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ABSTRACT : The present paper shows why information asymmetry and bivariate 
stochastic demand and spot price induce different behaviours and economic 
inefficiency in a carrier – shipper relationship. An example is offered of a single 
period, single echelon, shipper-carrier transport model where demand addressed to 
the shipper and the spot transport price, two exogenous stochastic variables, follow 
a bivariate exponential probability distribution function. We evaluate the objective 
functions of the carrier and shipper over one period reiterated with a mix of long-
term and short-term procurement strategies under five scenarios of information 
sharing. Some clues as to ways of solving for other types of bivariates are provided. 

 
Keywords: Supply chain management; transport; coordination; information sharing; 

bivariate exponential distribution. 
 

INTRODUCTION 

It is the purpose of this paper to present a new model able to take in both the 
aspects of transport as a supply chain member and as a service type of industry 
with its particularities. 

LITERATURE REVIEW 

Supply chain performance depends critically on how its members coordinate 
their decisions and it is hard to imagine coordination without some form of 
information sharing, as Fangruo Chen remarked in Chen (2002). In the supply 
chain management literature, transport service providers as suppliers are not 
usually individualised as such. One line of literature research focuses on efficient 
planning of routes, networks, warehouse location etc. In the other line of literature, 
supply chain  efficiency can be increased by coordination, truth-inducing 
mechanisms, contractual engineering and information sharing (see Chen’s review 
of 2002 and 1998, 2001a, 2001b, Chen and Yu 2001a, Chen and Yu 2001b, 
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Anupindi and Bassok 1998, Porteus and Whang 1991, Lee and Whang 2000, 
Cachon and Larivière 1999, Zhao 2002). However, since their supplier definition 
entails back-logging of orders and inventory management, not all results apply to 
carriers or shippers. Ertogral et al. (1998) bridges both lines of thought: a single 
model integrates production and transportation planning, taking into account 
transport costs and schedules. This approach does not take into account the impact 
of imperfect information and decentralised decisions. Neither does it take into 
consideration the eventual over or under utilisation of the transport capacity 
involved. 

The present paper follows on the tracks of Wu et al. (2002) which had modelled 
contracting arrangements between a Seller and a Buyer, when the deliverable 
product is a non-stockable product or service produced from a non-scalable 
capital-intensive production facility. A direct inspiration is also Gavirneni et al 
(1999) for capacitated suppliers and Li and Kouvelis (1999) for flexible contracts 
in the face of price uncertainty. The Seller and Buyer can negotiate a bilateral 
contract in advance and still negotiate “on the day” additional product at a 
reference “Spot” market price. The contract involves a fixed “reservation” price 
and an execution price, variable upon the actual demand. Optimal bidding, 
contracting parameters and procurement strategy is proven. The model considers 
that the buyer works under a WTP (willingness To Pay) function as per the 
standard tools found in Marketing Science. This enables the authors to find an 
equilibrium using the standard demand curve and to enunciate the optimal 
contracting policy when the spot price follows any probability density function. 

Spinler and Huchzermeier (2003) propose a variation of the preceding model 
by using options in lieu of future and spot market contracts to increase capacity 
utilisation in the presence of state-contingent demand. They show that such a 
strategy effectively is Pareto improving things for both the seller of the option 
(transport supplier) and the buyer (the shipper). To circumvent the liquidity 
problem of transport as a non-standardised service, the model assumes that options 
will be traded on electronic marketplaces. However, as Grieger (2003) reported, 
carriers and shippers may be wary to trade with partners of unknown quality and 
customer service levels. 

The assumption that the Buyer is able to reduce his demand when the spot price 
is too high may not reflect effectively normal practice as has been evidenced in 
spot markets for energy when prices have been recorded to exceed any economical 
level several times. Transport, as a service, which otherwise falls neatly in the 
description of the goods or services that may be included in the applications of Wu 
et al (2002),  is not easily a service that an industrial firm may do without because 
the spot price has temporarily exceeded economical levels. 

This paper is organised as follows. In the next section we describe the model 
involving one single tier in the supply chain: the contractual relationship between 
one shipper as client and one carrier as transport supplier. In the second section we 
describe the information asymmetries that both shipper and carrier may face 
through five scenarios of behaviour: in the first, base scenario, the information is 
common to both, decisions are centrally coordinated. In the second scenario, both 
carrier and shipper enjoy common information and stick to the letter of the 
contract but may privilege their particular interest when warranted. In the third 
scenario, the carrier retains information from the shipper. In the fourth, both 
shipper and carrier hide information from each other. In the fifth, the shipper 
retains private information on her received demand. We enunciate the necessary 
objective functions and compare results across different scenarios. In the third 
section, we solve for the optimal contract characteristics according to an instance 
of a bivariate exponential distribution function involving demand addressed to the 
shipper and spot market price for capacity. Finally, we draw conclusions from the 
results. 
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TRANSPORT MARKET MODEL 

As in Wu et al. (2002), a model involving a Carrier C selling transport services 
to a Shipper S is presented. The contract involves setting a base capacity that has 
to be provided for the long term at a pre agreed price. Failing to provide this 
capacity entails a penalty to be paid by the carrier. Additional capacity may called 
up when the Shipper faces extra demand. This additional capacity is also provided 
at a pre agreed price and failure to meet the engagement entails payment of a 
penalty on the Carrier’s part. So that the shipper does not over estimate the 
capacity she needs, she ahs to pay the Carrier a penalty for unused capacity under 
the base commitment in the contract. “On the day”, the Shipper can cover 
transport needs in an alternative market, called here the “spot” market. In 
difference to the energy market as described in Wu et al (2002), the capacity is not 
sold at a “reservation” price but strictly as needed. The penalty levied on the 
unscrupulous Shipper who bids for more capacity then she will actually need is 
there to enforce coordination and signalling of demand information to the Carrier. 

2.3  Opportunistic behaviour 

Opportunistic behaviour occurs when either S or C can escape from their 
contractual engagements without incurring retaliation from the other party. All 
retaliation depends upon verifying opportunistic behaviour, which bears a cost. 
We will focus in this paper on certain pieces of information which can make a 
significant impact on the cost functions of either party. We centre our attention 
here on two particularly sensitive pieces of information. 

 2.3.1 Transport capacity of carrier 
The first piece of information is the size of the transport capacity the carrier 

owns or otherwise controls. Ex-ante the shipper verifies the available capacity of 
the carrier and the carrier must convey all necessary information so that the 
shipper can be assured that the required capacity exists. Thereafter, no further 
control is undertaken by the shipper. So, in the course of the life of the contract, 
this information is no longer observable. Only when the contract comes up for 
renewal can the shipper use records of past shipments to assess the capacity of the 
carrier. This situation escapes our model. 

