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Abstract: We study the rate of convergence of moment conditions that have been commonly

used in the literature for Generalised Method of Moments (GMM) estimation of short memory

latent variable volatility models. We show that when the latent variable possesses long memory,

these moment conditions have an n1/2−d rate of convergence where 0 < d < 0.5 is the memory

parameter. The resulting GMM estimators will thus not be
√
n consistent. We then provide an

alternative set of moment conditions that are
√
n consistent and asymptotically normal under

long memory in the latent variable, thus allowing for
√
n consistent GMM estimation.
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1 Introduction:

The stochastic volatility (SV) model is one of the popular models used in the literature (see, for

example, Taylor (1986), Harvey (1998)) to model the conditional heteroscedasticity in returns

on financial assets. The SV model is given by

rt = exp (Yt/2) vt, (1)

where vt is a sequence of i.i.d.
¡
0, σ2

¢
random variables independent of Yt, and Yt is a stationary

Gaussian process. When the vt are assumed to be an i.i.d. series of random variables with

positive support, independent of Yt, the model is referred to as the stochastic conditional duration

model (SCD) and can be used to model financial durations. See Bauwens and Veredas (2004).

When the SV model (1), assuming an AR(1) for Yt, is fit to returns on financial assets, the

estimated autoregressive parameter is generally found to be close to unity, suggesting very

strong dependence in squared returns. This has prompted researchers (See Breidt, Crato and de

Lima 1998, Harvey 1998) to consider a long memory process for Yt, such as an Autoregressive

Fractionally Integrated Moving Average Process (ARFIMA), which has slow power law decay in

its autocorrelations. We will refer to an SV model where Yt is a long memory Gaussian process

as a Long Memory SV (LMSV) model. Though it has not been proposed in the literature so far,

a long memory SCD (LMSCD) model would also seem to be a suitable candidate for tick-by-tick

durations of trades. This is due to the fact that durations exhibit the same strong dependence

that is seen in squared returns and that SCD models with AR(1) models for Yt when fit to the

data yield estimated coefficients very close to unity. See Bauwens and Veredas (2004). Thus,

efficient estimation of LMSV and LMSCD models is an important issue.

The estimation of SV/SCD models is made difficult by the fact that the dependence is mod-

elled non-linearly through an unobserved latent process. Though this use of a latent process

allows one to obtain a wide range of theoretical properties of the model easily, it is impossible to

write the exact likelihood of the SV/SCD model analytically. Hence, various alternative proce-

dures have been proposed in the literature for estimation, including quasi maximum likelihood

(QML) estimation and generalised method of moments (GMM) estimation. As Andersen and

Sorensen (1996) note, the procedures other than QML and GMM are computationally intensive.

The QML procedure for the SV model exploits the fact that the transformed process log r2t
may be written as a sum of a Gaussian stationary time series and an independent white noise

series. The QML estimates of the model parameters are obtained by maximising the Gaussian
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likelihood of the log r2t , even though this series is not Gaussian. Deo (1995) has shown that the

QML estimators of the LMSVmodel (1) based on the log r2t are
√
n consistent and asymptotically

normal. Deo’s (1995) result can easily be shown to hold for the LMSCD model too.

Unlike QML estimation, there is currently no known
√
n consistent GMM estimation pro-

cedure of LMSV/SCD models. For GMM estimation, one specifies a set of sample moments

denoted by Mn = (M1n, ...,Mqn) , where Min =
Pn

t=j+1 gi (rt, rt−j) / (n− j) , j is the maximum

lag being used, gi is some smooth function and q, the number of selected moments, is at least

as large as the dimension of the parameter vector θ to be estimated. The GMM estimator,

θ̂, minimises the distance (Mn −M (θ))0 Λ−1 (Mn −M (θ)) , where M (θ) = Eθ (Mn) and Λ is

some suitably chosen weight matrix. Under suitable regularity conditions, θ̂ is
√
n consistent

and asymptotically normal (Hansen 1982). These suitable conditions include the requirement

that the vector of moments Mn be a
√
n consistent estimator of M (θ) . In the literature on

short memory SV models(see, for example, Andersen and Sorensen 1996 and Jacquier, Polson

and Rossi 1994), the moment conditions that have generally been used are obtained by using

functions gi of the form

gi (rt, rt−j) = |rt|ai |rt−j |bi (2)

for some integer valued non-negative ai, bi. When Yt is assumed to follow an AR(1) process,

