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1 Introduction

Applying the statistical theory of finite-state Markov chains, Neftci (1984) reported evi-

dence showing that the U.S. quarterly unemployment rate is asymmetric in the sense that

the probability of a decrease in the series, conditional on two preceding decreases, is greater

than the corresponding probability of an increase conditional on two previous increases.

One of the primary time series implications of such behavior is that it is inconsistent with

a linear data generating process with symmetrically distributed innovations.

Neftci’s study inaugurated a near two-decade long research program in which the ex-

tent to which key business cycle indicators display varying forms of asymmetric dynamics

has been explored; see Clements and Krolzig (2003) for a useful survey of important de-

velopments in the business cycle asymmetry literature. Many of these papers have focused

specifically on unemployment rates and have frequently documented strong evidence in

favor of dynamic asymmetries, often in the form of parametric nonlinear models, for these

series. Recent work includes: Altissimo and Violante (2001), who, by way of a threshold

vector autoregressive (VAR) model of U.S. output and unemployment with feedback from

a Beaudry and Koop (1993)-like “depth of recession” measure, identified nonlinearities

in the propagation and persistence of shocks as well as a beneficial long-run effect of re-

cessions on growth; Caner and Hansen (2001), who uncovered threshold autoregressive

(TAR) effects in the U.S. unemployment rate via their TAR-based unit root test; and

Skalin and Teräsvirta (2002), whose results suggest that smooth transition autoregressive

(STAR) models can capture well the asymmetry displayed in many OECD unemployment

rate series.

While the vast majority of these papers have been concerned with in-sample fits of

linear and nonlinear models to unemployment rate data, researchers have increasingly

investigated one of the main practical problems which has motivated the literature, that

is, whether out-of-sample unemployment rate forecasts generated by nonlinear time series

models can dominate those produced with standard linear models. Rothman (1998) was

one of the first to consider this question for the U.S. quarterly unemployment rate. He

analyzed the forecasting performance of six nonlinear time series models against linear



forecasts, and in many cases the mean squared prediction error (MSPE) associated with

the nonlinear forecasts was less than those for the linear forecasts. Montgomery, Zarnowitz,

Tsay, and Tiao (1998) found that, at multistep-ahead forecast horizons during business

cycle contractions, TAR and Markov-switching autoregressive models outperformed in

the MSPE-sense the benchmark linear model in out-of-sample forecasting of the U.S.

quarterly unemployment rate. Using artificial neural network (ANN) and logistic STAR

(LSTAR) models for a very large data set of U.S. macroeconomic time series, including

the monthly unemployment rate, Stock and Watson (1999) showed that linear forecasts

generally dominated the nonlinear forecasts. However, following a similar approach with

an analogous data set for the Euro area, Marcellino (2002) reported much more favorable

results for ANN and LSTAR forecasts; for the Euro area unemployment rates in particular,

the ANN and LSTAR forecasts had lower MSPEs two and half times more often than did

the linear forecasts.1

A common feature of the nonlinear forecasts evaluated in these four papers is that

they were all univariate.2 This marks a significant point of departure for our paper: while

we also examine nonlinear forecasts of unemployment rates, the models we use are mul-

tivariate. The macroeconomic theoretical motivation behind a multivariate approach is

straightforward; through standard arguments it is reasonable to assume that the unem-

ployment rate is interrelated with other important variables. The degree to which a partic-

ular nonlinear parameterization of these relationships can be exploited to yield improved

forecast improvement is the empirical issue addressed in this paper.

To investigate this question for unemployment rates, we employ multivariate STAR

models in which we impose cointegrating restrictions. In doing so, we build upon Skalin and

Teräsvirta (2002), who noted that their univariate in-sample analysis can be interpreted

as a first step in the specification of a multivariate STAR model of unemployment rates.

We also follow Rothman, van Dijk, and Franses (2001), who used a similar approach to

study the Granger-causal relationship between money and output. These authors found

strong evidence in favor of STAR-type nonlinearity in a system of output, prices, interest

rates, and money. By Okun’s Law, comparable results arguably are expected to hold for

an analogous model in which output is replaced by the unemployment rate. In addition to
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our primary focus on unemployment rates, there are several differences between our paper

and Rothman et al. (2001).

First, our chief concern is evaluation of the out-of-sample forecasting performance of

the models, while Rothman et al. (2001) concentrated on both in-sample and out-of-sample

results to analyze the money-output relationship. Our main in-sample interest is identi-

fication of the transition variables which govern parameter variation in STAR models.

Second, ours is a closer approximation to real-time implementation of these forecasting

models. In Rothman et al. (2001) specification of the STAR models was done using prac-

tically the full sample, such that common specifications were imposed in all rolling windows

of data. While this aided interpretation of the results with respect to the Granger causality

question under consideration, it effectively allowed the use of post-sample information in

generating the forecasts. In contrast, we specify the models for each data window only

using data available through the date of each forecast, and thus allow the model specifica-

tions to vary across data windows. Though this substantially increases the computational

burden, we feel our experimental design offers a better simulation of real-time forecasting

practice.3 Third, in this paper forecasts are computed using two approaches: following the

standard route by iterating forward estimated one-step-ahead models; and also, follow-

ing Stock and Watson (1999) and Marcellino (2002), by estimating directly h-step-ahead

models and projecting them forward. This allows a useful comparison of these strategies

for forecasting unemployment rates. Rothman et al. (2001) did not employ “h-step-ahead

projections” for multistep-ahead forecasting. Fourth, we consider some easily-constructed

pooled forecasts, whereas Rothman et al. (2001) did not use any forecast pooling pro-

cedures. Finally, while Rothman et al. (2001) only worked with U.S. data, we examine

multivariate STAR models with data for the U.S., U.K., Canada, and Japan.

Another paper quite close to ours is Krolzig, Marcellino, and Mizon (2002), who an-

alyzed a Markov-switching vector error correction model (MS-VECM) of the U.K. labor

market with quarterly data. Besides our use of STAR as opposed to MS models, there are

several differences between our paper and Krolzig et al. (2002). First, their unemployment

measure was the volume of unemployment, whereas we use unemployment rates. Second,

selection of the variables to be included in their system came out of specific focus on the
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labor market; their four-variable system comprised unemployment, employment, real out-

put, and real wages. In contrast, our choice of variables follows a standard practice in the

empirical monetary policy literature; our four-variable system comprises the unemploy-

ment rate, the aggregate price level, a monetary aggregate, and a short-term interest rate.

Third, in their out-of-sample forecasting exercise, Krolzig et al. (2002) only computed

one-step-ahead forecasts, and do so only for two estimated versions of their model.4 In our

approach the models used are reestimated for each fixed-length rolling window of data,

and we compute one-quarter-ahead through eight-quarters-ahead forecasts.

The paper proceeds as follows. In Section 2 we discuss the multivariate STAR model

and outline a specification procedure for such models. The results of linearity testing

against STAR alternatives within a multivariate context are also presented in this section.

Our out-of-sample forecasting results are examined in Section 3 and Section 4 concludes

the paper.

