Table 1 but here we wrongly fit a linear AR(1) model to the data and con-

sider the sampling properties of the resulting change-point estimator obtained from the (misspecified)

squared residuals. Results are presented in Table 2.

Table 2 about here

For small sample sizes we can note that the biases in the estimates of π̂2 are positive under σ1 < σ2

and negative when σ1 > σ2. We also note that in absolute terms finite sample biases are smaller when

the omitted break in mean occurs in the middle of the sample with π0 = 0.5. This latter point also

holds true for the corresponding empirical standard deviations of π̂2 suggesting that the location of

the break in variance is more accurately estimated when π0 = 0.5. Overall however we observe a clear

decline in the empirical biases of π̂2 as the sample size increases. Under all scenarios for π0 for instance

the biases are virtually zero under T = 1000. Similarly all empirical standard deviations are seen to

have stabilised around a common value of approximately 0.012 across all parameter configurations.

Comparing the empirical standard deviations presented in Table 1 and Table 2 it is also interesting to

note that the same break location is estimated much more accurately when estimating it as a break in

variance (omitting the break in mean) rather than as a break in mean (omitting the break in variance).

2.2.2 Distinct Break Dates

Before proceeding with the limiting behaviour of π̂2 under the case where the break in mean and

the break in variance do not occur at the same time (i.e. k0
1 6= k0

2) we initially concentrate on the

corresponding limiting behaviour of the normalised version of the objective function G2T (k) in (7),

summarised in the following lemma
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Lemma 2 Under assumption (i)-(iv) with k0
1 < k0

2, Q(π) as in (4) we have

sup
π∈[0,1]

∣∣∣∣G2T ([Tπ])
T

−G2∞(π)
∣∣∣∣ p→ 0

as T →∞, where G2∞(π) is a nonstochastic continuous function of π given by

G2∞(π) =
π

1− π

[
(1− π0

2)∆ + (π0
1)2λ′C1λ− (1− π0

1)λ′C2λ
]2

for π ≤ π0
1

= π(1− π)

[
1− π0

2

1− π
∆ +

(π0
1)2

1− π
λ′C1λ−

π0
1

π
λ′C2λ−

(π0
1)2(π − π0

1)

π(1− π)
λ′C3λ

]2

for π0
1 < π < π0

2

=
1− π

π

[
π0

2∆− (π0
1)2λ′C1λ− (π0

1)λ′C2λ + (π0
1)2λ′C4λ

]2
for π > π0

2 , (10)

where C1 = Q1M
−1HM−1Q1, C2 = HM−1Q1M

−1H, C3 = Q1M
−1Q2M

−1Q1, C4 = Q1M
−1Q3M

−1Q1

with M = π0
1Q1 + (π0

2 − π0
1)Q2 + (1− π0

2)Q3 ≡ Q(1) H = [(π0
2 − π0

1)Q2 + (1− π0
2)Q3].

At this stage it is also useful to specialise G2∞(π) in (10) to the case where Q(π) = πQ. Under this

scenario we have C1 = (1− π0
1)Q, C2 = (1− π0

1)
2Q and C3 = C4 = Q leading to

G2∞(π) =
π

1− π

[
(1− π0

2)∆− (1− π0
1)(1− 2π0

1)λ
′Qλ

]2
for π ≤ π0

1

= π(1− π)

[
1− π0

2

1− π
∆− π0

1

π
(1− 2π0

1)λ
′Qλ

]2

for π0
1 < π < π0

2

=
1− π

π

[
π0

2∆− π0
1(1− 2π0

1)λ
′Qλ

]2
for π ≥ π0

2. (11)

The following proposition presents the limiting properties of π̂2 corresponding to the case where Q(π) =

πQ.

Proposition 3 Under assumptions (i)-(iv) with Q(π) = πQ, π0
1 < π0

2 and as T → ∞ we have (a)

π̂2
p→ π0

2 if π0
1 = 1

2 , (b) π̂2
p→ π0

2 if π0
1 6= 1

2 and (∆/λ′Qλ)2 > (1 − 2π0
1)

2π0
1(1 − π0

1)/π0
2(1 − π0

2), (c)

π̂2
p→ π0

1 if π0
1 6= 1

2 and (∆/λ′Qλ)2 < (1− 2π0
1)

2π0
1(1− π0

1)/π0
2(1− π0

2).

According to the above proposition omitting the presence of a break in the β′s may adversely affect

the limiting properties of the resulting change-point in the variance π̂2 in the sense that the latter may

no longer be consistent for its true counterpart π0
2 but converge to the location of the omitted break in

the β′s instead. This will not happen however if the omitted break in the regression parameters occurs

in the middle of the sample with π0
1 = 1

2 .

To shed further light on the specific condition on the parameters required under scenarios (b) and

(c) of proposition 3 we can focus on a simple mean-variance shift model, setting xt = 1 in (1) and for

which λ′Qλ ≡ (β2 − β1)2. From proposition 3 in order for π̂2 to be consistent for π0
1 instead of π0

2

the parameter configuration must be such that ∆2 < (β2 − β1)4(1− 2π0
1)

2π0
1(1− π0

1)/π0
2(1− π0

2). It is
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then straightforward to note that this outcome will only occur if the size of the jump in the means is

substantially higher than that characterising the variances. This can be illustrated via a small Monte-

Carlo experiment in which we chose to set (σ1, σ2) = (1, 1.5) and (β1, β2) = (1, 3) with π0
1 = 0.25 and

π0
2 = 0.35. Using samples of size T = 1000 across N = 5000 replications led to an empirical mean of

0.24 for π̂2, clearly illustrating the fact that omitting the presence of a break in mean may lead us to

wrongly view it as a break in variance.

We next extend our results to a more general framework allowing Q(π) to be as in (4). Equivalently

we are now interested in the limiting behaviour of π̂2 when G2∞(π) is given by (10) rather than

(11). This scenario is relevant for instance if the DGP contains lagged dependent variables as in an

autoregressive specification. Using (10) we initially introduce a condition on the parameters ensuring

that G2∞(π0
2) > G2∞(π0

1)[
∆− (π0

1)
2λ′(C3 − C4)λ

]2
>

π0
1(1− π0

1)
π0

2(1− π0
2)

[
λ′C2λ− (π0

1)
2λ′C3λ

]2
(12)

and the following proposition summarises the limiting behaviour of π̂2 under this setting.

Proposition 4 Under assumptions (i)-(iv) with π0
1 < π0

2 and as T →∞ we have π̂2
p→ π0

2 if G2∞(π0
2) >

G2∞(π0
1) and π̂2

p→ π0
1 if G2∞(π0

1) > G2∞(π0
2).