 2.3.2 Available cargo to be shipped 
The second piece of information involves the size of the available transport 

requirements of the shipper: C cannot verify that the orders handed him by S 
represent her entire need. This information is also neither observable directly nor 
verifiable without cost to C. S may contract added capacity with other carriers 
whenever its suits her financially. 

2.7  Demand and capacity characteristics 

2.7.1 Stochastic variables 
State of nature is represented using two exogenous variables: P is the market 

price for immediate transport. This price ranges from VC, the variable cost 
common to all carriers in the universe of carriers available to S, to infinity. The 
demand that the shipper meets is an exogenous, stochastic variables Q. Ω(P,Q) is 
the probability plane containing the possible realisations of the tuples of transport 
spot price and demand addressed to shipper S. Fq(.)is the continuously 
differentiable, invertible and monotonous cumulative distribution function of 
demand addressed to S. fq(.) (mean µq, standard deviation σq) is the density 
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functions of Fq(.). Fp(.) is the continuously differentiable, invertible and 
monotonous cumulative distribution function of the spot market price and fp(.) its 
density function (mean µp and standard deviation σp). Let   be the correlation 
factor between Fq(.) and Fp(.).  

We call F(.) the bivariate continuously differentiable, invertible and 
monotonous cumulative distribution function of both demand Q addressed to 
shipper S and spot price P. f(.) is the density function of F(.) with mean µ, 
standard deviation σ and correlation coefficient ρ. 

The shipper S knows ex-ante the mean µq and standard deviation σq of the 
cumulative distribution function of demand. The demand has to be satisfied in full 
at each period. 

All other production costs of S are ignored. 
The total capacity of C is W. C has a variable cost per unit transported VC and 

a fixed cost Fc. No assumption is made regarding W. Fc is a function of this 
capacity W.  

 
Fig. 1: Capacity allocation 

In figure 1, u is the demand that S chooses to allot to C. 
We list below the variables and parameters: 
C Carrier 
S Shipper 
c Base capacity contracted 
q Contract price for the base capacity q 
qa Additional capacity that S can call upon from C specified in contract 
pa Price for additional capacity qa, specified in contract 
θs Penalty paid by S to C for not complying with contract specifications 
θc Penalty paid by C to S for not complying with contract specifications 
Fq(.) Cumulative distribution function of demand Q 
Fp(.) Cumulative distribution function of spot price P 
fq(.) Marginal probability distribution function of Q 
fp(.) Marginal probability distribution function of P 
F(.) Bivariate cumulative distribution function of demand Q and price P 
f(.) Bivariate probability distribution function of demand Q and price P 
ρ Correlation coefficient between P and Q 
µq,σq Mean and standard deviation of Q 
µp,σp Mean and standard deviation of P 
VC Variable cost faced by C when transporting 
Fc Fixed cost of C 
u Decision variable of S: what share of her demand to allocate to C 
x Decision variable of C. What share of capacity to allocate to S 
 
 

Carrier  
C 

Shipper 
S 

u 

Q-x 

Realized 
demand Q 

Spot market 

Q-x 

x  
Fq 

P ∈Fp 
Realized  
Spot price P 
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2.8  Objective functions 

2.8.1. Regionalizing the probability space 
We divide the probability space Ω into regions so as to facilitate the discussion 

regarding the best decisions by S and C (fig. 2): 

 

( ) { }
( ) { }
( ) { }
( ) { }
( ) { }
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θ
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 (1.1) 

 

 
Fig. 2: Probability spaces for spot price and demand addressed to S 

We assume that for spot prices under VC, the carrier C will not carry cargo. 
 

2.8.2. Carrier objective function 
In our setting, carrier C has just one customer: S (fig. 1). If the capacity 

required to carry the realised demand from S does not reach total capacity, the 
excess capacity is lost for all intents and purposes, impacting the carrier’s 
profitability 

The objective function of the carrier is to increase revenue and profits. His ex 
post decision variables are the capacity he allots to S: x is the allotted capacity to 
S. W x−  is the wasted capacity. We consider that the fixed costs of supporting the 

q q+qa 
Q 

Demand : ζL 

Spot price : 
P 

VC 

pa - θs 

pa + θc 

Ω1 Ω2

Ω3 

Ω4

Ω5

Ω6 

Ω7

Ω8 

Ω9 

Ω10 

W 
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necessary assets are specific, sunk and that the carrier does not have the choice to 
withdraw from the allocation game with S. We therefore neglect all considerations 
as to fixed costs of C. His profit function can thus be written by using the terms of 
the contract. 

We restate here all the contract characteristics as defined above: 
 
W x≥  Total transport capacity of C (fleet capacity) 
0 aq q W< + ≤
 

contracted capacity plus negotiated additional capacity has to 
be less than total capacity 

0 ,
0

s

c

c
c

θ
θ

≤ <

≤ <
 penalties paid by shipper or carrier are less than the contract 

price  

0 ,aq q≤ <  additional capacity is not higher than the base capacity 
contracted 

ac p≤  price for additional capacity is higher than the base capacity 
price 

0 u Q≤ ≤   u is a capacity, decision variable of the shipper is at most 
equal to total demand received by shipper.  

0 x u≤ ≤  x, decision variable of the carrier is at most equal to the 
effective capacity that the shipper asks him to provide. 

,VC P≤  
the spot price for transport capacity cannot take values less 
than the variable cost, assumed to be the same for the whole 
transport sector (the shipper will not find a carrier who will 
carry cargo under this price). 

 
The profit function is conditional upon the allocation by S and the spot market 

price: 

 ( ) ( ) ( )| , |i ix u R x i P Q x VCxπ Ω = Ω + − −   (1.2) 

where Ri is a revenue function, conditional upon the demand u addressed by S 
and the spot market price, of the form: 

 ( )
( )( ) ( )

( )
( ) ( )

min , : 0

| , :
 :

c s

i a a

a a a

xc u q x q u x q

R x u i qc x q p q x q q
qc x q p x q q P q q x W

θ θ⎧ − − + − ≤ <
⎪⎪Ω = + − ≤ ≤ +⎨
⎪ + − + − − + < ≤⎪⎩

 (1.3) 

One possible graph of such a function is represented in figure 3. 

 

Fig 3: Behaviour of  Ri(x)where u = W 

q q+qa W 
qθc 

cq 

cq+qapa 

qc+qapa+ 
(W-q-qa)P 

R(x) 
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2.8.3. Shipper objective function 
Shipper S produces and sells a product that requires transportation. She, as 

Stackelberg leader, must decide whether to allocate her necessity to her chosen 
contractual carrier at the ex-ante contractual price or to the spot market at the 
going spot market price. She decides to allocate u quantity to carrier C. 