2 Multivariate STAR Models and Linearity Testing

Let xt = (x1t, . . . , xkt)
′ be a (k × 1) vector time series. In our case we have xt =

(ut,mt, pt, it)
′, with ut the log of the unemployment rate, mt the log of a money sup-

ply measure, pt the log of the producer price index, and it a short-term interest rate.5 We

analyze quarterly vector time series for four different countries, the U.S., U.K., Canada,

and Japan for the 1959:1-2001:4, 1965:1-2001:4, 1968:1-2001:4, and 1966:4-2001:4 sample

periods, respectively.6 The unemployment rate, money supply, and producer price index

series were seasonally adjusted, while the interest rate series were not. The data were ob-

tained from the following sources: the Federal Reserve Bank of St. Louis, the U.S. Bureau

of Labor Statistics, the U.K. Office for National Statistics, the Bank of Canada, and the

OECD Main Economic Indicators and the IMF International Financial Statistics

databases.

A k-dimensional smooth transition vector error-correction model [STVECM] can be
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specified as

∆xt =



µ1 +α1zt−1 +

p−1
∑

j=1

Φ1,j∆xt−j



 (1−G(st; γ, c))

+



µ2 +α2zt−1 +

p−1
∑

j=1

Φ2,j∆xt−j



G(st; γ, c) + εt, (1)

where ∆j denotes the j-th difference operator, defined as ∆jxt = xt − xt−j for integers

j 6= 0 and ∆1 ≡ ∆, µi, i = 1, 2, are (k × 1) vectors, αi, i = 1, 2, are (k × r) matrices,

zt = β′xt for some (k × r) matrix β denoting the error-correction terms, Φi,j , i = 1, 2,

j = 1, . . . , p−1, are (k×k) matrices, and εt = (ε1t, . . . , εkt) is a k-dimensional vector white

noise process with mean zero and (k × k) covariance matrix Σ. The transition function

G(st; γ, c) is assumed to be a continuous function bounded between zero and one. In this

paper we allow the transition variable st to be either a function of a lagged component of

xt or a lagged exogenous variable.

The STVECM can be thought of as a regime-switching model that allows for two

regimes associated with the extreme values of the transition function, G(st; γ, c) = 0 and

G(st; γ, c) = 1, where the transition from one regime to the other is smooth. In this paper

we restrict attention to the logistic transition function

G(st; γ, c) =
1

1 + exp{−γ(st − c)/σ̂s}
, γ > 0, (2)

where σ̂s is the sample standard deviation of st. The parameter c in (2) can be interpreted

as the threshold or border between the two regimes, in the sense that the logistic function

changes monotonically from 0 to 1 as st increases, and G(c; γ, c) = 0.5. The parameter γ

determines the smoothness of the change in the value of the logistic function and, thus,

the smoothness of the transition from one regime to the other. As γ becomes very large,

the logistic function approaches the indicator function I[st > c]. Hence, the STVECM (1)

with (2) nests a two-regime threshold vector error-correction model [TVECM] as a special

case; see Balke and Fomby (1997) and Tsay (1998) for discussion. Finally, note that when

γ = 0 the logistic function equals 0.5 for all st, such that the STVECM model reduces to
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a linear VECM.

The procedure we follow for specifying STVECMs is a straightforward modification of

the specification procedure for univariate STAR models put forward by Teräsvirta (1994).

We start by specifying a linear VECM for xt, that is,

∆xt = µ+αzt−1 +

p−1
∑

j=1

Φj∆xt−j + εt, (3)

where the lag order p should be such that the residuals Ýεt are approximately white noise

and have zero autocorrelations at all lags. To reduce the number of parameters (4 + (4×

r) + (4 × 4 × (p − 1))), we decided to use a subset VECM by imposing zero restrictions

on coefficients in the Φj , j = 1, . . . , p − 1, matrices in (3). Use of such subset models

simplifies computation of the test statistics required for the linearity tests described below

and significantly eases estimation of the STVECMs used.

The subset VECM is specified by following the strategy recommended by Brüggemann

and Lütkepohl (2000), which treats the individual equations in the VECM separately.

We estimate the parameters in the i-th equation of (3) by ordinary least squares [OLS]

and sequentially delete the regressor with the smallest absolute value of the corresponding

t-ratios, until all t-ratios of the remaining coefficients are greater than some threshold

value τ in absolute value; in each iteration only a single regressor is eliminated. Then the

reduced model equation is re-estimated and new t-ratios are computed. We choose the

threshold τ as a function of the iteration l as

τ = τl =
√

(exp(λT /T )− 1)(T − L+ l − 1), (4)

where T denotes the effective sample size, L = 1+r+4×(p−1) is the number of parameters

in the unrestricted equation and λT is a sequence indexed by the sample size. As shown by

Brüggemann and Lütkepohl (2000), by setting λT equal to the penalty term involved in an

information criterion of choice, this procedure leads to the same final model as sequentially

removing those regressors whose elimination yields the largest improvement in the value

of this particular information criterion. We use the Akaike Information Criterion (AIC),
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which requires setting λT = 2.7 It should be noted that we only eliminate lagged first

differences from the VECM, and always retain the intercept and error-correction terms.

We set the cointegrating rank r = 2 and pre-specify the two cointegrating vectors as

(1, 0, 0, 0)′ and (0, 0, 0, 1)′, that is, the first row of zt is the log-unemployment rate and

the second row of zt is the short-term interest rate. Such pre-specification as opposed to

estimation of the cointegrating vectors serves as a simplifying pair of assumptions which

allows us to focus on the value-added of allowing STAR-type effects in a multivariate

forecasting model of the unemployment rate. In using ut as an error-correction term,

we follow Skalin and Teräsvirta (2002), who assumed that the unemployment rate, a

bounded variable, is a globally stationary process. By way of an LSTAR specification,

however, asymmetry and local nonstationarity are possible.8 Our decision to include it as

an error-correction term follows Rothman et al. (2001), who did so in the ‘Hendry-style’

in that it was based on economic theory; see, for example, Hendry and Mizon (1993) and

Söderlind and Vredin (1996). The latter authors showed that the Cooley and Hansen

(1995) monetary equilibrium business cycle model implies that the nominal interest rate

is stationary.

The next step in the specification procedure is to select a transition variable st, which

is done via linearity testing of the subset VECM against the alternative of a STVECM. To

carry out our forecasting exercise we require a sequence of transition variables for “rolling”

fixed-length windows of data, where the first data window runs from the first observation of

the data set for each country out to 1991:4, and each successive data window is constructed

by shifting the preceding window ahead by one observation. This setup allows us to

generate 33 out-of-sample forecasts at forecast horizons h = 1, . . . , 8.

Testing linearity in this context is complicated by the fact that the STVECM contains

nuisance parameters which are not identified under the null hypothesis; see, for exam-

ple, Davies (1987). To circumvent this identification problem, we follow the approach of

Luukkonen, Saikkonen, Teräsvirta (1988) and replace the transition function G(st; γ, c)

with a suitable Taylor approximation. The S1 test is a standard variable addition test

based on an auxiliary regression of the residuals from the linear VECM on a set of vari-

ables given by a first-order Taylor expansion of G(st; γ, c). The S2 test is based on a
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third-order Taylor approximation of the logistic transition function, and the S3 test is a

parsimonious version of the S2 test. For the sample sizes we have, it turns out that we

lack sufficient degrees of freedom to compute the system-wide version of the S2 test, such

that we only use its parsimonious version.9

Given that our VECM residuals tend to be highly heteroskedastic, it makes sense to

employ heteroskedasticity-robust versions of the linearity tests; simulations discussed by

Rothman et al. (2001) showed that the estimated sizes of the non-robust linearity tests

in the presence of heteroskedasticity tend to be severely distorted upwards. To this effect,

the specification tests developed by Wooldridge (1991) are very helpful, since they can be

used in the presence of heteroskedasticity without the need to specify the often unknown

form of heteroskedasticity explicitly. The robust versions of the linearity tests we use were

obtained by applying ‘Procedure 3.1’ of Wooldridge (1991).