At this stage it is also interesting to relate the above results to the analysis in Bai (1997) where the

author investigated the limiting properties of a single change-point location estimator obtained as the

minimiser of S1T (k) with xt = 1 when the underlying series is characterised by more than one break.

An important result established in that paper is that the change-point location estimator obtained from

a model that ignored the presence of multiple breaks will remain consistent for one of the true break

points. Since the omission of a break in mean (assumed to occur at a different time than the break in

variance) will translate into a break in the squared residuals sequence zt our results in Propositions 3

and 4 can also be interpreted along the same lines as the analysis of Bai (1997). The condition presented

in (12) is then equivalent to requiring that one of the two breakpoints dominates in the sample in the

sense of contributing the most to the maximisation of the objective function. Although the results

presented in Lemma 2 and the consistency properties that followed in propositions 3 and 4 have been

established for the case where the break in mean is assumed to occur prior to that characterising the

error variances it is a simple algebraic exercise to reformulate the same results for the case where

π0
1 > π0

2 via an appropriate reparameterization of (4) and details are therefore omitted.

To further illustrate the empirical properties of π̂2 when the break in mean and variance occur at
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different time periods we conducted a simulation experiment using a DGP similar to that considered in

Table 2 but in which we allowed π0
1 and π0

2 to be such that (π0
1, π

0
2) = {(0.25, 0.75), (0.75, 0.25)}. Within

the first configuration the break in mean precedes that in the variance while in the second configuration

the break variance occurs before that in the mean. Results for this experiment are presented in Table

3. Note that the chosen parameter configuration is such that in the context of proposition 3 we have

G2∞(π0
2) > G2∞(π0

1).

Table 3 about here

Across both panels of Table 3 we can clearly observe that despite the omitted break in mean that

occured either before or after the break in variance the estimator of the break fraction π̂2 converges to

its true counterpart as T is allowed to increase.

3 Testing for a Structural Break under Misspecification

Our previous analysis has dealt with the estimation of the timing of a structural break in either the

slope parameters or error variance within a misspecified framework that ignored the possibility that

both may shift at some unknown time periods denoted k0
1 and k0

2 respectively. We found that omitting

the presence of a break in either the conditional mean parameters or error variance may have important

adverse effects on the limiting and finite sample properties of the estimated break locations. At the

same time we also highlighted the occurence of a wide range of scenarios for which the omission of

either of the breaks does not affect the consistency of estimator obtained from a misspecified model.

Our next objective is to evaluate the influence of the same type of misspecification when testing the

null hypotheses given by H0 : β1 = β2 and H0 : σ2
1 = σ2

2 respectively.

3.1 Testing for a Structural Break in Regression Slopes

We are initially interested in the consequences of wrongly imposing the homogeneity of error variance

(i.e. σ1 = σ2 = σ say) when testing the null hypothesis given by H0 : β1 = β2 in (1). The commonly

used test statistics for conducting such inferences are the supremum, average and exponential function-

als of the Wald, LM or LR statistics proposed in Andrews (1993) and Andrews and Ploberger (1994).

The limiting distributions of these test statistics are nonstandard and are given by corresponding func-

tionals of normalized squared brownian bridge processes (see also Hansen (1997) for an overview of their

11



limiting properties and practical implementation using simulation based approximations to p-values).

Within our present context we can express the LM test statistic as LMT (π1) = G1T ([Tπ1])/σ̂2
u

with σ̂2
u =

∑T
t=1 û2

t /T and ût = yt − x′tβ̂. Note that here we are operating under the null hypothesis

of no change in regression parameters, setting β1 = β2 = β ∀t. As shown in Andrews (1993) and

Andrews and Ploberger (1994) under a wide range of regularity conditions and assuming that σ1 = σ2

the asymptotic null distribution of the supremum version of LMT (π) is given by

sup
π∈Π1

LMT (π) d→ sup
π∈Π1

[W (π)− πW (1)]′[W (π)− πW (1)]
π(1− π)

(13)

where W (.) denotes a K dimensional standard Brownian Motion.

If we proceed as above when evaluating the test statistic but ignore the fact that σ1 6= σ2, it is

straightforward to establish that although the right hand side of (13) remains stochastically bounded it

is no longer given by the normalized quadratic form of a Brownian Bridge process. For the clarity of the

exposition this latter point can be illustrated using a simple variance shift framework with a constant

term as the sole regressor, setting xt = 1 in (1). The key point affecting the distributional results is the

fact that under the behaviour of ut in (1) with xt = 1,
∑[Tπ]

t=1 u2
t /T no longer converges to a functional

that is linear in π. More specifically the limit functional is given by πσ2
1 + (σ2

2 − σ2
1)(π − π0

2)I(π > π0
2)

with a kink at π = π0
2. Under this scenario, the limiting behaviour of LMT (π) is given by

LMT (π) d→ 1
π(1− π)ζ

[
σ1(W (π)− πW (1))− (σ2 − σ1)π(W (1)−W (π0

2))
]2

I(π ≤ π0
2)

+
1

π(1− π)ζ

[
σ2(W (π)− πW (1))− (σ2 − σ1)(1− π)W (π0

2)
]2

I(π > π0
2) (14)

with ζ = σ2
1π

0
2+σ2

2(1−π0
2). We can note from (14) that the correct limiting distribution of the supremum

of the LM statistic (or any other functional such as the average or exponential) will now depend on the

location of the ignored break fraction π0
2 that characterizes the variance of the error process together

with the magnitudes of σ1 and σ2. More importantly this highlights the fact that basing inferences on

the asymptotic p-values tabulated in Hansen (1997) will result in misleading conclusions. To further

explore this latter point we conducted a simulation experiment designed to evaluate the magnitudes

and direction of the distortions that may arise when facing this misspecification scenario.

Table 4 presents the empirical sizes of the SupLM based tests when the fitted model ignores the

presence of regime dependent heteroscedasticity. Specifically we used the iid errors based critical

values while the process that generated the data although satisfying the null given by H0 : β1 = β2 is

characterized by an error process of the form ut = σtεt with σt as in (2). For comparison purposes the
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first column of Table 4 also presents the corresponding figures under a DGP with iid errors, imposing

σ1 = σ2 = 1. All experiments have been conducted across N = 5000 replications.

Table 4 about here

Focusing first on the case where the tests are evaluated within a correctly specified framework we can

note that the test is slightly undersized in finite samples but clearly tends towards the correct nominal

sizes of 2.5% and 5% as T is allowed to grow (see Diebold and Chen (1997) for a comprehensive Monte-

Carlo evaluation of the finite sample size properties of change-point tests). Note that since our tests

are conducted using p-values obtained via simulations rather than exact critical values we may not

expect an exact match between nominal and empirical sizes even under very large sample sizes.