The decision variable u can take all values between 0 and total received 
demand Q (see fig. 4). Whatever transport necessity is not being allocated to C 
will be offered to the spot market at the going spot price P. The function is 
conditional upon the response S receives from C, which is represented by x(u). By 
investigation, we see also that S has an opportunity to reduce transport cost by 
diverting cargo to the spot market when conditions of the spot price relative to the 
contract parameters warrant it. Let us call O the shipper’s objective function and 
characterize it as such in each region Ωi: 

( )

( ) [ ] ( ) ( )( ) ( )( ) ( )

( )( ) ( ) [ ] ( )( ) ( )

( )( )( ) ( )( )
[ ]( ) ( )( ) ( )

min , :0

:
| ,

min , min ,

min , :

s c

a c s a

i
a a a c

a s L a

cx u q u q u x u Q x u P x u q

cq x u q p u x u Q u Q x u P q x u q q
O u x i

cq x u q q p u x u q

Q u q Q x u P q q x u

θ θ

θ θ

θ

θ

+

+ +

+

+

⎧ + − + − + − ≤ ≤
⎪
⎪ ⎡ ⎤+ − − − + − + − < ≤ +⎪ ⎣ ⎦⎪Ω =⎨

⎡ ⎤+ − − − +⎪ ⎣ ⎦
⎪
⎪ − + − + <⎪⎩

(1.4) 

A possible graph of the shipper’s cost function is shown in Figure 4. 

 
Fig.4: Behaviour of Oi(u) 

 

2.8.4. Defining optimal decisions according to demand and spot 
price 

In each region of probability space, the optimal decisions by each player vary. 
Let us call RΩi and CΩi the revenue and cost functions over each separate region 
identified by its number i { }1, 2,...,10i∈  . The profit function of C that has to be 
maximised depends upon the regions of probability space and can be written: 

 ( ) ( )| , | ,i ix u i R x u i VCQπ Ω = Ω −  (1.5) 

q q+qa Q 
qθs 

cq 

cq+qapa 

qc+qapa+(Q-q-qa)P 
C(u) 
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 s.t. : 

0
0

0
0
0

c a

s

a

x W
x u
u Q

VC P
c p

c
q q

θ
θ

≤⎧
⎪ ≤ ≤⎪
⎪ ≤ ≤
⎪

≤⎨
⎪ ≤ ≤ ≤⎪

≤ ≤⎪
⎪ ≤ ≤⎩

 

We now derive below the decisions taken by both players: 
 

Table 1: Regions of probability space with relevant optimal decision and objective 
expression 

 

2.8.5. Expected cost and variance of transport cost 
Given that we now have defined the costs to the shipper over all regions of the 

probability space, we can define her expected cost as a function of the received 
demand Q and spot price P using the notation introduced in 2.3. 

 ( )( ) ( ) ( )* * * *

0

, , ,
VC

E O u x O u x f Q P dQdP
∞ ∞

= ∫ ∫  (1.6) 

When we open up this equation among the different regions we have: 

Ωi ui
* xLi

* πΩi OΩi 

Ω1 QL QL ( ) sQc q Q VCQθ+ − −  ( ) sQc q Q θ+ −  

Ω2 qL qL ( ) ( )sqc Q q P VCQθ+ − + −  ( ) ( )sqc Q q P θ+ − +  

Ω3 QL QL ( ) asqc Q q p VCQ+ − −  ( ) aqc Q q p+ −  

Ω4 QL qL ( ) ( )cqc Q q P VCQθ+ − − −  ( ) ( )cqc Q q P θ+ − −  

Ω5 qL qL ( )a sqc q Q q P VCQθ+ + − −  ( )a sqc q Q q Pθ+ + −  

Ω6 QL QL ( )a a aqc q p Q q q P VCQ+ + − − − ( )a a aqc q p Q q q P+ + − −  

Ω7 QL qL ( )a cqc q Q q P VCQθ+ + − −  ( )a cqc q Q q Pθ+ + −  

Ω8 qL qL ( )a sqc q W q P VCWθ+ + − −  ( )a sqc q Q q Pθ+ + −  

Ω9 QL QL ( )a a aqc q p W q q P VCW+ + − − − ( )a a aqc q p Q q q P+ + − −  

Ω10 QL qL ( )a cqc q W q P VCWθ+ + − −  ( )a cqc q Q q Pθ+ + −  
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( )( ) ( )( ) ( )
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∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

(1.7) 

The regions 5 and 8, 6 and 9 and 7 and 10 share the same objective function 
(they only change for carrier C).  

 
 
 

INFORMATION SCENARIO ANALYSIS 

We can now start modelling how each actor behaves according to the 
information he holds privately or that is common to both and see analytically the 
impact on the objective functions of C and S. In the first scenario, the information 
about the realized demands for the shippers is common knowledge to both shipper 
and carrier and decisions are centrally taken to maximize supply chain profits. In 
all scenarios, the spot market price for carrying that particular cargo at that 
particular period is revealed to both. In the second scenario, both cargo and carrier 
capacity are known but each will take advantage of the spot market price when 
this proves more attractive. In the third scenario, the capacity of C is unknown to 
S. In the fourth scenario, C’s capacity is unknown to S and S’s demand is 
unknown to C. In the fifth scenario, the carrier’s capacity is known to S but S’s 
demand is not known to the carrier. 

We put a superscript index for each scenario on the carrier profit, shipper cost 
and standard deviation functions (e.g. 1 1 1 1; ; ;C O Rπ σ  for scenario 1). 

 

3.1. Scenario 1: Centralised decision-making, perfect information:  

The carrier and shipper share information truthfully, and are coordinated by a 
single centralized decision maker. According to the observed demands and spot 
price, shipper S allocates the maximum of the realized demand to C and C 
allocates the maximum of his capacity to satisfy S.  

 ( ), min ,u Q x W Q= =  (1.8) 

The conditional expected cost and expected profit as a function of the received 
demand Q subject to P come to: 



Impact of information and coordination on transport costs 

 10 
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(1.9) 

 

( )( ) ( )( ) ( )
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(1.10) 

To maximise the overall profit to the echelon, we subtract the expected cost 
from the expected profit: 

 
( )( ) ( )( )

( ) ( )

1 1 1* 1* 1 1* 1*

8 9 10

, ,

,

M E x u E C u x

W Q Pf Q P dQdP

π

Ω ∪Ω ∪Ω

= −

= −∫∫
 (1.11) 

This expression is negative but nearest to 0 when W is large. Since W is a 
constraint that is not easily nor quickly lifted, the ROI of added capacity compared 
to the increased net cost to the echelon given the bivariate pdf of the spot and 
demand received are to be taken into account. 