Simulations discussed by Lundbergh and Teräsvirta (1998) and Rothman et al. (2001)

suggest, however, that these robust tests are conservative, with estimated sizes less than

nominal significance levels and low estimated power. Nonetheless, we follow Rothman et

al. (2001) and apply these heteroskedasticity-robust versions of the linearity tests since we

feel that the ranking across a set of prospective transition variables is valuable information

for the STVECM specification process. It is unlikely that such a ranking will be affected

by presence of heteroskedasticity in the VECM residuals.

To identify an appropriate transition variable st with a linearity test for each data

window, we run the test for several candidates, s1t, . . . , smt, and select the one for which

the p-value of the associated test statistic is smallest. Here we consider the following

different candidate transition variables for all countries: lagged yearly changes in the log

unemployment rate (∆4ut−d), lagged yearly growth rates in the money supply (∆4mt−d),

lagged annual inflation rates (∆4pt−d), lagged yearly changes in the short-term interest rate

(∆4it−d), lagged yearly changes in the annual money supply growth rates (∆4∆4mt−d),

lagged yearly changes in the annual inflation rate (∆4∆4pt−d), and lagged yearly changes in

the relative price of oil (∆4ot−d, with ot = pOIL
t /pt and pOIL

t the crude petroleum producer

price index). In addition, for the U.S. we also used lagged annual changes in the federal

funds rate (∆4fft−d).
10
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The reason why we use 4-quarter differences as transition variables is that we expect

the regimes in unemployment rate dynamics to be more so persistent, because, for exam-

ple, they might be related to the business cycle or to monetary policy. Using 4-quarter

differences effectively eliminates short-run fluctuations which do not necessarily repre-

sent changes in regimes. We test linearity with the above-mentioned variables for delays

d = 1, . . . , dmax, where we set the maximum value of the delay parameter dmax equal to 4.

The empirical and theoretical literature upon which we base our focus on these partic-

ular candidate transition variables is large. Of particular relevance in our STAR context,

we note that a good deal of research has been done which suggests that these variables

are reasonable measures of either the ‘state of the economy’ and/or the ‘state of policy.’

As such, our use of these variables is strongly motivated by much of the macroeconomic

research on ‘state-dependent’ dynamics; see, for example, Caplin and Leahy (1991) and

Caballero and Hammour (1994). 11

3 Out-of-Sample Forecasting

3.1 Forecasting Methods

Our forecasts are produced by 11 forecasting methods for our 33 simulated out-of-sample

periods, where we use the term “methods” in the sense of Stock and Watson (1999).

That is, the sequence of forecasts generated by each method is based on an underlying

“primitive model,” and we let the specification of each primitive model vary across the

33 simulated in-sample periods. The first forecasting method is based on identifying a

linear VECM for each rolling in-sample window, using the AIC and a diagnostic check for

residual serial correlation. For each sample window the maximum lag length allowed is 4

and the model is estimated by seemingly unrelated regressions estimation. Mutistep-ahead

forecasts are computed by iterating forward the estimated one-step-ahead model; we end

up with forecasts for steps h = 1, . . . , 8.

Forecasting Methods 2 through 6 use as the primitive model a STVECM, and generate

multistep-ahead forecasts by, as we do with forecasting Method 1, iterating forward the

estimated one-step model. But since the models are nonlinear, we use bootstrap simula-
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tions to help compute the multistep-ahead forecasts. These STVECM forecasting methods

differ as to how the transition variable is selected. Methods 2 through 4 use the top-ranked

candidate variable as determined by the single-equation S1, S2, and S3 tests, respectively,

run on the first-differenced log-unemployment rate equation of a subset linear VECM ob-

tained through the Brüggemann and Lütkepohl (2000) procedure. The Brüggemann and

Lütkepohl (2000) algorithm is further applied to the STVECM to facilitate estimation of

the model. Methods 5 and 6 do the same with the system-wide S1 and S3 tests, respectively.

Forecasting Methods 7 through 9 use STVECM “h−step-ahead projections” constructed

as follows. First, for each in-sample window, we estimate directly the h−step-ahead model

for the log-unemployment equation of the STVECM, such that with the dependent vari-

able ∆ut, the first lag allowed amongst the regressors is from observation t−h for forecast

step h. This requires that we select a transition variable for each separate forecast step

h for each of the 33 in-sample rolling windows of data, which leads to selection of 792

(8 forecast steps × 3 forecasting methods × 33 data windows) transition variables per

country. Methods 7 through 9 base the selection of the transition variable on the single-

equation S1, S2, and S3 tests, respectively, run on the first-differenced log-unemployment

rate equation of an unrestricted h−step-ahead linear VECM; after selection of the transi-

tion variable, the Brüggemann and Lütkepohl (2000) procedure is applied to the STVECM

log-unemployment rate equation to help identify the appropriate regressors. Second, the

forecast of ∆ut+h is computed by projecting the estimated equation ahead by h periods.

Stock and Watson (1999) and Marcellino (2002) emphasize that use of such h−step-

ahead-projections simplifies significantly computation of the multistep-ahead nonlinear

forecasts, since no simulations are required for forecast steps h > 1. On the other hand,

this requires a very large increase in the number of linearity tests run to rank the candidate

transition variables for all data windows. Further, these authors point out that h−step-

ahead projections can reduce the effects of misspecification of the estimated one-step-

ahead, since the effects of such misspecification do not propagate through to the multistep-

ahead forecasts. Estimation of all STVECMs used in Methods 2 through 9 is done by

nonlinear generalized least squares.

In addition, we employ two straightforward pooling procedures. First, Method 10
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forecasts are constructed by taking the median forecast value from the nonlinear forecasts

produced by Methods 2 through 9. Second, Method 11 uses the median forecast across

Methods 1 through 9. Table 1 summarizes all of the forecasting methods used.

3.2 Out-of-Sample Forecasting Ranks

Table 2 presents out-of-sample forecasting rankings of these methods for each of the four

countries according to two evaluation criteria, the mean squared prediction error (MSPE)

and median squared prediction error (MedSPE); note that the “better” or “higher ranked”

forecasting methods have “lower” numerical ranks. The key result for the U.S. is that

Method 10, the pooled median forecast across the STVECMs, is the top-ranked forecast-

ing methods according to both the MSPE and MedSPE. So, in addition to dominating the

linear VECM-based Method 1, median-pooling across the nonlinear forecast methods is

superior to such pooling when the linear forecasts are also used. The result that median-

pooling across all the nonlinear forecasting methods dominates each of the individual ones

suggests that focus on single-primitive-model-based nonlinear forecasting methods may

mask the potential gains obtainable by combining these individual nonlinear forecasts.

Method 1, based on forecasts from the linear VECM, is the seventh-ranked forecasting

method according to the MSPE criterion, and its relative performance decreases substan-

tially, down to eleventh out of the 11 methods, using the MedSPE, the more robust forecast

comparison criterion. It appears that this rather weak performance of Method 1 accounts

for Method 11, which produces forecasts by taking the median point forecast across the

linear and nonlinear models, being ranked fourth and eighth, respectively, according to

the MSPE and MedSPE.