The remaining figures presented in Table 4 clearly highlight the important distortions that may

arise in practice when the regime dependent nature of the error variance is ignored. Under all scenarios

the empirically obtained sizes are greater than their nominal counterparts clearly suggesting that the

direction of the distortions is towards a spurious detection of a break-point in the regression parameters.

Equivalently, failing to take the shift in error variances into account translates into frequent spurious

detections of a break in β. The magnitudes of the size distortions depend jointly on the location of

the break in variance captured by π0
2 and on whether the variance increased or decreased following

the occurence of the break. When the omitted break in variance locates towards the bottom of the

sample (e.g. when π0
2 = 0.75) the greatest size distortions occur under σ1 < σ2 and vice-versa when

the omitted break occurs at the top of the sample (e.g. when π0
2 = 0.25). Unanimously however we

can note that the direction of the distortions is towards spurious rejections of the null hypothesis of no

structural break in the regression parameters. The key practical implication of the above findings is

that one should interpret inferences about the presence of a structural break in mean very cautiously

since the latter can be seriously contaminated by an underlying shift in variance and the finding of a

break in mean may in fact be due to an underlying break in the variance of the process under study. To

our knowledge most recent applied work in this area ignored this potential source of misspecification.

It is a notoriously difficult problem to design good test procedures about the equality of regression

slopes while not necessarily maintaining the equality of variances assumption. One possible amendment

to the test procedure evaluated above is to proceed with a traditional GLS type transformation of the

original model. Suppose for instance that σ1, σ2 and k0
2 are all known parameters. Since the model

under the null is here given by yt = x′tβ + σtεt we can define ỹt = yt/σt and x̃t = xt/σt and rewrite
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the model as ỹt = x̃′tβ + εt. Although the new error process is now i.i.d. an important feature still

present in this GLS-transformed model is the nonstationarity of the regressor matrix x̃t which violates

the regularity conditions ensuring a limiting behaviour as in the right hand side of (13). Further insight

into this latter point can be obtained by evaluating the limiting behaviour of the partial sums of the

sample moment matrix. Using straightforward algebra and setting xt = 1 for notational simplicity we

have

1
T

[Tπ]∑
t=1

x̃tx̃
′
t ⇒ π

σ2
1

−
[

1
σ2

2

− 1
σ2

1

]
(π − π0

2)I(π > π0
2). (15)

Note that when σ2
1 = σ2

2, (15) is linear in π whereas for σ2
1 6= σ2

2 it is characterised by a kink occurring

at π = π0
2. The above arguments illustrate that the null limiting distribution of the LM statistic for

testing H0 : β1 = β2 in the GLS transformed model will be affected by the structural break in x̃t.

Here we initially explore an alternative approach for testing the null H0 : β1 = β2 by proceeding via

a fixed regressor bootstrap (see Hansen (2000)) implemented on the GLS transformed model. We let

σ̂t = σ̂1I(t ≤ k̂2)+σ̂2I(t > k̂2) where σ̂2
1 =

∑k̂2
t=1(yt−x′tβ̂)2/k̂2, σ̂2

2 =
∑T

t=k̂2+1
(yt−x′tβ̂)2/(T−k̂2) and k̂2

is obtained as in (6)-(7). The fixed regressor bootstrap has been proposed in Hansen (2000) for testing

the null hypothesis of no structural change in regression slopes when the regressors may themselves

be characterised by a break and is therefore appropriate for our specific framework. To evaluate its

properties in the context of the above GLS transformed specification we implement the procedure on

the same model as that considered in Table 4. Specifically the DGP is given by a linear AR(1) process

with an error variance characterised by a break occurring at time k0
2. Results are displayed in Table

5 in which we present the empirical size of the bootstrap based test when implemented on both the

GLS transformed and untransformed models. Here our simulation based results have been obtained

using 1000 bootstrap draws across N = 5000 Monte-Carlo replications. For comparison purposes the

empirical sizes based on Andrews’s limiting distribution (using Hansen’s (1997) asymptotic p-value

approximations) are also presented.

Table 5 about here

Focusing first on the homoscedastic version of the bootstrap within the GLS transformed model

we can note substantial improvements to the size properties of the test with the bootstrap based

empirical sizes remaining very close to their nominal counterparts of 2.5% and 5% for both large and

moderately small sample sizes. Comparing the figures of Table 5 with Table 4 under π0
2 = 0.75 and
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(σ1, σ2) = (1, 2) for instance we can note that a strongly inflated empirical size of 19.24% for T=250

has an homoscedastic bootstrap based counterpart of 5.60%. Similar improvements can also be noted

throughout all other parameter configurations. It is also interesting to note that although theoretically

inappropriate inferences based on the standard limiting distributions using Hansen’s (1997) p-values

also lead to notable improvements to the size properties of the test when implemented on the GLS

transformed model. In the first column of Table 5 we also present empirical sizes corresponding to

a scenario where the GLS transformation is spurious in the sense that the underlying DGP is not

characterised by any jump in variances.

From the figures presented in Table 5, it is also important to note the inappropriateness of the

bootstrap when applied to the untransformed model, although its heteroscedastic counterpart (designed

for models with conditional but not regime dependent heteroscedasticity) appears to improve upon

the raw asymptotic p-value based inferences or the homoscedastic counterpart of the bootstrap. We

conjecture that the ability of the heteroscedastic bootstrap to provide such an improvement when

implemented on the untransformed model may be due to the fact that an omitted break in unconditional

variance may be mistaken for an ARCH type error (see Hendry (1995, pp. 574-576)).

Besides the above bootstrap based approach for assessing the presence of a break in regression slopes

a more practical and less computationally intensive strategy involves the use of robust (heteroskedas-

ticity consistent) versions of the LM statistic implemented on the untransformed model. This is for

instance the approach adopted in Stock and Watson (2002) when exploring breaks in the volatility

of macroeconomic time series. It is well known however that the use of heteroskedasticity consistent

covariance matrix estimators when constructing the test statistics may lead to substantial finite sample

distortions in practice (see for instance MacKinnon and White (1985), Cribari-Neto and Zarkos (2001)

among others).