 

3.2. Scenario 2: Common information but distinct profit centres 

| a cP P p θ∀ < − , the shipper reduces her cost by paying the penalty θs agreed 
upon in the ex ante contract to the carrier for the cargo that is being diverted to the 
spot market above base capacity q. 

| a sP P p θ∀ > + , the carrier increases his profit by refusing the offered cargo 
from S, paying a penalty θc and selling this capacity at the spot price. S has to do 
the same. The division of the probability region is the one represented in figure 1. 
We get the following profit and cost functions: 
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(1.12) 
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qc q P W q

π θ

θ

θ

θ

θ
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Ω

Ω

Ω

Ω

Ω

+

Ω

Ω
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+ − − +
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∫∫

∫∫

∫∫
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∫∫

∫∫
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( )( ) ( )

( )( ) ( )

( ) ( )( ) ( )

8

9
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,

,

,

a

a a a

a c a

q P f Q P dQdP

qc q p W q q P f Q P dQdP

qc q P W q q P f Q P dQdPθ

Ω

+

Ω

Ω

− +

+ − − +

+ − + − −

∫∫

∫∫

∫∫

(1.13) 

 

3.3. Scenario 3: Asymmetric information favouring carrier 

C has private information on W, the transport capacity. Ex post, S cannot verify 
the existence or size of the additional capacity S has promised in the contract. 

So C has an opportunity to deviate when P is higher than pa. If C deviates, the 
demand in excess of q by S has to be offered to the spot market. So the cost 
increases for S. C has been modelled to take that same amount from the spot 
market at the spot price so as to make it easier to compare performance and rent 
transfer between both players in the conclusions. We are conscious that this is a 
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simplification that underestimates the transaction costs incurred by C in finding 
this available cargo in the spot market. The exact demand Q of S is here assumed 
observable by both S and C. We have a new drawing of the region boundaries (fig. 
5). 

  

Fig. 5: Probability regions in scenario 3 

 
This leads to the following cost function for S: 

 

( )( ) ( )( ) ( )

( ) ( )( ) ( )

( )( ) ( )
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E O u x Qc q Q f Q P dQdP

qc Q q P f Q P dQdP

qc Q q p f Q P dQdP

qc Q q P f Q P dQdP

qc q P Q q q P f Q P dQdP

qc q p Q q q P f Q P dQdP

qc q P Q q q P f Q P dQdP

θ

θ

θ

θ

θ

Ω

Ω

Ω

Ω

Ω ∪Ω

+

Ω ∪Ω
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∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

(1.12) 

and to the following expected cost function: 

q q+qa 
Q 

Demand  

Spot 
price : 

P

pa+ θc 

Ω1 Ω2

Ω33 

Ω43 

Ω5

Ω63

Ω73 

Ω8 

Ω93 

Ω103 

W 

pa 

pa- θs 

VC
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( )( ) ( )( ) ( )

( )( ) ( )

( ) ( )

( )( ) ( )

( )( ) ( )

3

3

3 3

3 3

3 3* 3*
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7 10

, ,

,

,

,

,

s

a

a a a

E O u x Qc q Q f Q P dQdP

qc Q q p f Q P dQdP

qc Q q Pf Q P dQdP

qc q p Q q q P f Q P dQdP

qc Q q P f Q P dQdP

θ
Ω

Ω ∪Ω

Ω

Ω ∪Ω ∪Ω ∪Ω

Ω ∪Ω

= + − +

+ − +

+ − +

+ + − − +

+ −

∫∫

∫∫

∫∫

∫∫

∫∫

.(1.13) 

In the same way, the expected profit to the carrier is: 

 

( )( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )

3

3

3

3

3

3

3 3* 3*

1

2 3

4

5 6

8 9

7
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, ,

,

,

,

,

,

,

s

a

a a a

a a a

E x u Qc q Q f Q P dQdP

qc Q q p f Q P dQdP

qc Q q P f Q P dQdP

qc q p Q q q P f Q P dQdP

qc q p W q q P f Q P dQdP

qc Q q P f Q P dQdP

qc W q Pf Q P dQdP

π θ
Ω

Ω ∪Ω

Ω

Ω ∪Ω

Ω ∪Ω

Ω

Ω

= + − +

+ − +

+ − +

+ + − − +

+ + − − +

+ − +

+ −

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

.(1.14) 

The overall profit to the echelon still is: 

 
( )( ) ( )( )

( )( ) ( )

3 3 3* 3* 3 3* 3*

8 9 10

, ,

,

M E x u E C u x

W Q P f Q P dQdP

π

Ω ∪Ω ∪Ω

= −

= −∫∫
. (1.15) 

But, unlike in scenario 1 the profit is not distributed in the same manner 
between shipper and carrier. The overall profit is not a function of the contract 
parameters. 

 

3.4. Scenario 4: Private information 

In this scenario, C has private information on W, S has private information on 
the demand Q: so both have an option to behave opportunistically according to the 
spot price P. Each sticks to q, basic capacity contracted for. In this last scenario, 
the menu of prices is unenforceable. The carrier’s penalty is unenforceable either, 
rendering it pointless. For any spot price either higher or lower than the menu 
price pa according to the additional capacity necessary, either the shipper or the 
carrier decides to go to the spot market. The other party, for lack of knowledge of 
capacity or cargo, cannot ask for nor receive any compensation. This means that 
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we have a redrawing of the regions’ boundaries into barely 5 regions (fig. 6). Our 
expected cost and profit functions become: 

  

Fig. 6: Probability regions for scenario 4 

 

 

( ) ( )( ) ( )

( )( ) ( )
4 4 4 4

4 4* 4*

1

2 3 4 5

, ,

,

sO u x Qc q Q f Q P dQP

qc Q q P f Q P dQdP

θ
Ω

Ω ∪Ω ∪Ω ∪Ω

= + − +

+ − +

∫∫

∫∫
 (1.16) 

Expected profit: 

 

( )( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )
4 4

4 4

4 4* 4*

1

2 3

4 5

, ,

,

,

sE x u Qc q Q f Q P dQP

qc Q q P f Q P dQdP

qc W q P f Q P dQdP

π θ
Ω

Ω ∪Ω

Ω ∪Ω

= + − +

+ − +

+ −

∫∫

∫∫

∫∫

  (1.17) 

 

3.5. Scenario 5: Asymmetric information favouring the shipper 

In this scenario, the shipper knows the capacity of the carrier and the carrier is 
not aware of the exact demand received by the shipper. The carrier cannot shirk 
his contractual engagements but the shipper can contract additional capacity from 
the spot market when the spot price is lower than the menu of prices for additional 
capacity. She would not have to pay penalty to the carrier since the carrier is 
unaware of the extra cargo to ship. 