We next discuss the forecasting ranks of Methods 2 through 9 for the U.S., since we

are interested in determining whether any particular class of STVECM forecasts used

tend to dominate another. As per the definitional scheme given in Table 1, we distinguish

three such classes of STVECM forecasts within Methods 2 through 9: Methods 2 through

4; Methods 5 and 6; and Methods 7 through 9. First, we note that the h−step-ahead

projections of Methods 7 through 9 are outperformed, according to the MSPE, by Methods

2 through 6. However, this result does not carry through to forecast evaluation using the
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MedSPE. Second, no individual non-pooling nonlinear forecasting method is dominant

across use of both the MSPE and MedSPE; for example, Method 4 is the top-ranked

forecasting method out of Methods 2 through 9 according to the MSPE, while Method 7

is top-ranked according to the MedSPE.

In examining the average rank results in this table, it is useful to note that if the

average rank of Method i is higher than the average rank of Method j according to either

the MSPE or MedSPE, then Method i outperforms Method j via the particular criterion

for more than 50% of the forecast horizons, that is, for at least 5 out of the 8 forecast

horizons used. We have tabulated more specific details on such pair-wise forecast method

comparisons, but do not report them here in order to save space.12

For the U.K., Method 1 is the top-ranked forecasting method according to the MSPE

and Method 10 is top-ranked using the MedSPE. So, as in the U.S. case, the relative

performance of the linear VECM forecasting method worsens when the robust MedSPE

evaluation criterion is used. Also, Method 10 once again dominates Method 11 according

to both the MSPE and MedSPE, i.e., median-pooling is less helpful when the linear VECM

forecasts are used. Using the MSPE, Method 10 is second-ranked. But using the MedSPE,

Method 2, which is based on STVECM iterative multistep-ahead forecasts with the top-

ranked transition variable selected by the single-equation S1 test, is second-ranked.

Further, according to the MSPE, there is no clear ranking of the three classes of

forecasts among Methods 2 through 9; Methods 2 and 4 are top-ranked, but the third

member of this class, Method 3, is ranked last. That said, via the MSPE Methods 5

and 6, which select transition variables via the system-wide linearity tests, outperform the

h−step-ahead projections of Methods 7 through 9. On the other hand, using the MedSPE

the class of h−step-ahead projections clearly performs worst.

For Canada, Method 11 is the top-ranked forecasting method using both the MSPE

and MedSPE, showing that the nonlinear forecasts provide useful information which is

not incorporated in the linear VECM forecasts. The second-ranked forecasting methods

are Methods 10 and 3 according to, respectively, the MSPE and MedSPE. As in the U.S.

and U.K. cases, use of the MedSPE leads to a decrease in the relative performance of the

linear VECM forecasting method. In addition, none of the three classes of nonlinear fore-
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casts dominates another with either the MSPE and MedSPE in predicting the Canadian

unemployment rate.

For Japan, the linear VECM-based Method 1 is the top-ranked forecasting method

using both the MSPE and the MedSPE. So, in contrast to the results for the other three

countries, for Japan the relative performance of Method 1 is constant across use of both

the MSPE and MedSPE. The second-ranked forecasting method according to the MSPE is

Method 11, while Method 10 is second-ranked via the MedSPE. As is the case for Canada,

none of the three classes of nonlinear forecasting methods dominates another with either

forecast criterion.

3.3 Statistical Significance of MSPE Reductions

3.3.1 Uniform Weighting

To examine whether the MSPE reductions we observe in Table 2 are statistically significant,

we apply the Harvey, Leybourne, and Newbold (1997) modification of the Diebold and

Mariano (1995) statistic (DM). The DM test statistic is computed by weighting the forecast

loss differentials between the two competing methods equally, where the loss differential

for observation t is defined by dt ≡ g(ei,t|t−h) − g(ej,t|t−h), with g(·) some arbitrary loss

function, and ei,t|t−h and ej,t|t−h the h−step-ahead forecast errors for Methods i and j.

That is, the DM test examines whether the following equally-weighted sample mean loss

differential, when standardized, is different from zero at some given significance level

d̄ =
1

P

R+P+h−1
∑

t=R+h

dt, (5)

where forecasts have been produced for observations t = R+h, . . . , R+P+h−1, such that

there are P out-of-sample point forecasts and R observations have been used for estimation

of the model.

Under standard conditions, Diebold and Mariano (1995) established the asymptotic

normality of the DM statistic. Two important concerns with the use of DM-type statistics,

however, have appeared in the literature and we address those here. First, West (1996,

2001) and West and McCracken (1998) analyzed modification of forecast comparison tests
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in light of the use of estimated model parameters in the computation of such tests. van

Dijk and Franses (2003) pointed out, though, that for DM-type tests under quadratic loss,

such parameter estimation uncertainty is asymptotically irrelevant. They thus argued

that when examining the statistical significance of MSPE reductions (which is what we

are interested in), corrections of the type suggested by West (1996, 2001) and West and

McCracken (1998) are not necessary.

Second, under the assumption that the estimation sample size R and the number of out-

of-sample forecasts P tend to infinity, McCracken (2000) and Clark and McCracken (2001)

showed that, if the underlying forecasting models are nested, the asymptotic distribution

of the DM statistic is not standard normal. As noted by van Dijk and Franses (2003),

these conditions on the parameters R and P effectively mean that expanding windows of

data are used for estimation. In contrast, for the case in which R remains finite, as in

our use of fixed-length rolling estimation windows, Giacomini and White (2003) proved

that the asymptotic distribution of the DM statistic is standard normal when comparing

forecasts generated by nested models.

Simulation evidence has shown that the size of the DM statistic is biased upwards

in small samples. As such, Harvey et al. (1997) introduced a modification of the DM

statistic (M-DM) to correct for this. Following Harvey et al. (1997), we use the Student’s

t distribution with P − 1 degrees of freedom to obtain critical values for the M-DM tests

we run.

Our M-DM results appear in Table 3. Recalling that Method 10 is ranked first for

the U.S. using the MSPE, we see that the MSPE of Method 10 is significantly lower, at

the 10% significance level, than the MSPE of Method 11 for 50% of the forecast horizons;

at no forecast step is the MSPE of Method 1 lower than than that of Method 10. It is

interesting to note that Method 11, which is fourth-ranked according to the MSPE and

which pools across the linear and nonlinear forecasts, generates a statistically significant

reduction in MSPE relative to the linear VECM case at five out of the eight forecast

horizons. Investigation of these results at the individual forecast steps h = 1, . . . , 8 reveals

that these significant MSPE reductions occur for h = 3, . . . , 6 for Method 10 and at

h = 3, . . . , 7 for Method 11, that is, at the more so intermediate-term forecast horizons.
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In the U.K. case, only one forecasting method, Method 10, produces a significant MSPE

reduction relative to the linear VECM; and this occurs at only one forecast step. Thus,

for the U.K. the linear forecasts are generally not dominated via the M-DM test at the

10% significance level. While the MSPE-top-ranked Method 1 generates a statistically

significant lower MSPE relative the h-step-ahead projections of Methods 7, 8, and 9 at,

respectively, six, seven, and seven forecast horizons, it does so relative to the pooling-based

Methods 10 and 11 at, respectively, only two forecast steps and 1 forecast step.

For Canada, the MSPE of Methods 10 and 11 is significantly lower than that of the

linear VECM-based Method 1 at, respectively, three and two forecast steps; these occur

at the intermediate forecast horizons h = 3, 5 and 6 for the MSPE-second-ranked Method

10, and h = 3 and h = 5 for the MSPE-top-ranked Method 11. So, there is moderate

evidence of statistically significant forecast improvement over the linear VECM forecasts

using the two pooling procedures. On the other hand, Method 1 generates a significantly

lower MSPE relative to Methods 10 and 11 at two forecast steps, the longer-term h = 7

and 8.