Andersen and Sorensen (1997) report that GMM estimators based on moments of the form (2)

perform more poorly than QML estimation when the AR(1) coefficient is close to the unit root.

i.e. when the persistence in the volatility is high. Bauwens and Veredas (2004) also report in

their simulations that the sample moments based on functions of the form (2) converge very

slowly to the population analogues in an SCD model with a strongly persistent AR(1) process

for Yt. These two observations indicate that the convergence of the sample moments of the form

(2) will also be very slow if Yt were a genuine long memory process instead of a near unit root

AR(1), thus yielding poor GMM estimators. In the next section, we show that this is indeed

the case. More specifically, we show that the rate of convergence of the moments (2) is slower

than
√
n and is a decreasing function of the memory parameter. Furthermore, this rate can be

arbitrarily close to a constant. We than provide an alternative set of moment conditions and

prove that the new conditions are indeed
√
n consistent and asymptotically normal. The proofs

of all of our results are in the Appendix at the end of the paper.
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2 GMM estimation for the LMSV/SCD model:

We will assume that the spectral density f (·) of Yt in (1) is of the form

fY (λ) = λ−2dg (λ) (3)

for some d ∈ (0, 0.5), where g (·) is a differentiable function on [−π, π] . The parameter d is
called the memory parameter of the process and controls the rate of decay of the correlations

of the process Yt. Processes such as the well known ARFIMA models have spectral densities

that satisfy (3). It is well known that under (3) the correlations of Yt at lag j, γh (j) , decay

hyperbolically in j at a rate given by j2d−1. Furthermore, it can be shown that the correlations
of the transformed processes |rt|c and log r2t display the same hyperbolic decay for any c > 0.

Thus, the process rt displays very strong conditional heteroscedasticity.

The following theorem establishes the asymptotic behaviour of sample moments of the form

(2) under LMSV/SCD models.

Theorem 1 For any integer valued non-negative a, b and under the conditions (1) and (3),

assuming that vt has all the required moments,

n1/2−d
Ã
1

n

nX
t=1

|rt|a |rt−j |b −E
³
|rt|a |rt−j |b

´!
D→ X,

where X is a zero mean Gaussian random variable.

It is clear from theorem 1 that the rate of convergence of the sample moments is slower

than
√
n. Furthermore, this rate gets worse as d approaches 1/2. This is particularly of concern

since numerous studies (see for example Andersen et al. 2001) have found that high frequency

returns tend to yield estimated values of d which are around 0.3 to 0.45. This problem may

be exarcebated further by the fact that Deo and Hurvich (2001, 2002) have shown that semi-

parametric estimation of d for LMSV models can be negatively biased indicating that the real

values of d may be even greater than the values obtained in the studies.

The particular form of the SV/SCD model can however be exploited to get a set of moment

conditions that retain a
√
n rate of convergence. Using (1) , we can write the transformed series

Zt = log r2t as Zt = µ + Yt + ut where ut = log v2t − E(log v2t ) and µ = E
¡
log v2t

¢
. Since Yt
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and ut are independent, we get a signal plus noise representation for Zt. QML estimation of

the SV/SCD model is based on precisely this transformation. The transformation Zt has also

been used in the literature to suggest GMM estimators for the LMSV model. Wright (1999) has

proposed using the sample covariances of Zt as the moment conditions to estimate the model

parameters. However, Wright (1999) shows that these moment conditions are
√
n consistent

only when the memory parameter d satisfies d < 0.25. When d > 0.25, the sample covariances

of Zt can be shown ( Hosking, 1996) to be slower than
√
n consistent. Since, as argued above,

the interval (0.25,0.5) constitutes the more empirically relevant range for d, it is crucial to have

moments which will retain the
√
n convergence rate over the entire parameter space of d. The

following theorem provides precisely such a set of moment conditions.