Unhappily for the simplicity of our model, we have to consider different limits 
to the areas where such behaviour takes place. As compared to the mapping of 
overall probability space in scenario 1, the lower regions are larger (fig. 7): 

q q+qa 
Q 

Demand  

Spot price : 
P 

pa- θs  

pa  

pa + θc 

Ω1 
Ω24 

Ω34 

W 

Ω44 

Ω54 

VC 
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Fig. 7: Probability regions for scenario 5 

These equations can be contracted into the following cost function for S: 

 

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )
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qc Q q p f Q P dQdP
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θ
Ω
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Ω ∪Ω ∪Ω ∪Ω

Ω ∪Ω

= + − +

+ − +

+ − +

+ + − −

∫∫

∫∫

∫∫

∫∫

(1.18) 

Expected profit: 

 

( )( ) ( )( ) ( )
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qc W q P f Q P dQdP
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Ω
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∫∫

∫∫

(1.19) 
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3.6. Comparison between scenarios 

3.6.1. Comparison between scenario 1 and 2 
The difference between these scenarios is between one profit centre and 

decentralised profit centres. The differences occur only when P is either too low or 
too high:  

 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

4 4* 4* 1 1* 1*

2 3 4

5 6 7 8 9 10

, , ,

,

a

a a

E O x u O x u Q q P p f Q P dQdP

q P p f Q P dQdP

Ω ∪Ω ∪Ω

Ω ∪Ω ∪Ω ∪Ω ∪Ω ∪Ω

− = − − +

−

∫∫

∫∫
(1.22) 

The higher both penalties and the lower the extra contracted capacity are, the 
lower the difference. However, it is clear that the difference is not null, meaning 
that the variance is higher and proportional to the penalties laid out in the ex ante 
contract. The rent transfer between either will be minimal if pa = µp , if fP(.) is 
symmetric around the mean and θc = θs. 

 

3.6.2. Comparison between scenario 1 and 3 
There is a transfer of rent from S to C when C can deviate from truthful 

behaviour by hiding the exact capacity he has at his disposal and withhold extra 
capacity from S to sell it to the spot market at a higher price. 

The conditional expected cost of the difference in information is written: 

 

( ) ( )( ) ( )( )( ) ( )

( )( ) ( )

( ) ( )( )

3

3 3

3 3* 3* 1 1* 1*

4

7 10

3 3* 3* 1 1* 1*

, , ,

,

, ,

a

a a

E O u x O u x Q q P p f Q P dQdP

q P p f Q P dQdP

E x u x uπ π

Ω

Ω ∪Ω

− = − − +

−

= −

∫∫

∫∫ (1.20) 

Hence the difference in overall profit for both: 

 ( ) ( )( ) ( ) ( )( )3 3* 2* 1 1* 1* 3 3* 3* 1 1* 1*
1 3 , , , ,

0
L L L LM E x u x u E O x u O x uπ π− = − − −

=
(1.21) 

because the difference between both scenarios happen within the overall limit of 
the fleet capacity W. The carrier wishes to maximise the difference in profit 
between scenario 2 and 1, whereas the shipper wishes to minimize the same 

expression. 

The important conclusion is that the difference in cost between scenario 3 and 1 
is positive, so the expected variance is also positive. The variance of the transport 
cost to S increases with the variances of the component pdf: Q and P affected by 
the values given to the contractual parameters. 

 
 

3.6.3. Comparison between scenario 1 and 4 
The conditional expectation of this difference subject to P and Q can be written 

as: 
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( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

4 4* 4* 1 1* 1*

2 3 4

5 6 7 8 9 10

, , ,

,

a
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E O x u O x u Q q P p f Q P dQdP

q P p f Q P dQdP

Ω ∪Ω ∪Ω

Ω ∪Ω ∪Ω ∪Ω ∪Ω ∪Ω

− = − − +

−

∫∫

∫∫
(1.22) 

Following the same reasoning, we can write the conditional expectation of the 
difference, subject to P and Q, of the profit to the carrier as: 

 

( ) ( )( ) ( )( )( ) ( )

( )( ) ( )

4 4* 4* 1 1* 1*

2 3 4

5 6 7

, , ,

,

a

a a

E x u x u Q q P p f Q P dQdP

q P p f Q P dQdP

π π
Ω ∪Ω ∪Ω

Ω ∪Ω ∪Ω

− = − − +

−

∫∫

∫∫
(1.23) 

Above the total capacity of the fleet of C (areas Ω8, Ω9, Ω10), the carrier 
cannot make any profit. These indications give guidance to the way the 
contractual parameters have to be negotiated by the shipper and the carrier so that 
if the information conditions are not given, at least the differences between both 
scenarios can be minimized for both the shipper and carrier. This means that we 
have to maximize the expected profit less the expected cost: 

 ( ) ( )( ) ( ) ( )( )4 4* 4* 1 1* 1* 4 4* 4* 1 1* 1*
1 4 , , , ,M E x u x u E O x u O x uπ π− = − − − (1.24) 

This difference effectively means looking for: 

 ( ) ( )( ) ( )1 4
8 9 10

,a aMax M q P p f Q P dQdP−

Ω ∪Ω ∪Ω

= −∫∫  (1.25) 

M1-4 can be written as: 

 ( ) ( )1 4
8 9 10 8 9 10

, ,a a aM q Pf Q P dQdP q p f Q P dQdP−

Ω ∪Ω ∪Ω Ω ∪Ω ∪Ω

= −∫∫ ∫∫ (1.26) 

To get the maximum, we have to optimize our decision variables which are the 
contract parameters: qa and pa. Evidently, M1-4 increases when qa increases and 
pa decreases. However, both are not unlinked as they have to satisfy both C and S. 
We must have a price for additional capacity more interesting than the base price 

c, which means that the “slopes” of each are linked by: a

a

pc
q q
< . The limit is for 

the carrier to accept an equal ratio between  and a

a

pc
q q

. 

 

3.6.4. Comparison between scenario 1 and 5 
The difference is not null in only 3 sub-regions of probability space: Ω25, Ω55, 

Ω85. By inspection, the difference in expected costs becomes: 

 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )
5

5 5

5 5* 5* 1 1* 1*

2

5 8

, , ,

,

L L L L s La L s L s

La s La L s L s

E C x u C x u Q q P p f Q P dQ dP

q P p f Q P dQ dP

Ω
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− = − − +

−

∫∫

∫∫
(1.27) 

The difference in expected profits for C is symmetric: 
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( ) ( )( ) ( )( )( ) ( )

( )( ) ( )
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,

a
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E x u x u Q q P p f Q P dQdP

q P p f Q P dQdP

π π
Ω
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− = +− −

−

∫∫

∫∫
(1.28) 

The conclusion regarding variance drawn in the previous comparisons also 
applies. 