An interesting situation is revealed by the forecasting results for Japan. While Method

1, the MSPE-top-ranked forecasting method generates a statistically significant MSPE

reduction relative to the second-ranked Method 11 at only one forecast horizon, the MSPE

of Method 11 is significantly lower than that of linear VECM forecasts at three forecast

steps, the longer-term h = 6, 7 and 8.

As a complement to the results found in Table 3, we also ran a set of Harvey et al. (1997)

modified Diebold and Mariano (1995) tests comparing the mean absolute prediction error

(MAPE) across the different forecasting methods. These results are strongly consistent

with what we obtain via the M-DM test on MSPE improvements, both with respect to the

frequency of significant reductions in MAPE and with respect to the particular forecast

horizons at which such reductions occur.

3.3.2 Left-Tail and Right-Tail Weighting

van Dijk and Franses (2003) argued that the uniform weighting scheme employed by the

M-DM test may be unsatisfactory for frequently encountered situations in which some
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observations are more important than others. For example, in an unemployment fore-

casting exercise of the type we analyze, large positive observations for the change in the

unemployment rate generally signal a business cycle downturn.

Accordingly, van Dijk and Franses modified the Diebold-Mariano statistic by weight-

ing more heavily the loss differentials for observations that are deemed to be of greater

substantive interest. In their approach, the weighted average loss differential is given by

d̄w =
1

P

R+P+h−1
∑

t=R+h

w(ωt)dt, (6)

where ωt is the information set available at time t. Letting yt be the variable to be forecast,

two particular cases van Dijk and Franses studied are

wLT(ωt) = 1− Φ(yt), (7)

where Φ(·) is the cumulative distribution function of yt, to focus on the left tail of the

distribution of yt, and

wRT(ωt) = Φ(yt), (8)

to focus on the right tail of the distribution of yt.

A necessary condition for the associated test statistic to have an asymptotic standard

normal distribution under the null hypothesis of equal forecast accuracy is that the weight

function w(ωt) be a twice continuously differentiable mapping to the [0,1] interval. The

weighted Diebold-Mariano statistic is computed as,

W-DM =
d̄w

√

V̂ (d̄w)
, (9)

where V̂ (d̄w) is a consistent estimate of the variance of d̄w.

Following Harvey et al. (1997), van Dijk and Franses adjusted the W-DM statistic by

way of a small-sample correction. The resulting modified W-DM statistic is given by

MW-DM =

√

P + 1− 2h+ h(h− 1)/P

P
W-DM. (10)
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Once again following Harvey et al. (1997), van Dijk and Franses proposed using the Stu-

dent’s t−distribution with P−1 degrees of freedom to obtain critical values for the MW-DM

test.

To examine the statistical significance of MSPE reductions with greater weight placed

on forecast losses associated with, respectively, unemployment rate decreases and increases,

we apply the left-tailed and and right-tailed MW-DM tests. Comparison of the left-tailed

and right-tailed results in Tables 4 and 5, both against one another and with those in

Table 3, provides some interesting insight.

Consider the case of the U.S. First, using the MW-DM test with greater weight given to

unemployment rate decreases, Method 10 generates significant MSPE reductions relative to

the linear VECM forecasts at 75% of the forecast horizons, representing a 50% increase in

comparison to uniform weighting and right-tail weighting of the forecast loss differentials.

With left-tail weighting, these significant MSPE reductions occur at h = 1, 2, 3, 4, 5, and 6,

and with right-tail weighting, they occur at h = 3, 4, 5, and 6. So, such left-tail weighting

of the forecast loss differentials shows that Method 10, in addition to dominating Method 1

at the same forecast steps as with uniform and right-tail weighting, is superior to Method 1

at the short-term forecast horizons h = 1 and 2. Second, for 50% of the forecast steps with

both left-tail and right-tail weighting, Method 11 generates significant MSPE reductions

relative to the linear VECM forecasts. With both weighting schemes, these occur at

h = 3, 4, 5, and 6. Thus, for Method 11 versus Method 1 comparisons, use of left-tail and

right-tail weighting of the forecast loss differentials produces a significant MSPE reduction

at one less forecast step relative to use of uniform weighting.

For the U.K., the left-tailed MW-DM test results are, on the whole, quite similar to

those obtained via uniform weighting of the forecast loss differentials. Method 11 generates

a significant MSPE reduction relative to Method 1 at only one forecast step, and Method 1

significantly dominates Method 10 at a single forecast step. On the other hand, the right-

tailed MW-DM test results differ considerably from the W-DM results. In particular, when

the forecast loss differentials associated with unemployment rate increases are weighted

more heavily, Method 11 generates significant MSPE reductions relative to the linear

VECM forecasts at 50% of the forecast horizons; these occur at h = 4, 5, 6, and 7. Also,
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Method 10 dominates Method 1 at two forecast steps with right-tail weighting.

For Canada, left-tail weighting produces more significant MSPE reductions in compar-

ing Method 11’s forecasts with those of Method 1. With equal weighting, Method 11’s

MSPE is significantly smaller than the linear VECM’s MSPE at the 10% level for two

forecast steps. But with the left-tailed MW-DM test, Method 11’s MSPE reductions are

significant at 50% of the forecast horizons; h = 1, 2, 3, and 4. With unemployment rate

increases weighted more heavily, Method 11’s MSPE reductions relative to Method 1 are

significant at the same two forecast horizons as with uniform weighting, i.e., h = 3 and 5.

Finally, for Japan use of the left-tailed and right-tailed MW-DM test does not generate

a greater frequency of significant MSPE reductions in Method 11 versus Method 1 and

Method 10 versus Method 1 comparisons. In fact, use of the MW-DM test leads to

fewer such significant MSPE reductions obtained via Method 11 against the linear VECM

forecasts. With uniform weighting of the forecast loss differentials, Method 11 dominates

Method 1 at three forecast steps, and with left-tailed and right-tailed weighting, this occurs

at, respectively, one and two forecast steps.

4 Conclusions

In this paper we set out to explore how a set of multivariate STAR models performs,

both against a linear benchmark and relative to one another, in simulated real-time out-

of-sample forecasting of the four non-Euro G-7 quarterly aggregate unemployment rate

series. Consideration of this issue appears warranted in light of work in the empirical

literature on business cycle asymmetry, in which a good deal of evidence that the data

generating process for many unemployment rate series may indeed be nonlinear has been

reported.

Our out-of-sample results show that, according to both forecast evaluation criteria

used, the top-ranked forecasting method for the U.S. and Canada is a pooled-median

forecasting approach. For the U.S., the dominant forecasting method uses the median

across the set of nonlinear point forecasts; for Canada, forecasting with the median across

the set of linear and nonlinear point forecasts performs best. These multivariate pooling
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results are consistent with those reported by Stock and Watson (1999) and Marcellino

(2004) in their analysis of univariate nonlinear models. For the U.K. and Japan, the linear

VECM forecasts are top-ranked using the MSPE. Also, for three of the four countries, the

relative performance of the linear forecasts worsens according to the more robust evaluation

criterion; they are ranked last for the U.S. using the MedSPE criterion.