Theorem 2 Assume the model given by (1) and (3) and that E
©
u8t
ª
<∞. Let

γ̂j = (n− j)−1
nX

t=j+1

³
Zt −

_
Z
´³

Zt−j −
_
Z
´
,

γj = Cov (Zt, Zt−j) and Wj = γ̂0 − γ̂j − (γ0 − γj) . Then for any integer q

√
nW

D→ N(0,Σ),

whereW = (w1, ..., wq)
0 and Σ = AΣ1A0 +Σ2,

the jth row of A is a0j = (j/2, (j − 1), (j − 2), ..., 1, 0, ..., 0| {z }
q−j terms

),

the (j, k)th term of Σ1 is 4π
R π
−π cos jλ cos kλ |1− exp(iλ)|4 f2Y (λ) dλ,

and the (j, k)th term of Σ2 is Eu4t − σ4u + σ2uCov(2Yt − Yt−j − Yt+j , 2Yt − Yt−k − Yt+k).

Using standard Taylor series arguments, it ifollows from Theorem 2 that any differentiable

transformation of the sample moments provided there will also be
√
n consistent and asymptoti-

cally normal. Thus, one can choose any of these transformations of sample moments to construct

the moment conditions to use for GMM estimation of the model. Needless to say, which moment

conditions one chooses will dictate the efficiency of the resulting GMM estimator and a partial

answer regarding this choice may be given by a detailed Monte Carlo simulation. We leave this

issue for further research.

Appendix
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Proof of Theorem 1: Let µ1 = E {exp (0.5aYt + 0.5bYt−j)} and µ2 = E
n
|vt|a |vt−j |b

o
.

Let

T1 = n−1
nX
t=1

|rt|a |rt−j |b − n−1
nX
t=1

exp (0.5aYt + 0.5bYt−j)µ2

and

T2 = n−1
nX
t=1

exp (0.5aYt + 0.5bYt−j)µ2 − µ1µ2.

Then n−1
Pn

t=1 |rt|a |rt−j |b−E
³
|rt|a |rt−j |b

´
= T1+T2. Since vt is an iid series, we get V ar (T1) =

O
¡
n−1

¢
and hence T1 = op

¡
nd−1/2

¢
. The theorem is thus established if we prove that n1/2−dT2

is asymptotically normal. Let Xt = 0.5aYt+0.5bYt−j . Then Xt is also a stationary long memory

Gaussian series with a spectral density that satisfies (3) and Corr (Xt,Xt−s) ˜As2d−1 as s→∞
for some constant A. We have

T2 = µ2n
−1

nX
t=1

(exp (Xt)− µ1) .

Furthermore, the function G (x) = exp (xσ)− exp ¡σ2/2¢ , where σ2 = V ar (Xt) , has a Hermite

rank of 1 as defined in Taqqu (1975). Hence, by Theorem 5.1 of Taqqu (1975), n1/2−dT2
D→ X

where X is a zero mean Gaussian random variable.

Proof of Theorem 2: We will demonstrate the proof only for Wj since the higher di-

mension case is obtained along similar lines by applying the Cramer Wold device. Letting

γ̂Y,j = n−1
Pn

t=1

³
Yt −

_
Y
´³

Yt−j −
_
Y
´
for j ≥ 0 and using the fact that

_
Y

P→ 0, we get by

simple algebra,

γ̂0 − γ̂j = γ̂Y,0 − γ̂Y,j + n−1
nX
t=1

¡
ξ2t − ξtξt−j

¢
+ n−1

nX
t=1

Yt (2ξt − ξt−j − ξt+j) + op

³
n−1/2

´
= γ̂Y,0 − γ̂Y,j + n−1

nX
t=1

¡
ξ2t − ξtξt−j

¢
+ n−1

nX
t=1

(2Yt − Yt−j − Yt+j) ξt + op

³
n−1/2

´
.

(4)

From the proof of Theorem 5 of Hosking (1996), we see that

γ̂Y,0 − γ̂Y,j = a0jX+Op

¡
n−1

¢
, (5)

where X = (eγ(1)0 −γ(1)0 , eγ(1)1 −γ(1)1 , ..., eγ(1)q−1−γ(1)q−1)
0, eγ(1)s = n−1

Pn
t=1(Yt−Yt−1)(Yt−j−Yt−1−j) and
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γ
(1)
s = E((Yt − Yt−1)(Yt−j − Yt−1−j)). From (4) and (5), we get

γ̂0 − γ̂j = a0jX+ n−1
nX
t=1

¡
ξ2t − ξtξt−j

¢
+ n−1

nX
t=1

(2Yt − Yt−j − Yt+j) ξt + op

³
n−1/2

´
.

The limiting distribution result now follows from Hannan (1976).
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