 

INSTANCE USING AN EXPONENTIAL BIVARIATE DISTRIBUTION 

 
We first note that all the above objective functions and differences between 

scenarios can be expressed in a general way as:  

 ( ) ( )1 2, , , , ,A x y f x y dxdyλ λ ρΩ

Ω

= Ψ∫∫   (1.29) 

Further, all our above objective functions can be expressed like this objective 
function ψ as:  

 ( ),x y x y xyα β γ δΨ = + + + , (1.30) 

which leads to:  

 1 2 3 0A A A A Aα β γ δ= + + + , (1.31) 

with:  

 

( )

( )

( )

( )

0 1 2

1 1 2

2 1 2

3 1 2

, , , , ,

, , , ,

, , , ,

, , , ,

A f x y dxdy

A xf x y dxdy

A yf x y dxdy

A xyf x y dxdy

λ λ ρ

λ λ ρ

λ λ ρ

λ λ ρ

Ω

Ω

Ω

Ω

=

=

=

=

∫∫

∫∫

∫∫

∫∫

. (1.32) 

 

4.1. Downton’s bivariate exponential function 

In this section we will give the results of the analysis of how the contract 
parameters would be negotiated by each party. The calculations are relegated to 
the annexes. 

As mentioned above, we will now discuss the optimal parameters in the special 
case when the spot price is correlated with demand, using a positive correlation 
between both variables. 

We study stochastic processes for demand and for the spot price. 
One of the most important bivariate distributions in reliability theory is the 

bivariate exponential. One of the most authoritative reviews on bivariate 
distributions can be found in Kotz et al. (2000). In this paper, we are interested in 
Downton’s bivariate exponential distribution with probability density function 
(pdf): 
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 ( ) ( )1 2 1/ 2
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, ; , ,
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, (1.33) 

where x, y, λ1, λ2 > 0, 0 ≤ ρ < 1, and  ( ) ( )2
0 2

0

/ 2
!

k

k

z
I z

k

∞

=

=∑  is the modified 

Bessel function of the first kind of order zero. 
The marginal probability density functions are written: 
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0 , 0

, 0
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e xf x
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⎧ >⎪= ⎨
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⎧ >⎪= ⎨
≤⎪⎩

 (1.34) 

We refer the reader to Annex I for details of the calculations to transform the 
double integral with which we have to deal into expressions using the Bessel 
functions and a specially defined K-function but no integrals. 

Applying to the optimization of contract parameters under different information 
criteria, we can come to different solutions. 

 

4.2. Scenario 3-1: 

Here as, earlier mentioned, the shipper has to reduce the cases where the carrier 
fails her. Let us call EC3-1 the expression coming from (1.20) the shipper S has to 
minimize: 

 

( ) ( )( ) ( )

( )( ) ( )
3

3 3

3 1

4

7 10

,

,

a

a a

EC Q q P p f Q P dQdP

q P p f Q P dQdP

−

Ω

Ω ∪Ω

= − − +

−

∫∫

∫∫
  (1.35) 

Let us list the decision variables that have to be optimized: 
q  : base capacity contracted. Has to bear some relation with the 

average demand received by S. 
qa  : additional capacity contracted in QF clause 
pa  :  price of additional capacity, set in QF clause 

34   [ , [ [ , ]a ap q q qΩ = ∞ × +  : boundaries are a function of contract 
parameters 

  W a→  : capacity limit of carrier C. Not a decision variable. 
3 37 10 [ , [ [   , [a ap q qΩ ∪Ω = ∞ × + ∞ : boundaries are a function of contract 

Optimization has to be done over the variables q, qa and  pa. 
 
The analytical expressions of the first and second differentials of the expression 

according to these variables were not tractable. We set up a comprehensive 
algorithm to calculate the result of this expression for all possible values of the 
decision variables having set λ and µ to 1. Because of  (2.3) and(2.22), this entails 
the following: 

 ( )11 1λ λ ρ= ⇒ = −  (1.36) 
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The marginal mean for P is set in this way at 1
1pµ

ρ
=

−
. The same is true for 

the marginal mean of Q: 1
1qµ

ρ
=

−
. We have explored numerically the space 

defined by the decision variables. The results show that for a large variety of 
values EC3-1 is worth basically zero. Meaning that for a large range of values for 
the contract, both information sharing scenarios generate the same cost to the 
shipper. The sharpest values happen near the low values for the contract 
parameters reflecting the heightening cost for the shipper when the contract 
parameters are set at too low values compared to the mean demand observed and 
mean price on the spot market (Fig. 8) 

1.6
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5.6
7.6

9.6

qa

1.6
3.6

5.6
7.6

9.6pa

0
0.25
0.5

0.75
1

EC3-1

0

 
Fig. 8: EC3-1 λ=µ=1, ρ=0.5, q = 2.1,0.001≤ pa 

≤ 10.1, 0.001 ≤ qa ≤10.1 

When qa and pa increase, EC3-1 decreases very quickly but remains above zero. 
The conclusion is that the parameters have an influence only when set too 

“low”. When, for example, we have q set at the expected demand (in our case 2.1) 
and qa set at half a standard deviation (1.1) for a price pa of half a standard de 
variation above the expected spot price (3.1), we have an excess cost for the 
shipper in scenario 3 of: 0.289. This is almost equal to paying twice the spot price 
in scenario 3 versus what the shipper S would pay in scenario 1. 

 
 

4.3. Scenario 4-1: 

Let us call EC4-1 the expression that the shipper has to minimize in this private 
information setting where both engage in opportunistic behaviour: 

 

( ) ( )( ) ( )

( )( ) ( )

4 1
2 3 4

5 6 7 8 9 10

,

,

a

a a

EC Q q P p f Q P dQdP

q P p f Q P dQdP

−

Ω ∪Ω ∪Ω

Ω ∪Ω ∪Ω ∪Ω ∪Ω ∪Ω

= − − +

−

∫∫

∫∫
  (1.37) 

Let us list the decision variables: 
Contract parameters: 
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q : base capacity contracted contract parameter 
qa : additional capacity set in QF clause 
pa : price for additional capacity, set also in QF clause. 
VC : variable cost limit of carrier C. Not a decision variable. 

2 3 4  [  ,  [ [  ,    ]aVC q q qΩ ∪Ω ∪Ω = ∞ × +  : boundaries are a function of 
contract parameters 

5 6 7 8 9 10  [ , [ [  , [aVC q qΩ ∪Ω ∪Ω ∪Ω ∪Ω ∪Ω = ∞ × + ∞ : boundaries are a 
function of contract parameters. 

So we write: 
Optimization has to be done over the variables q, qa, and pa, neither penalties 

are present. 
The first and second derivatives were not tractable so we again had recourse to 

the description of the EC4-1 expression for given values of the distribution 
parameters of demand and spot price. 