When we test the significance of the MSPE reductions we obtain using equal weighting

of the forecast loss differentials, the results show that for the U.S., median-pooling across

the linear and nonlinear models produces a significantly lower MSPE than that generated

by the linear VECM for more than half of the forecast horizons. This statistically signifi-

cant forecast improvement over the linear forecasts occurs at the more so intermediate-term

forecast steps, that is, for the three-quarters-ahead to the seven-quarters-ahead forecast

steps. It is interesting to see that restricting median-pooling to the nonlinear models gen-

erates fewer significant MSPE reductions over the linear VECM case, even though doing

so leads to a higher ranked MSPE-ranked forecasting method. For the other countries,

median-pooling leads to fewer, in comparison to the U.S. results, statistically significant

decreases in MSPE relative to the linear VECM forecasts under standard uniform weight-

ing.

When we use a recently developed test of forecast accuracy which places more weight

on the forecast loss differentials associated with extreme values of the unconditional dis-

tribution of the unemployment rate first differences, some interesting behavior in the fre-

quency of significant MSPE reductions is revealed. For the U.S., median-pooling across

the nonlinear forecasts generates significant MSPE reductions over the linear VECM case

50% more often when unemployment rate decreases are emphasized as opposed to when

unemployment rate increases are given more weight and to when uniform weighting is

used; when unemployment rate decreases are weighted more heavily, statistically signifi-

cant MSPE decreases occur at six out of the eight forecast horizons considered. Thus, these

STAR forecasts perform better during business cycle expansions for the U.S. For the U.K.,

median-pooling across all forecast methods produces statistically significant lower MSPEs

relative to the linear VECM forecasts for half of the forecast horizons when unemployment

rate increases are given more weight; this occurs at short-term and intermediate-term fore-
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cast steps. But when unemployment rate decreases are weighted more for the U.K., these

MSPE reductions are significant at only one forecast horizon. Together these results sug-

gest that pooling across the linear VECM and STAR forecasts works better during U.K.

business cycle contractions. For Canada, application of such weighting schemes to the

forecast loss differentials implies that global median-pooling across linear and nonlinear

forecasts leads to more success against the linear VECM forecasts during expansionary

phases of the business cycle. In contrast to the three other countries, uniform weighting

of the forecast loss differentials for Japan leads to more significant MSPE reductions with

median-pooling relative to what occurs when unemployment rate decreases and increases

are given more weight.

We believe the main message from our forecasting exercise is as follows. While in-

dividual nonlinear forecasting methods may rarely dominate a linear approach, forecast

improvement seems attainable by combining across the set of linear and nonlinear fore-

casts. Noting that in this paper we restrict ourselves to STAR-type multivariate models,

we speculate that pooling linear forecasts with a larger set of nonlinear alternatives would

prove to be useful. We intend to pursue this question in further research.

Among the set of STAR forecasting methods used, we find that no individual approach

tends to outperform the others. In some cases, the top-ranked nonlinear forecasting method

employs multi-step-ahead forecasts obtained by iterating the estimated one-step-ahead

model. In others, h−step-ahead projections dominate. As a result, at least for the data

sets examined in this paper, it appears that use of both approaches is warranted. We

note that these results stand in contrast with those in Marcellino, Stock, and Watson

(2004), who, in their linear study with U.S. macroeconomic time series, found that iterated

forecasts generally dominated h−step-ahead projections.

In this paper we compare the point forecasts of the models used. Thus, it would be

interesting to investigate the robustness of our results with respect to construction and

evaluation of both interval and density forecasts. Clements and Hendry (1999, p. 285),

for example, suggest that use of interval and density forecasts may indeed show improved

forecasting performance for nonlinear models. We note, however, that Clements, Franses,

Smith, and van Dijk (2003) report simulation results which suggest that the Diebold and
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Mariano (1995) test is in fact more powerful than interval and density forecast-based tests

in discriminating between linear and nonlinear models.
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Table 1: Forecasting Method Definitions

Method Definition

1 Unrestricted VECM.

2 STVECM, with transition variable selected by S1 test run
on first-differenced log-unemployment equation of subset
linear VECM.

3 STVECM, with transition variable selected by S2 test run
on first-differenced log-unemployment equation of subset
linear VECM.

4 STVECM, with transition variable selected by S3 test run
on first-differenced log-unemployment equation of subset
linear VECM.

5 STVECM, with transition variable selected by system-wide
S1 test.

6 STVECM, with transition variable selected by system-wide
S3 test.

7 h-step-ahead projection of STVECM’s first differenced log-
unemployment rate equation, with transition variable se-
lected by S1 test run on corresponding subset equation of
VECM.

8 h-step-ahead projection of STVECM’s first-differenced log-
unemployment rate equation, with transition variable se-
lected by S2 test run on corresponding subset equation of
VECM.

9 h-step-ahead projection of STVECM’s first-differenced log-
unemployment rate equation, with transition variable se-
lected by S3 test run on first-differenced log-unemployment
subset equation of VECM.

10 Pooled median forecast from nonlinear methods, i.e., Meth-
ods 2 through 9.

11 Pooled median forecast from Methods 1 through 9.
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Table 2: Average Out-of-Sample Forecasting Ranks

Method i U.S. U.K. Canada Japan

MSPE
1 6.9 2.1 3.4 1.4

2 6.9 5.4 6.5 5.9

3 6.1 9.5 7.5 8.1

4 2.9 5.4 8.9 6.0

5 4.6 6.9 8.3 7.5

6 5.3 7.5 6.6 6.9

7 9.0 8.1 7.5 8.1

8 7.8 7.8 6.5 8.4

9 9.5 8.1 6.6 7.5

10 2.4 2.4 2.5 4.0

11 4.8 2.9 1.8 2.3

MedSPE
1 9.0 4.5 5.0 3.8

2 7.0 4.1 9.1 5.9

3 5.6 5.6 4.4 7.0

4 5.8 4.4 5.3 7.9

5 5.5 6.9 5.6 7.4

6 6.0 4.8 6.8 5.1

7 4.6 9.5 7.1 5.9

8 7.1 8.5 6.6 7.4

9 5.5 9.8 7.0 5.5

10 3.0 3.5 4.9 4.9

11 6.9 4.5 4.3 5.4

The two panels show the average out-of-sample forecasting rank of Method i

across the 33 estimation windows and forecasting horizons h = 1, . . . , 8, using

the Mean Squared Prediction Error (MSPE) and Median Squared Prediction

Error (MedSPE) criteria. See Table 1 for the forecasting method definitions.
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Table 3: Pair-wise Out-of-Sample Forecast Comparison Using
M-DM

Method j
Method i 1 2 3 4 5 6 7 8 9 10 11

U.S.
1 0.0 0.0 0.0 0.0 0.0 0.0 25.0 25.0 0.0 0.0

2 12.5 0.0 0.0 0.0 0.0 25.0 50.0 12.5 0.0 0.0

3 25.0 12.5 0.0 25.0 0.0 12.5 50.0 25.0 0.0 12.5

4 50.0 37.5 25.0 37.5 25.0 25.0 50.0 37.5 12.5 50.0

5 25.0 12.5 12.5 0.0 12.5 12.5 50.0 25.0 0.0 12.5

6 25.0 25.0 0.0 12.5 25.0 25.0 50.0 25.0 0.0 25.0

7 0.0 12.5 12.5 0.0 0.0 0.0 12.5 25.0 0.0 0.0

8 12.5 25.0 12.5 0.0 0.0 12.5 0.0 25.0 0.0 0.0

9 0.0 12.5 0.0 0.0 0.0 0.0 12.5 25.0 0.0 0.0

10 50.0 50.0 12.5 12.5 62.5 50.0 37.5 50.0 50.0 50.0

11 62.5 25.0 37.5 12.5 25.0 37.5 12.5 50.0 25.0 12.5

U.K.
1 12.5 25.0 37.5 12.5 0.0 75.0 87.5 87.5 25.0 12.5

2 0.0 12.5 0.0 0.0 0.0 50.0 50.0 50.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 37.5 12.5 25.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 50.0 37.5 50.0 0.0 0.0