The use of robust test statistics that allows us to ignore the potential presence of a jump in the error

variance lead to tests with severe size distortions in sample sizes most commonly encountered in applied

research. More specifically the empirical sizes characterising the tests appear to be substantially lower

than their nominal counterparts, typically less than half the nominal size. Under T=250 for instance

and regardless of the magnitude of π0
2 the empirical size corresponding to a nominal size of 2.5% was

approximately 1%. Comparing the use of robust test statistics with the bootstrap based approach it

is also clear that the latter performs substantially better.
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3.2 Testing for a Structural Break in Error Variances

Here we consider the null hypothesis of no structural break in the error variance given by H0 : σ2
1 = σ2

2

in (1)-(2). Under a correctly specified conditional mean equation the test can be viewed as a simple

mean-shift test implemented on the squared residual sequence. Letting yt = x′tβ + ut with ut = σεt

denote the true model under the null hypothesis and defining the corresponding squared residuals

sequence as zt = (yt − x′tβ̂)2 the LM statistic can here be written as

LMT (k) =
T

k(T − k)
1
σ̂2

z

[
k∑

t=1

zt −
k

T

T∑
t=1

zt

]2

(16)

with σ̂2
z =

∑T
t=1(zt − z̄)2/T . Using the invariance principle for variances proposed in Phillips and

Solo (1992) and noting that under our operating assumptions and the law of large numbers we have

σ̂2
z

p→ (κ − 1)σ4 with κ ≡ E(ε4t ) it follows that under the null hypothesis the limiting distribution of

the test statistic in (16) is given by

LMT (π) d→ [W (π)− πW (1)]2

π(1− π)
. (17)

Thus inferences based on the supremum, average or exponential versions of LMT (π) over π ∈ Π2 can be

conducted in a manner identical to the traditional change-point tests using the p-value approximations

obtained in Hansen (1997).

Next, suppose that the above procedure ignores the fact that a structural break occurred in the

slope parameters. In other words the model under the null hypothesis continues to have a constant

error variance given by ut = σεt ∀t but β1 6= β2 in (1) and the test ignores this latter feature. Since û2
t

absorbs the ignored break in the β′s we intuitively expect increasingly spurious rejections of the null of

variance homogeneity as T → ∞. As shown below however this result is not general and will depend

on the magnitude of π0
1, the true location of the omitted break in the regression slopes together with

the nature of the regressors. The following proposition initially summarises the limiting behaviour of

a normalised version of LMT (π).

Proposition 5 Under assumptions (i)-(iv) and model (1)-(2) with σ1 = σ2 = σ but β1 6= β2 we have

LMT (π)
T

p→ 1
π(1− π)τ

[
(1− π0

1)
2λ′H1λ− (π0

1)
2λ′H2λ

]2
×

[
π(1− π0

1)− (π − π0
1)I(π > π0

1)
]2

(18)

uniformly over π ∈ Π2 as T →∞ and where H1 = Q2Q(1)−1Q1Q(1)−1Q2, H2 = Q1Q(1)−1Q2Q(1)−1Q1

with Q(1) = [π0
1Q1 + (1− π0

1)Q2] and τ = plim σ̂2
z .
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Note that the right hand side of (18) has been obtained under the assumption that Q(π) is as in (3)

and a direct implication of this result is that when testing the null hypothesis of no structural break

in variance under an omitted break in mean we will have LMT (π) = Op(T ), implying as expected that

the size of the test for the null of homogeneity of variances will tend towards one with T leading to

systematic rejections of the true null hypothesis, except for some special cases. Equivalently, failing to

take the break in mean into account will translate into a spurious break in the error variance, regardless

of whether the supremum, average or exponential versions of the test statistic are used.

The expression presented in (18) also indicates that the location of the omitted break in mean as

given by the magnitude of π0
1 will play a key role in determining the severity of the size distortions.

For some specific values of π0
1 it is in fact possible that the empirical implementation of the test may

show virtually no distortions at all. To illustrate this latter point we initially focus on the special case

that arises under Q(π) = πQ, implying that H1 = H2 = Q in (18). This formulation would be valid

for instance if the regressors xt are exogenous. The corresponding limiting behaviour of LMT (π)/T is

now given by

LMT (π)
T

p→ (λ′Qλ)2

π(1− π)τ
(1− 2π0

1)
2
[
π(1− π0

1)− (π − π0
1)I(π > π0

1)
]2

. (19)

From the expression in (19) it is then clear that under this scenario if the omitted break in mean locates

in the middle of the sample with π0
1 = 1

2 then LMT (π)/T will converge to zero in probability and the

resulting finite sample size distortions will be much less pronounced. This will not happen however if

Q(π) is expressed as in (3) since for the right hand side of (19) to equal zero under this setting we would

require H1 = H2 or equivalently Q1 = Q2 which is ruled out by assumption. If π0
1 6= 1

2 however, it is

possible that a particular parameter configuration of the DGP may be such that (1−π0
1)

2H1 = (π0
1)

2H2

thus making the right hand side of (19) to equal zero. When the DGP is given by an AR(1) process

with yt = β1yt−1I(t ≤ k0
1) + β2yt−1I(t > k0

1) + εt for instance then choosing β1, β2 and π0
1 so that

(1− π0
1)

2(1− β2
1) = (π0

1)
2(1− β2

2) would lead to LMT (π)/T
p→ 0.

To further illustrate and quantify the properties described above we conducted a set of simulation

experiments that focused on the empirical size of the test of the null of variance homogeneity when

the fitted models ignore the presence of a break in the regression slopes. The null model is now given

by (1)-(2) with σ1 = σ2 and although β1 6= β2 in the underlying true model the squared residuals are

obtained imposing the homogeneity of the β′s. The DGP is here given by an AR(1) with a constant

error variance but a break in both its constant and slope parameters. Results are presented in Table
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6 which displays the empirical sizes of the test of no structural break in variance under 2.5% and 5%

nominal sizes. As expected the figures confirm the fact that the empirical size of the test increases

with T leading to spurious rejections of the true null hypothesis.

Table 6 about here

Under π0
1 = 0.75 for instance and a nominal size of 5% the corresponding empirical size is given by

11.08% under T=500 and 16.56% under T=1000. Confirming our above discussion we also observe a

notably different size behaviour when the omitted break in the β′s occurs in the middle of the sample

with π0
1 = 0.50. Under this scenario the empirical sizes remain very close to their nominal counterpart.

On possible strategy for avoiding important size distortions when testing for the possible presence

of a break in variance is to control for the break in mean, regardless of whether the latter is present or

not. Specifically, using zt = (yt − x′tβ̂1(k̂1)I(t ≤ k̂1)− x′tβ̂2(k̂1)I(t > k̂1))2 in (18) it is straightforward

to note that the resulting limiting distribution of the LM statistic will be as in (19), thus validating the

use of the asymptotic p-values tabulated in Hansen (1997). To further explore the properties of this

approach, Table 7 presents corresponding empirical size estimates when the latter are obtained while

controlling for the break in mean. The improvements relative to Table 6 are clearly substantial.