We have fixed ρ = 0.5 λ = 1 and µ= 1. This leads to marginal means for 
demand Q and Price P of 2. So we study the behaviour of EC4-1 for values of the 
variables ranging from near zero to 2 times the standard deviation above the mean 
of demand Q and spot price P. We find that for a fixed q of 6, which should cover 
almost two standard deviations above the mean demand distribution expected 
(which, as the reader will recall is supposed to be known by S), we still get 
deviations in cost. The shape of the surface is the same as the one represented 
below, even if in a more attenuated manner, meaning less differences between 
costs in scenario 4 and 1 (Fig. 9). 

2 4 6 8
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0
2.5

5
7.5

10

qa

-1.5
-1

-0.5
0

0.5

EC4 -1

 
 

Fig. 9: EC4-1, λ = µ = 1, ρ = 0.5 , q = 2, 0.0001 ≤ qa ≤ 10, 1≤ pa ≤ 9 

When pa is “high”, for all values of qa we have a negative EC4-1 meaning that 
the cost to S is higher in scenario 1 than in scenario 4. When q is increased to 
several standard deviations above the mean demand received, this effect is 
attenuated and the difference becomes insignificant. 

The following figure gives an idea of the shape of the behaviour of the 
difference between costs when the correlation factor between demand and spot 
takes a value of 0.1 (Fig. 10). This leads to an expected demand of 1.1 and an 
expected spot price of 1.1. 
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Fig. 10: EC4-1, λ = µ = 1, ρ = 0.1 , q = 1.1, 0.01 ≤ qa ≤ 2.1, 0.01≤ pa ≤ 2.1 

Both are similar and show a crossing from positive to negative signs when the 
contract parameters for the QF clause go from under the means of spot price and 
demand to higher. However, an interesting phenomenon is the fact that when 
correlation is at 0.5, pa has to go over mean spot price plus 2 standard deviations 
in our graph, given ρ at 0.1, the mean of the spot price becomes 1.1 and the 
standard deviation at 1.1, pa has to go to 3.3 for the difference to become null (for 
whatever level qa is set at). On the other hand, when ρ is worth 0.1, the difference 
becomes null for values of pa at barely mean spot price plus half a standard 
deviation, and this is true for whatever level of q. 

We conclude that the centrally coordinated supply chain is dominated by the 
private information scenario for large prices of additional capacity and this is true 
for all studied values of q between 0.0001 and 30. 

 

4.4. Scenario 5-1: 

Let us call EC5-1 the expression to be minimized here for the shipper: 

 

( ) ( )( ) ( )

( )( ) ( )
5

5 5

5 1

2

5 8

,

,

a

a a

EC Q q P p f Q P dQdP

q P p f Q P dQdP

−

Ω

Ω ∪Ω

+= − −

−

∫∫

∫∫
  (1.38) 

52 [  ,  [ [  ,    ]a aVC p q q qΩ = × +  : boundaries are a function of contract 
parameters 

5 55 8 [  ,  [ [  , [a aVC p q qΩ ∪Ω = × + ∞ : boundaries are a function of contract. 
Again, we solve the optimal x,y and z. 
 



Xavier Brusset – Nico Temme 

 23 

0 0.5 1 1.5 2

pa

0
0.5

1
1.5

2

qa

-0.2

0

0.2

EC5 - 1

 
Fig. 11: EC5-1, λ = µ = 1, ρ = 0.1, q = 1.1, 0.01 ≤ qa ≤ 2.1, 0.01≤ pa ≤ 2.1 

For all values of q the base capacity contracted the shape of the envelope is the 
same save for a scaling parameter. The higher qa, the more important a correct 
value for pa becomes. On the contrary, and as would be expected, for a low qa, 
whatever the price pa, the difference between both scenarios is negligible for all 
values of q the base capacity.  

If qa and pa are chosen too high, the cost to S in scenario 5 is less than in 
benchmark scenario 1. So S has an inventive to hide rue demand from C and 
negotiate high values for both qa and pa beforehand. This will be resisted by C, of 
course, for the same reason. 

The conclusion is therefore for the shipper and carrier to bargain for an 
additional capacity equal to the average demand expected and a price equivalent to 
the mean spot price observed. Only in this case can the supply chain expect to 
moderate the effects of hidden demand information. When the additional quantity 
qa is around one standard deviation of expected demand and the price for this 
additional capacity pa is also around one standard deviation of expected spot 
price, the difference between scenarios is almost null (EC5-1 = 0.014 for pa = qa = 
1.1). 

 
 
 

CONCLUSION 

In this paper, we present transport as an individualized supply chain member 
with proper characteristics. We have modelled the impact and influence that 
information sharing and coordination with a transport supplier have on the 
efficiency of the supply chain. We have established that: 

− Better coordination is achieved by including a fixed capacity commitment 
and some additional flexibility in capacity (QF clause) in a contract in a 
mixed procurement strategy (contract + spot). 

− Penalties should be included and proportionate to the standard deviation of 
the spot market price. We have shown that this ensures coordination.  
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− The information imbalances induced by keeping private information as to 
the real transport capacity by the carrier, and as to the real demand 
received by the shipper are detrimental to the overall efficiency of the 
supply chain, because it encourages deviant attitudes both from the carrier 
and the shipper and hence increases overall revenue or cost volatility. 

− Carefully crafted ex-ante contractual arrangements can substantially 
correct this information asymmetry. These contractual arrangements 
depend only on demand and price distribution characteristics. 

The aim of the supply chain manager should be to reduce standard deviation 
because increased cost standard deviation is an incentive, in a multi-period game, 
to increase margins at both levels of the supply chain, thus leading to the notorious 
double margining phenomenon. The shipper increases his budgeted costs because 
he cannot ensure regularity of his cost and hence must protect himself by padding 
his transport budget; the carrier increases price of services because he has to 
contend with fixed cost non-scalable capacity and so must also preserve his 
financial health by higher than warranted profit margins. 
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Annex I 

Description of bivariate exponential distribution 

We have chosen Downton’s bivariate exponential distribution as described in 
Kotz et al.(2000)  and discussed in Iliopoulos (2003) with the joint density 
function (pdf): 

 ( ) ( )1/ 2
1 21 2 1 2

1 2 0
2

, , , , exp
1 1 1

qpq pf q p I
ρλ λλ λ λ λλ λ ρ

ρ ρ ρ

⎛ ⎞⎛ ⎞+ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
(2.1) 

where, to simplify,  q = Q, p = P, λ1  and λ2 > 0 and  

 ( ) ( )2 2
0

0

/ 2 / !k

k

I z z k
∞

=

=∑  (2.2) 

is the modified Bessel function of the first kind of order zero.  
Let it be clear that here we limit our consideration to the case where the 

correlation coefficient is positive or null: 0 < ρ < 1. We will restrict our study to 
the cases where spot market prices for freight transport and demands addressed to 
the shipper are positively correlated. 