5 0.0 0.0 25.0 0.0 0.0 25.0 37.5 37.5 0.0 12.5

6 0.0 0.0 12.5 0.0 12.5 25.0 25.0 37.5 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0

10 12.5 25.0 37.5 37.5 12.5 0.0 87.5 100.0 87.5 25.0

11 0.0 25.0 0.0 62.5 12.5 0.0 87.5 100.0 87.5 50.0

continued on next page
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continued from previous page
Method j

Method i 1 2 3 4 5 6 7 8 9 10 11

Canada
1 62.5 37.5 12.5 0.0 12.5 50.0 37.5 37.5 25.0 25.0

2 0.0 0.0 0.0 0.0 0.0 12.5 12.5 12.5 0.0 0.0

3 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 12.5 12.5 0.0 0.0 0.0 0.0 0.0 0.0

6 0.0 12.5 0.0 12.5 12.5 12.5 12.5 0.0 0.0 0.0

7 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 0.0

8 12.5 12.5 12.5 12.5 12.5 12.5 12.5 25.0 12.5 0.0

9 12.5 12.5 12.5 12.5 12.5 12.5 12.5 0.0 12.5 0.0

10 37.5 62.5 37.5 12.5 25.0 37.5 50.0 50.0 37.5 0.0

11 25.0 62.5 62.5 12.5 37.5 25.0 50.0 62.5 50.0 12.5

Japan

1 0.0 25.0 37.5 50.0 12.5 25.0 37.5 25.0 25.0 12.5

2 0.0 25.0 37.5 50.0 12.5 12.5 0.0 12.5 12.5 0.0

3 0.0 0.0 25.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0

4 0.0 12.5 25.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 12.5 12.5 0.0 0.0 12.5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 12.5 37.5 12.5 0.0 12.5 0.0 0.0

7 0.0 0.0 0.0 0.0 12.5 0.0 12.5 12.5 0.0 0.0

8 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 12.5 0.0 37.5 0.0 0.0 0.0

10 0.0 37.5 50.0 25.0 50.0 25.0 25.0 0.0 12.5 0.0

11 37.5 25.0 25.0 37.5 37.5 50.0 12.5 25.0 25.0 25.0

The table presents pair-wise out-of-sample forecast comparisons for the 11 forecasting meth-
ods and 33 estimation windows, across forecasting horizons h = 1, . . . , 8, using the modified
Diebold-Mariano MSPE statistic of Harvey et al. (1997) (M-DM). The entries in the table
show the percentage of forecast horizons for which the M-DM test rejects the null hypothesis
that Method i’s forecast performance as measured by MSPE is not superior to that of Method
j at the 10% significance level. See Table 1 for the forecasting method definitions.
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Table 4: Pair-wise Out-of-Sample Forecast Comparison Using
Left-Tailed MW-DM

Method j
Method i 1 2 3 4 5 6 7 8 9 10 11

U.S.
1 25.0 12.5 0.0 0.0 0.0 0.0 12.5 12.5 0.0 0.0

2 50.0 12.5 0.0 0.0 0.0 0.0 50.0 12.5 0.0 25.0

3 37.5 12.5 0.0 25.0 25.0 0.0 37.5 12.5 0.0 37.5

4 75.0 25.0 12.5 25.0 25.0 0.0 25.0 12.5 0.0 37.5

5 50.0 25.0 0.0 0.0 25.0 0.0 25.0 12.5 0.0 25.0

6 37.5 12.5 0.0 0.0 25.0 0.0 37.5 12.5 0.0 25.0

7 12.5 12.5 0.0 12.5 0.0 12.5 12.5 12.5 0.0 0.0

8 12.5 25.0 12.5 12.5 12.5 12.5 0.0 25.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 12.5 12.5 0.0 0.0

10 75.0 62.5 25.0 25.0 62.5 50.0 25.0 50.0 12.5 50.0

11 50.0 37.5 25.0 12.5 50.0 37.5 0.0 12.5 12.5 12.5

U.K.
1 37.5 12.5 50.0 37.5 12.5 75.0 87.5 75.0 12.5 0.0

2 0.0 0.0 0.0 0.0 0.0 62.5 50.0 62.5 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 25.0 25.0 25.0 0.0 0.0

4 0.0 12.5 0.0 0.0 0.0 62.5 62.5 62.5 0.0 0.0

5 0.0 0.0 37.5 12.5 0.0 62.5 50.0 62.5 0.0 0.0

6 0.0 0.0 0.0 0.0 37.5 50.0 37.5 50.0 0.0 0.0

7 0.0 12.5 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 12.5 12.5 0.0 0.0

9 0.0 12.5 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0

10 0.0 12.5 37.5 12.5 37.5 0.0 75.0 100.0 87.5 12.5

11 12.5 37.5 12.5 37.5 62.5 25.0 75.0 100.0 87.5 50.0

continued on next page
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continued from previous page
Method j

Method i 1 2 3 4 5 6 7 8 9 10 11

Canada
1 37.5 37.5 0.0 0.0 0.0 37.5 37.5 50.0 25.0 25.0

2 0.0 0.0 0.0 0.0 0.0 12.5 12.5 12.5 0.0 0.0

3 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0

6 0.0 12.5 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0

7 12.5 12.5 25.0 12.5 12.5 12.5 12.5 0.0 0.0 0.0

8 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 0.0 0.0

9 12.5 12.5 12.5 12.5 12.5 12.5 12.5 25.0 12.5 0.0

10 12.5 75.0 37.5 12.5 25.0 37.5 50.0 50.0 62.5 0.0

11 50.0 75.0 62.5 12.5 25.0 25.0 62.5 62.5 50.0 25.0

Japan

1 37.5 50.0 87.5 87.5 37.5 37.5 75.0 37.5 37.5 0.0

2 0.0 25.0 25.0 50.0 12.5 12.5 12.5 12.5 12.5 0.0

3 0.0 0.0 12.5 0.0 0.0 12.5 12.5 12.5 0.0 0.0

4 0.0 0.0 0.0 25.0 0.0 12.5 12.5 12.5 0.0 0.0

5 0.0 0.0 0.0 12.5 0.0 12.5 0.0 12.5 0.0 0.0

6 0.0 0.0 0.0 12.5 25.0 12.5 25.0 12.5 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 12.5 12.5 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 25.0 12.5 0.0 0.0

10 0.0 37.5 12.5 25.0 62.5 25.0 12.5 37.5 12.5 0.0

11 12.5 50.0 62.5 87.5 100.0 50.0 50.0 75.0 50.0 50.0

The table presents pair-wise out-of-sample forecast comparisons for the 11 forecasting methods
and 33 estimation windows, across forecasting horizons h = 1, . . . , 8, using the left-tailed
modified weighted Diebold-Mariano MSPE statistic of van Dijk and Franses (2003) (MW-
DM). The entries in the table show the percentage of forecast horizons for which the left-tailed
MW-DM test rejects the null hypothesis that Method i’s forecast performance as measured
by MSPE is not superior to that of Method j at the 10% significance level. See Table 1 for
the forecasting method definitions.
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Table 5: Pair-wise Out-of-Sample Forecast Comparison Using
Right-Tailed MW-DM