Table 7 about here

Under T = 500 and π0
1 = 0.75 for instance and without controlling for the break in mean the standard

implementation of the SupLM test led to an empirical size of 11.08% for a nominal counterpart of

5%. Once we controlled for the break in mean the corresponding empirical size was reduced to 5.02%,

virtually equal to its nominal counterpart. The first column of Table 7 also demonstrates that the

empirical sizes that arise when the controlled shift in mean is spurious (i.e. when the underlying DGP

has no break in mean) remain close to their nominal counterparts.

4 Conclusions

In this paper we formally evaluated the consequences of omitting the presence of a structural break

in either the conditional mean parameters or error variance of a series on the resulting change-point

estimators and the size properties of parameter constancy tests. We first derived the limiting properties

of the least squares based estimators of the location of a break in the mean or variance within models
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that ignored the possibility that both breaks may occur at the same or different times. Subsequently we

analysed the consequences of this type of misspecification on the size properties of parameter constancy

tests.
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Table 1: Estimator of the Break in Mean Under an Omitted Break in Variance

DGP: yt = (1 + 0.4yt−1)I(t ≤ [Tπ0
1]) + (2 + 0.1yt−1)I(t > [Tπ0

1]) + σtεt

σt = σ1I(t ≤ [Tπ0
2]) + σ2I(t > [Tπ0

2])

π̂1 Stdev

π0
1 = 0.25, π0

2 = 0.25
(σ1, σ2) T=250 T=500 T=1000 T=250 T=500 T=1000

(1,1) 0.268 0.249 0.246 0.132 0.068 0.024
(1,2) 0.434 0.341 0.278 0.226 0.170 0.082
(2,1) 0.213 0.222 0.232 0.099 0.065 0.035

π0
1 = 0.50, π0

2 = 0.50
(1,1) 0.484 0.491 0.495 0.108 0.051 0.024
(1,2) 0.582 0.541 0.513 0.143 0.096 0.046
(2,1) 0.382 0.436 0.473 0.138 0.101 0.056

π0
1 = 0.75, π0

2 = 0.75
(1,1) 0.698 0.733 0.744 0.145 0.066 0.025
(1,2) 0.762 0.765 0.760 0.108 0.060 0.033
(2,1) 0.506 0.608 0.695 0.229 0.195 0.121

π0
1 = 0.25, π0

2 = 0.75
(1,1) 0.268 0.249 0.246 0.132 0.068 0.024
(1,2) 0.449 0.324 0.255 0.284 0.204 0.073
(2,1) 0.272 0.257 0.248 0.135 0.093 0.050

π0
1 = 0.75, π0

2 = 0.25
(1,1) 0.698 0.733 0.744 0.145 0.066 0.025
(1,2) 0.698 0.723 0.741 0.141 0.095 0.050
(2,1) 0.479 0.624 0.727 0.288 0.233 0.101
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Table 2: Estimator of the Break in Variance Under an Omitted Break in Mean

(Common Break Dates)

DGP: yt = (1 + 0.4yt−1)I(t ≤ [Tπ0]) + (2 + 0.1yt−1)I(t > [Tπ0]) + σtεt

σt = σ1I(t ≤ [Tπ0]) + σ2I(t > [Tπ0])

π̂2 Stdev

π0 = 0.25
(σ1, σ2) T=250 T=500 T=1000 T=250 T=500 T=1000

(1,2) 0.300 0.268 0.257 0.114 0.049 0.015
(2,1) 0.220 0.235 0.242 0.036 0.022 0.012

π0 = 0.50
(1,2) 0.530 0.513 0.505 0.062 0.031 0.011
(2,1) 0.462 0.483 0.492 0.062 0.031 0.012

π0 = 0.75
(1,2) 0.773 0.762 0.756 0.036 0.023 0.011
(2,1) 0.697 0.730 0.742 0.105 0.041 0.015
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Table 3: Estimator of the Break in Variance Under an Omitted Break in Mean

(Distinct Break Dates)

DGP: yt = (1 + 0.4yt−1)I(t ≤ [Tπ0
1]) + (2 + 0.1yt−1)I(t > [Tπ0

1]) + σtεt

σt = σ1I(t ≤ [Tπ0
2]) + σ2I(t > [Tπ0

2])

π̂2 Stdev

π0
1 = 0.25, π0

2 = 0.75
(σ1, σ2) T=250 T=500 T=1000 T=250 T=500 T=1000

(1,2) 0.774 0.762 0.756 0.037 0.024 0.012
(2,1) 0.696 0.762 0.756 0.105 0.039 0.013

π0
1 = 0.75, π0

2 = 0.25
(1,2) 0.304 0.269 0.257 0.120 0.049 0.015
(2,1) 0.219 0.234 0.242 0.036 0.022 0.012
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Table 4: Empirical Size (Null of No Structural Break in Mean)

DGP: No shift in Mean (omitted variance shift)

yt = 1 + 0.4yt−1 + ut

ut = σ1εtI(t ≤ [Tπ0
2]) + σ2εtI(t > [Tπ0

2])

Correct Fit π0
2 = 0.25 π0

2 = 0.50 π0
2 = 0.75

Nominal 2.5% 5% 2.5% 5% 2.5% 5% 2.5% 5%

σ1 = 1, σ2 = 1 σ1 = 1, σ2 = 2 σ1 = 1, σ2 = 2 σ1 = 1, σ2 = 2
T=250 1.58% 3.52% 2.78% 5.28% 6.74% 10.86% 13.56% 19.24%
T=500 1.88% 4.36% 3.40% 6.00% 7.24% 12.00% 14.04% 19.76%
T=1000 2.36% 4.66% 3.60% 6.60% 8.06% 12.70% 15.26% 21.54%

σ1 = 1, σ2 = 1 σ1 = 2, σ2 = 1 σ1 = 2, σ2 = 1 σ1 = 2, σ2 = 1
T=250 1.58% 3.52% 13.12% 18.98% 6.06% 10.10% 2.88% 5.00%
T=500 1.88% 4.36% 14.34% 21.08% 6.44% 11.06% 3.24% 6.36%
T=1000 2.36% 4.66% 15.12% 21.20% 7.86% 12.10% 3.79% 6.70%
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Table 5: Empirical Size (Null of No Structural Break in Mean)

DGP: No shift in Mean (omitted variance shift)

yt = 1 + 0.4yt−1 + ut

ut = σ1εtI(t ≤ [Tπ0
2]) + σ2εtI(t > [Tπ0

2])