The above density was initially derived by Moran (1967). The marginal 
distributions of both Q and P are exponential with means 1/λ1 and 1/λ2 
respectively. Since I0(0)=1, it is clear that Q and P are independent if and only if ρ 
= 0. Downton (1970) showed that ρ is the correlation coefficient of the two 
variates. 

The marginal probability density functions can be written: 

 
( )
( )

1

2
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q
q

p
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−

−

=

=
 (2.3) 

We can write the marginal distribution functions as: 

 

( )

( )

1 1

2 2

1 1
0

2 2
0

1

1

q
t q

p
t p

F q e dt e

F p e dt e

λ λ

λ λ

λ

λ

− −

− −

= = −

= = −

∫

∫
 (2.4) 

But first, we summarize a few properties of double integrals of the modified 
Bessel function. 

 

Integrals of Bessel functions 
The following integral 

 ( ) ( ) ( )0
0 0

, , 1 2 , 0
yx

u vL x y p p e I puv dudv p− −= − ≥∫ ∫  (2.5) 

plays a crucial role in the analysis. For several properties we refer to Temme 
(1986), Luke (1962); see also Kotz et al (2000). This function can be written as  
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( ) ( ) ( ) ( ), , 1 , ,py y py y px xL x y p e e K py x e K y px− − −= − + −  (2.6) 

where  

( ) ( ) ( )0 0
0

, 2 1 2
x

y u y u

x

K x y e e I uy du e e I uy du
∞

− − − −= = −∫ ∫ . (2.7) 

This complementary property follows from (see 29.3.81 of Abramovitz – 
Stegun (1964))  

 ( )0
0

2y ue e I yu du
∞

−= ∫  (2.8) 

The starting point in Moran (1967) is the function  

 ( ) ( )0
0 0

, 2
yx

u vI x y e I uv dudv− −= ∫ ∫  (2.9) 

We have ( ) ( ), ,
,

L x y p
I x y

p
∂

= −
∂

at p=1 and  

( ) ( ) ( ) ( ) ( )1 0
1, , . 2
2

x yI x y x y x K x y e I xI xyξ ξ ξ ξ− − ⎡ ⎤= + − − + =⎢ ⎥⎣ ⎦
(2.10) 

Observe that I(x,y)=I(y,x), and from this symmetry relation it follows that  

 ( ) ( ) ( )0, , 1 2x yK x y K y x e I xy− −+ = − , (2.11) 

which formula is not given in Moran (1967). In (2.10), I1(ξ) is the modified 
Bessel function of the first kind of order one. 

The analysis in Moran (1967) is focused on the asymptotic properties of I(x,y) 
for large values of x and y. In fact the asymptotic properties of the function  

 ( ) ( ) ( )0
1, , 2
2

x yF x y K x y e I xy− −= +  (2.12) 

are studied. The symmetry rule for this function reads  

 ( ) ( ), , 1F x y F y x+ = . (2.13) 

The first term approximation for F(x,y) given in Moran (1967) reads  

 ( ) ( ), erfc ,
4

x y
F x y y x y x

xy

+
− ≥∼ , (2.14) 

where erfc z denotes the complementary error function  

 
22erfc t

z

z e dt
π

∞
−= ∫  (2.15) 

The approximation in (2.14) holds for large y, uniformly with respect to x, 
0 x yδ< ≤ ≤ , where δ is a fixed positive number. It gives the exact value ½ when 
x = y, and for y>> x it is exponentially small. This follows from the estimate  

 
21erfc ,zz e z

z π
− → ∞∼ . (2.16) 
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When x ≥ y we can use (2.13), and obtain  

 ( ) ( ), 1 erfc , 0
4

x y
F x y x y x y

xy
δ

+
− − ≥ ≥ >∼ . (2.17) 

This non-uniform behaviour of F(x,y) for large x and y also occurs for K(x,y). In 
fact, we have the following limiting values. First observe that from (2.11) it 
follows that  

 ( ) ( )2
0

1, 1 2
2

xK x x e I x−⎡ ⎤= −⎣ ⎦ . (2.18) 

For large values of x the right-hand side approaches ½, because we know that 
(see 9.7.1 of Abramovitz – Stegun (1964) or (9.54) of Temme (1986))  

 ( )0 ,
2

zeI z z
zπ

→∞∼  (2.19) 

For fixed x and large y we can use (2.7) and (2.19) to show that K(x,y) tends to 
zero. From (2.7) and (2.8) we conclude that for fixed y and large x, K(x,y) tends to 
unity. 

In other words,  
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=

 (2.20) 

Solving the double integral 
For the intervals , , ,x l h y l hx x y yΩ = Ω =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , we assume that 

0l lx y= = because we can always write , 0, \ 0,l h h lx x x x=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , and the same 
for Ωy. For infinite intervals [ , [x xΩ = ∞ and/or [ , [y lyΩ = ∞ , we also can 
concentrate on finite intervals, because of complementary rules based on (2.8). 

For the evaluation of the objective function A defined in (1.32), we need the 
following functions  
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 (2.21) 

We evaluate the function Aj of (2.21) and use the notation  

 1 2, , ,
1 1h hx x y y µλ λλ

ρ ρ
= = = =

− −
 (2.22) 
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For A0, we have  

 ( )0 , ,A L x µyλ ρ=  (2.23) 

and the relation with the K-function follows from (2.6). 
For Aj, j = 1,2,3, it is useful to have a different representation of the L-function. 

By using the expansion (2.2) of the Bessel function in (2.5), we find  

 ( ) ( ) ( ) ( )
0

1, 1,
, , 1

! !
k

k

k x k y
L x y p p p

k k
γ γ∞

=

+ +
= − ∑ , (2.24) 

where ( ),a zγ is the incomplete gamma function (see [9, chapter 11])  

 ( ) 1

0

, , 0
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a ta z t e dt aγ − −= ℜ >∫ . (2.25) 

For A1, we obtain  
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! !

yxk k k
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giving 
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Using the recursion  

 ( ) ( )1, , a za z a a z z eγ γ −+ = −  (2.28) 

we obtain  
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To evaluate the first series we use (2.24) and in the second one we interchange 
summation and integration. This gives  
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In the same way,  
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For A3, we obtain  
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By using (2.28), we write  

 3 1 2 3 4A B B B B= + + + , (2.33) 

where  
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For B1 we obtain  
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Next,  
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Finally,  

 ( ) ( )4 01 2x µyB xye I µxyλρ ρλ− −= − . (2.38) 

Armed with these results, we can now proceed to study the particular 
expressions resulting from differences between scenarios and come to 
conclusions. 
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