Method j
Method i 1 2 3 4 5 6 7 8 9 10 11

U.S.
1 0.0 12.5 0.0 0.0 0.0 12.5 25.0 37.5 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 25.0 62.5 25.0 0.0 0.0

3 37.5 12.5 0.0 25.0 12.5 12.5 50.0 50.0 0.0 12.5

4 50.0 37.5 37.5 50.0 37.5 62.5 62.5 50.0 12.5 25.0

5 25.0 25.0 12.5 0.0 25.0 37.5 62.5 50.0 0.0 0.0

6 12.5 37.5 0.0 0.0 37.5 37.5 62.5 62.5 0.0 12.5

7 0.0 0.0 0.0 0.0 0.0 0.0 25.0 12.5 0.0 0.0

8 0.0 0.0 12.5 0.0 0.0 0.0 0.0 12.5 0.0 0.0

9 0.0 12.5 12.5 0.0 0.0 0.0 12.5 25.0 0.0 0.0

10 50.0 37.5 12.5 0.0 50.0 37.5 50.0 62.5 62.5 12.5

11 50.0 12.5 25.0 0.0 12.5 12.5 50.0 62.5 50.0 0.0

U.K.
1 0.0 25.0 37.5 0.0 0.0 75.0 62.5 75.0 0.0 12.5

2 0.0 12.5 0.0 0.0 0.0 37.5 50.0 37.5 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 37.5 12.5 37.5 0.0 0.0

4 0.0 0.0 12.5 0.0 0.0 37.5 37.5 37.5 0.0 0.0

5 0.0 0.0 25.0 0.0 0.0 25.0 25.0 25.0 0.0 12.5

6 0.0 0.0 12.5 0.0 25.0 25.0 12.5 25.0 0.0 12.5

7 0.0 0.0 0.0 0.0 0.0 0.0 12.5 12.5 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 12.5 12.5 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0

10 25.0 12.5 25.0 37.5 0.0 12.5 87.5 75.0 75.0 25.0

11 50.0 12.5 0.0 37.5 0.0 0.0 75.0 62.5 75.0 0.0

continued on next page
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continued from previous page
Method j

Method i 1 2 3 4 5 6 7 8 9 10 11

Canada
1 37.5 37.5 25.0 12.5 12.5 37.5 37.5 25.0 0.0 25.0

2 0.0 0.0 0.0 0.0 0.0 25.0 12.5 0.0 0.0 0.0

3 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 12.5 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0

6 0.0 12.5 0.0 25.0 25.0 25.0 12.5 0.0 0.0 0.0

7 0.0 25.0 0.0 0.0 12.5 12.5 12.5 12.5 0.0 0.0

8 0.0 25.0 0.0 12.5 12.5 12.5 0.0 12.5 0.0 0.0

9 0.0 12.5 0.0 0.0 12.5 12.5 12.5 0.0 0.0 0.0

10 12.5 62.5 12.5 12.5 25.0 25.0 37.5 50.0 37.5 12.5

11 25.0 37.5 25.0 37.5 50.0 37.5 37.5 37.5 50.0 12.5

Japan

1 0.0 25.0 12.5 12.5 12.5 25.0 12.5 12.5 12.5 37.5

2 0.0 25.0 37.5 37.5 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 25.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0

4 0.0 12.5 25.0 25.0 0.0 0.0 0.0 0.0 0.0 12.5

5 0.0 12.5 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 25.0 0.0 37.5 12.5 0.0 12.5 0.0 0.0

7 0.0 0.0 0.0 12.5 12.5 0.0 25.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 12.5 12.5 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 12.5 12.5 0.0 12.5 12.5 0.0 0.0

10 0.0 37.5 37.5 12.5 50.0 12.5 12.5 0.0 0.0 12.5

11 25.0 25.0 12.5 25.0 25.0 25.0 12.5 12.5 12.5 12.5

The table presents pair-wise out-of-sample forecast comparisons for the 11 forecasting methods
and 33 estimation windows, across forecasting horizons h = 1, . . . , 8, using the right-tailed
modified weighted Diebold-Mariano MSPE statistic of van Dijk and Franses (2003) (MW-DM).
The entries in the table show the percentage of forecast horizons for which the right-tailed
MW-DM test rejects the null hypothesis that Method i’s forecast performance as measured
by MSPE is not superior to that of Method j at the 10% significance level. See Table 1 for
the forecasting method definitions.
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Endnotes

1See Table 11 of Marcellino (2002).

2Other papers which study the performance of nonlinear time series models in forecast-
ing unemployment rate fluctuations include Peel and Speight (2000), Terui and van Dijk
(2002), and Proietti (2003).

3In both Rothman et al. (2001) and here, revised as opposed to real-time or preliminary
data are used; see, for example, Amato and Swanson (2001) for discussion of the distinction
between these. The main reason we use revised data is that real-time data sets for all of the
systems we estimate are not available. While this certainly warrants the standard caveat
about our results, what we do is also consistent with, for example, Stock and Watson
(1999) and Stock and Watson (2001).

4In this paper, which appears in a special issue of Empirical Economics devoted to
recent developments in modelling business cycle and financial data with regime-switching
models, the one-step-ahead forecasts were computed for a given parametric structure via
an updating of the regime-dependent probabilities.

5We decided to work with log-unemployment rate data following the theoretical frame-
work presented in Nickell (1998) and in order to reduce the heteroskedasticity of the
residuals in our estimated models.

6The money supply and interest rate series used are M2 and the 90-day Treasury bill
rate for the U.S., M4 and the 90-day Treasury bill rate for the U.K., M2 and the 90-
day commercial paper rate for Canada, and M2 and the lending rate for collateral and
overnight loans in the Tokyo call money market for Japan. We use M4 data for the UK
since the M2 time series is incomplete and inconsistent. We use the overnight Tokyo call
rate for Japan since no sufficient long 90-day rate is available; see, for example, Table 1 of
Stock and Watson (2001)

7This procedure leads to the model that would be selected by applying the AIC to each
equation individually. But it is not guaranteed that this model also minimizes the AIC
for the system as a whole. The simulation evidence in Brüggemann and Lütkepohl (2000),
however, shows that the difference between the models selected by this single equation
approach and a comparable system approach is generally small.

8We found, by way of generating an alternative set of forecasts with ut removed from
zt, that our results are robust with respect to the assumption that the unemployment rate
is I(1) instead of I(0).

9More details on these system-wide versions of the Luukkonen et al. (1988) tests can
be found in Rothman et al. (2001).

10The reason why we do not use analogues of the federal funds rate for the U.K. and
Canada is that, if we were to do so, this would shorten considerably the available time
series; see, once again, Table 1 of Stock and Watson (2001). Also, as noted earlier, our
short-term interest rate for Japan is an overnight rate.

11Details on all top-ranked transition variables used in this paper, along with p-values of
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the associated linearity tests, are available upon request. Since our primary interest in this
paper is on out-of-sample forecasting, we do not focus on the linearity testing results here.
That said, we note that the battery of linearity tests run reveal strong evidence in favor of
STAR-type nonlinearity and that the rankings of the candidate transition variables vary
a good deal across the particular tests employed and the individual unemployment rate
series examined.

12These are available upon request.
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