σ1 = 1, σ2 = 2

GLS Transformed Model

σ1 = σ2 = 1 π0
2 = 0.25 π0

2 = 0.50 π0
2 = 0.75

T=250 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0%

Andrews 2.00% 4.40% 1.70% 3.70% 2.30% 4.70% 3.00% 5.60%
Homboot 2.30% 4.50% 2.00% 4.20% 2.30% 4.70% 3.10% 5.70%
Hetboot 2.90% 5.70% 2.60% 5.20% 2.90% 5.50% 3.10% 6.10%

T=500 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0%

Andrews 2.10% 4.70% 1.80% 3.90% 1.90% 4.60% 2.80% 5.80%
Homboot 2.41% 5.10% 2.30% 4.40% 2.10% 4.70% 2.60% 5.50%
Hetboot 2.60% 5.80% 2.70% 4.80% 2.20% 5.30% 3.00% 6.00%

T=1000 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0%

Andrews 2.40% 4.80% 2.20% 4.90% 2.70% 5.40% 3.30% 5.90%
Homboot 2.30% 4.70% 2.30% 5.40% 2.80% 5.20% 3.20% 5.30%
Hetboot 2.80% 5.20% 2.30% 5.70% 3.20% 5.70% 3.20% 5.60%

Untransformed Model

T=250 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0%

Andrews 2.20% 4.40% 3.40% 6.40% 7.90% 12.50% 15.50% 21.30%
Robust 1.00% 2.70% 1.06% 2.68% 0.94% 2.58% 0.82% 2.32%

Homboot 2.30% 4.80% 3.50% 6.50% 8.30% 12.90% 16.10% 22.40%
Hetboot 2.70% 5.40% 3.40% 6.50% 4.70% 8.10% 5.70% 9.40%

T=500 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0%

Andrews 2.30% 5.00% 3.60% 6.90% 7.50% 10.90% 11.20% 16.70%
Robust 1.68% 3.60% 1.54% 3.90% 1.54% 3.38% 1.30% 3.06%

Homboot 2.50% 5.30% 3.30% 6.50% 7.10% 10.60% 11.60% 16.80%
Hetboot 2.80% 5.80% 3.60% 5.80% 3.60% 5.60% 3.80% 6.70%

T=1000 2.5% 5.0% 2.5% 5.0% 2.5% 5.0% 2.5% 5.0%

Andrews 2.50% 4.90% 4.10% 7.20% 6.90% 11.00% 12.90% 18.90%
Robust 1.98% 4.16% 2.02% 4.62% 1.92% 4.18% 1.84% 3.34%

Homboot 2.60% 5.20% 4.20% 6.00% 6.90% 11.13% 14.50% 19.50%
Hetboot 2.70% 5.50% 3.30% 5.60% 3.00% 5.90% 3.20% 5.90%
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Table 6: Empirical Size (Null of No Structural Break in Variance)

DGP: No shift in Variance (omitted shift in mean)

yt = (1 + 0.4 yt−1)I(t ≤ k0
1) + (2 + 0.1 yt−1)I(t > k0

1) + εt

π0
1 = 0.25 π0

1 = 0.50 π0
1 = 0.75 No Break in Mean

Nominal 2.5% 5% 2.5% 5% 2.5% 5% 2.5% 5%

T=250 3.78% 6.10% 2.32% 4.54% 4.58% 7.90%
T=500 5.50% 9.06% 2.54% 5.16% 6.48% 11.08%
T=1000 7.94% 12.52% 3.24% 5.76% 11.08% 16.56%
T=5000 35.90% 46.86% 5.78% 10.12% 52.24% 62.16%

Table 7: Empirical Size (Null of No Structural Break in Variance)

DGP: No shift in Variance (omitted shift in mean)

yt = 1I(t ≤ k0
1) + 2I(t > k0

1) + εt

π0
1 = 0.25 π0

1 = 0.50 π0
1 = 0.75 No Break in Mean

Nominal 2.5% 5% 2.5% 5% 2.5% 5% 2.5% 5%

T=250 26.96% 36.44% 1.50% 2.98% 27.28% 36.36% 2.62% 4.68%
T=500 57.54% 66.80% 1.36% 3.50% 57.06% 67.28% 2.80% 4.90%
T=1000 90.64% 94.26% 1.80% 3.62% 90.72% 94.36% 2.76% 5.38%
T=5000 100.00% 100.00% 1.86% 3.82% 100.00% 100.00% 2.60% 4.96%
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Table 8: Empirical Size (Null of No Structural Break in Variance)

DGP: No shift in Variance (controlled shift in mean)

yt = (1 + 0.4 yt−1)I(t ≤ k0
1) + (2 + 0.1 yt−1)I(t > k0

1) + εt

Correct Fit π0
1 = 0.25 π0

1 = 0.50 π0
1 = 0.75

Nominal 2.5% 5% 2.5% 5% 2.5% 5% 2.5% 5%

T=250 2.46% 4.32% 2.62% 4.68% 2.92% 4.98% 2.70% 4.50%
T=500 2.64% 4.56% 2.80% 4.72% 3.14% 4.98% 2.84% 5.02%
T=1000 2.99% 5.14% 3.14% 5.46% 3.10% 5.72% 2.92% 5.40%
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APPENDIX

PROOF OF LEMMA 1 Here we are operating under the case where the break in mean and variance occur at the same

time k0. We initially obtain the limiting behaviour of the normalised objective function given by G2T ([Tπ])/T for k ≤ k0.

We have z̄1 = 1
k

∑k

t=1
(σ1εt − xt(β̂ − β1))

2 and z̄2 = 1
T−k

[
∑k0

t=k+1
(σ1εt − xt(β̂ − β1))

2 +
∑T

t=k0+1
(σ2εt − xt(β̂ − β2))

2]

which we can rewrite as

z̄1 = σ2
1

∑k

t=1
ε2t

k
+ (β̂ − β1)

∑k

t=1
xtx

′
t

k
(β̂ − β1)− 2σ1(β̂ − β1)

∑k

t=1
xtεt

k
(A.1)

and

z̄2 = σ2
1

∑k0

t=k+1
ε2t

T − k
+ σ2

2

∑T

t=k0+1
ε2t

T − k
+ (β̂ − β1)

∑k0

t=k+1
xtx

′
t

T − k
(β̂ − β1)

+ (β̂ − β2)

∑T

t=k0+1
xtx

′
t

T − k
(β̂ − β2)− 2σ1(β̂ − β1)

∑k0

t=k+1
xtεt

T − k
− 2σ2(β̂ − β2)

∑T

t=k0+1
xtεt

T − k
(A.2)

with β̂ given by

β̂ =

(∑T

t=1
xtx

′
t

T

)−1(∑k0

t=1
xtx

′
t

T
β1 +

∑T

t=k0+1
xtx

′
t

T
β2 + σ1

∑k0

t=1
εt

T
+ σ2

∑T

t=k0+1
εt

T

)
. (A.3)

Using assumptions (iii)-(iv) on (A.3) together with standard algebra gives β̂
p→ Q(1)−1[Q(π0)β1 +(Q(1)−Q(π0))β2] from

which we can also obtain β̂ − β1
p→ Q(1)−1(Q(1)−Q(π0))λ and β̂ − β2

p→ −Q(1)−1Q(π0)λ. Using the expressions of z̄1

and z̄2 in (A.1)-(A.2) together with assumptions (iii)− (iv) gives

z̄2 − z̄1
p→

(
1− π0

1− π

)
∆ + λ′(Q(1)−Q(π0))Q(1)−1 (πQ(π0)−Q(π))

π(1− π)
Q(1)−1(Q(1)−Q(π0))λ

+ λQ(π0)Q(1)−1 (Q(1)−Q(π0))

1− π
Q(1)−1Q(π0)λ (A.4)

where ∆ = (σ2
2 − σ2

1) and the convergence is uniform over π ≤ π0.

Noting that we are operating under the assumption where Q(π) is as in (3) with Q(1) = π0Q1 + (1 − π0)Q2, (A.4) can

be rewritten as

z̄2 − z̄1
p→ 1− π0

1− π

[
∆− (1− π0)2λ′Q2M

−1Q1M
−1Q2λ + (π0)2λ′Q1M

−1Q2M
−1Q1λ

]
(A.5)

from which it follows that supπ≤π0 |G2T ([Tπ])
T

−G2∞(π ≤ π0)| p→ 0 with G2∞(π ≤ π0) given by

G2∞(π ≤ π0) =
π(1− π0)2

1− π

[
∆− (1− π0)2λ′Q2M

−1Q1M
−1Q2λ + (π0)2λ′Q1M

−1Q2M
−1Q1λ

]2
. (A.6)

Proceeding similarly for the case k ≥ k0 we obtain supπ≥π0 |G2T ([Tπ])
T

−G2∞(π ≥ π0)| p→ 0 with G2∞(π ≥ π0) given

by

G2∞(π ≥ π0) =
(π0)2(1− π)

π

[
∆− (1− π0)2λ′Q2M

−1Q1M
−1Q2λ + (π0)2λ′Q1M

−1Q2M
−1Q1λ

]2
. (A.7)

Writing G2∞(π) = G2∞(π ≤ π0)I(π ≤ π0) + G2∞(π ≥ π0)I(π > π0) and using (A.6) with (A.7) leads to the desired

result in (10).

PROOF OF PROPOSITION 2 We initially show that G2∞(π) in (7) is uniquely maximised at π = π0. Letting

C = [∆+(π0)2λ′Q1M
−1Q2M

−1Q1λ− (1−π0)2λ′Q2M
−1Q1M

−1Q2λ]2 we have that dG2∞(π < π0)/dπ = [(1−π0)/(1−

π)]2C2 > 0 together with dG2∞(π < π0)/dπ|π=π0 = C2 > 0. Thus G2∞(π) is strictly increasing on [π, π0] and uniquely
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maximised at π = π0. Similarly dG2∞(π)/dπ = −(π0/π)2C2 < 0 and dG2∞(π)/dπ|π=π0 = −C2 implying that G2∞(π)

is strictly decreasing on [π0, π̄] and uniquely maximised at π = π0. Thus uniformly over [π, π̄] the normalised objective

function in (7) converges uniformly to a continuous function that is uniquely maximised at π = π0. Since π̂2 maximises

G2T ([Tπ]) it follows from Theorem 2.1 in Newey and McFadden (1994) that π̂2
p→ π0.

PROOF OF PROPOSITION 3 We initially evaluate the extrema of G2∞(π) given in (11). Under π0
1 < π0

2 and

for π0
1 = 1

2
we have G2∞(π < π0

1) = π(1 − π0
2)2∆2/(1 − π), G2∞(π = π0

1) = (1 − π0
2)2∆2, G2∞(π1 < π < π0

2) =

π(1 − π0
2)2∆2/(1 − π), G2∞(π = π0

2) = π0
2(1 − π0

2)∆2 and G2∞(π > π0
2) = (1 − π)(π0

2)2∆2/π. Next, we note G2∞(π =

π0
1)−G2∞(π < π0

1) = (1−2π)(1−π0
2)2∆2/(1−π) > 0 since π < 1

2
and G2∞(π = π0

2)−G2∞(π > π0
2) = π0

2(π−π0
2)∆2/π > 0

since π > π0
2 . We also note that G2∞(π = π0

2) − G2∞(π = π0
1) = (1 − π0

2)(2π0
2 − 1)∆2 > 0 since π0

2 > 1
2
. Finally

G2∞(π = π0
2)−G2∞(π0

1 < π < π0
2) = (π0

2 − π)(1− π0
2)/(1− π) > 0 from which we can conclude that G2∞(π) is uniquely

maximised at π = π0
2 . Since π̂2 maximises G2∞([Tπ])/T and given that this objective function converges uniformly in

probability to a nonstochastic continuous function of π that is uniquely maximised at π = π0
2 the result in (a) follows

from Theorem 2.1 in Newey and McFadden (1994). For π0
1 6= 1

2
from (11) it is also straightforward to observe that

G2∞(π = π0
1)−G2∞(π < π0

1) > 0 and G2∞(π = π0
2)−G2∞(π > π0

2) > 0. Furthermore, under this scenario we also have

G2∞(π = π0
1)−G2∞(π = π0

2) = (π0
2 − π0

1)

[
π0

1(1− 2π0
1)2(λ′Qλ)2

π0
2

− 1− π0
2

1− π0
1

∆2

]2

(A.8)

thus implying that G2∞(π = π0
2) > G2∞(π = π0

1) iff(
∆

λ′Qλ

)2

>
π0

1(1− π0
1)(1− 2π0

1)2

π0
2(1− π0

2)
. (A.9)

Noting that

G2∞(π = π0
2)−G2∞(π0

1 < π < π0
2) = (π0

2 − π)

[
∆2 1− π0

2

1− π
− (λ′Qλ)2

(π0
1)2(1− 2π0

1)2

ππ0
2

]
(A.10)

the expression in (A.10) is strictly positive iff(
∆

λ′Qλ

)2

>
(1− 2π0

1)2(π0
1)2

ππ0
2

. (A.11)

but since (A.11) is automatically satisfied under the requirement in (A.9) it follows that G2∞(π) is uniquely maximised

at π = π0
2 and the result in (b) is established. If the condition in (A.9) is reversed so that G2∞(π = π0

1) > G2∞(π = π0
2)

it also follows that G2∞(π = π0
1)−G2∞(π1 < π < π0

2) > 0 thus implying that G2∞(π) is uniquely maximised at π = π0
1 ,

leading to the result in (c).

PROOF OF PROPOSITION 4 We initially evaluate the extrema of G2∞(π) as given by (10). Letting ρ1 = σ2
1+λ′C2λ,

ρ2 = σ2
1 + (π0

1)2λ′C3λ and ρ3 = σ2
2 + (π0

1)2λ′C4λ we can reformulate (10) as G2∞(π ≤ π0
1) = [(1 − π0

2)(ρ3 − ρ2) + (1 −

π0
1)(ρ2 − ρ1)]

2π/(1− π), G2∞(π0
1 < π ≤ π0

2)π(1− π)[
1−π0

2
1−π

(ρ3 − ρ2) +
π0
1

π
(ρ2 − ρ1)]

2 and G2∞(π ≥ π0
2) = [π0

2(ρ3 − ρ2)π
0
2 +

π0
1(ρ2 − ρ1)]

2(1 − π)/π. Next, noting that dG2∞(π ≤ π0
1)/dπ > 0 and dG2∞(π ≥ π0

2)/dπ < 0 we have that G2∞(π) is

increasing over [π, π0
1 ] and decreasing over [π0

2 , π̄] thus G2∞(π0
1) > G2∞(π < π0

1) and G2∞(π0
2) > G2∞(π > π0

2) implying

that the maximum of G2∞(π) cannot occur on [π, π0
1) or (π0

2 , π̄]. Next, we have

G2∞(π0
2)−G2∞(π0

1 < π < π0
2) =

(1− π0
2)(π0

2 − π)

1− π
(ρ3 − ρ2)

2 − (π0
1)2(π0

2 − π)

ππ0
2

(ρ2 − ρ1)
2 (A.12)

and

G2∞(π0
1)−G2∞(π0

1 < π < π0
2) =

π0
1(π − π0

1)

π
(ρ2 − ρ1)

2 − (1− π0
2)2(π − π0

1)

(1− π)(1− π0
1)

(ρ3 − ρ2)
2 (A.13)
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We initially assume that G2∞(π0
2) > G2∞(π0

1). Within our new notations this requirement can be reformulated as

G2∞(π0
2)−G2∞(π0

1) =
1− π0

2

1− π0
1

(ρ3 − ρ2)
2 − π0

1

π0
2

(ρ2 − ρ1)
2 > 0. (A.14)

Given that (A.14) holds it is then straightforward to note that (A.12) is strictly positive since π > π0
1 , thus implying

that G2∞(π)/T is uniquely maximised at π0
2 . Since π̂2 maximises G2T ([Tπ]) it follows from Theorem 2.1 in Newey

and McFadden (1994) that π̂2
p→ π0

2 as required. Proceeding similarly for the case where (A.14) is negative so that

G2∞(π0
1) > G2∞(π0

2) we again have that (A.13) is strictly positive, implying that under this scenario G2∞(π) is uniquely

maximised at π0
1 . Since π̂2 maximises G2T ([Tπ])/T it again follows from Theorem 2.1 in Newey and McFadden (1994)

that π̂2
p→ π0

1 as required.

PROOF OF PROPOSITION 5 We first consider the case k ≤ k0
1 under which we have

∑k

t=1
zt/T =

∑k

t=1
(yt −

x′tβ̂)2/T =
∑k

t=1
(σεt − x′t(β̂ − β1))

2 from which we can also write∑k

t=1
zt

T
= σ2

∑k

t=1
ε2t

T
+ (β̂ − β1)

′
∑k

t=1
xtx

′
t

T
(β̂ − β1) + op(1). (A.15)

Letting λ = (β2 − β1) and using assumptions (iii)-(iv) we have

β̂ − β1
p→ Q(1)−1(Q(1)−Q(π0

1))λ. (A.16)

and since we are operating under the assumption that π ≤ π0
1 here Q(π) is given by Q(π) = πQ1 and (A.16) can be

rewritten as β̂1− β1
p→ (1− π0

1)Q(1)−1Q2 with Q(1) = π0
1Q1 + (1− π0

1)Q2. Upon rearranging and using standard algebra

we thus have ∑k

t=1
zt

T

p→ σ2π + π(1− π0
1)2λ′Q2Q(1)−1Q1Q(1)−1Q2λ (A.17)

where the convergence is uniform over π ≤ π0
1 . Proceeding similarly for the limiting behaviour of

∑k

t=1
zt/T under the

case k ≥ k0
1 we have

∑k

t=1
zt =

∑k0
1

t=1
zt +

∑k

t=k0
1+1

zt leading to∑k

t=1
zt

T
= σ2

∑k

t=1
ε2t

T
+ (β̂ − β1)

′
∑k0

1
t=1

xtx
′
t

T
(β̂ − β1)

+ (β̂ − β2)
′

∑k

t=k0
1+1

xtx
′
t

T
(β̂ − β2) + op(1) (A.18)

which follows from assumption (iii). Under this scenario (A.16) continues to hold and we also have β̂−β2
p→ −π0

1Q(1)−1Q1λ

leading to ∑k

t=1
zt

T

p→ σ2π + (1− π0
1)2π0

1λ′Q2Q(1)−1Q1Q(1)−1Q2λ

+ (π0
1)2(π − π0

1)λ′Q1Q(1)−1Q2Q(1)−1Q1λ (A.19)

with the convergence being uniform over π ≥ π0
1 . We next turn to the limiting behaviour of

∑T

t=1
zt/T which we can

write as ∑T

t=1
zt

T
= σ2

∑T

t=1
ε2t

T
+ (β̂ − β1)

′
∑k0

1
t=1

xtx
′
t

T
(β̂ − β1)

+ (β̂ − β2)
′

∑T

t=k0
1+1

xtx
′
t

T
(β̂ − β2) + op(1) (A.20)

from which we obtain ∑T

t=1
zt

T

p→ σ2 + π0
1(1− π0

1)2λ′Q2Q(1)−1Q1Q(1)−1Q2λ +

+ (π0
1)2(1− π0

1)λ′Q1Q(1)−1Q2Q(1)−1Q1λ. (A.21)

Using (A.17), (A.19) and (A.21) in (16) and upon rearranging leads to the desired result in (18).
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