
A Nonparametric Way of Distribution Testing

Ekrem Kilic
Istanbul Bilgi University

June 30, 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/9310527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Testing the distribution of a random sample can be considered ,indeed, as a
goodness-of-fit problem. If we use the nonparametric density estimation of
the sample as a consistent estimate of exact distribution, the problem reduces
, more specifically, to the distance of two functions. This paper examines the
distribution testing from this point of view and suggests a nonparametric
procedure. Although the procedure is applicable for all distributions, pa-
per emphasizes on normality test.The critical values for this normality test
generated by using Monte Carlo techniques.



1 Introduction

The distribution of a random variable is one of the most important ques-
tion to be answered by many econometric studies. Econometricians needs
to assume or know the distribution of a random variable to be able to make
inference and sometimes efficient estimation as in the classical linear regres-
sion model where the unobserved disturbance vector , ε , is assumed to be
normally distributed. Of course , then, this assumption of distribution must
be tested. Therefore the literature on distribution testing is quite deep, there
exists many studies on this topic. Since normality is the most common as-
sumption in applying statistical procedures, most of the studies dealt with
the normality. The normality tests can be simply divided into two classes;
parametric and nonparametric test.

Firstly let us consider some parametric tests, one of the most common
parametric normality test is the Jarque-Bera test. This test is based on the
moment properties of the normal distribution. Jarque-Bera statistic is, sim-
ply, a function of skewness and kurtosis (see Jarque-Bera [5]) and is asymp-
totically chi-squared distributed. Therefore Jarque-Bera requires no special
table for the critical values, that is why Jarque-Bera is so popular. An-
other parametric test is Shapiro-Wilk test. This test is also related with the
moment of the distribution, however it uses a weighted sum of squared ran-
dom variables. Shapiro and Wilk [9] provides the critical values of the test.
Another family of distribution tests those exploits a feature of the normal
distribution is proposed by Vasicek [12]. As described by Prescott [7];

Among all distributions that posses a density function f and have
a given variance σ2, the entropy H(f), defined as,

H (f) =

∫ ∞

−∞
f (x) log[f (x)]dx (1)

is maximized by the normal distribution.

Using this feature Vasicek defined a sample entropy test statistic. Va-
sicek’s sample entropy test is a distribution free test.

There exists also some nonparametric tests. One important test is pro-
posed by Kolmogorov and Smirnov. Kolmogorov and Smirnov’s test is based
on the empirical distribution function of the sample. The test statistic is
maximum of the absolute difference between empirical distribution function
and cumulative normal distribution. Kolmogorov and Smirnov test is strong
in the sense that distribution of test statistic itself does not depend on the
underlying distribution that is tested. Another nonparametric test that uses
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the empirical distribution function is Cramer-von Mises test. The notion of
maximum difference which is used by Kolmogorov - Smirnov test, is replaced
with the integrated squared differences. This test is more powerful than
the Kolmogorov-Smirnov’s test because it considers the whole distribution
by integrating the squared differences whereas the Kolmogorov-Smirnov test
uses just the maximum of the distance at data points. Approximate critical
values can be found in [1] by Andersen and Darling.

This paper will introduce a nonparametric distribution test that is based
on the kernel density estimation and simple euclidian measure of distance
between functions. The organization of the paper will be as follows. In
the next section the general framework will be presented. In the following
section, the power of the test will be examined with the help of Monte Carlo
simulations. In the other section, the empirical application of the test with
USD/TRL exchange rate data will be presented. Finally, in the conclusion
section, the results will be discussed.

2 Test Procedure

Parametric statistics defines the form of a distribution, f (x, θ), say normal
density;

f (x; θ) =
1

σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)

(2)

where θ is the parameter vector that includes µ and σ.
If the parameters, µ and σ , are set to 0 and 1 respectively, the distribution

can be written as;

f (x; 0, 1) =
1√
2π

exp

(
−x

2

2

)
(3)

this form is called as standard normal density.
Nonparametric methods, on the other hand, suggest histograms or smoothed

histograms for density estimation problem. One important feature of the his-
tograms is it integrates to unity. Histograms , however , produces rough and
discontinues density estimates. Therefore Kernel estimators are more useful
because of their continuity and smoothness. Kernel density estimators are
just smoothed histograms. One can formally write a histogram function as
follows;

f (x) =
1

nh

n∑
i=1

I

(
−1/2 ≤ xi − x

h
≤ 1/2

)
(4)
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where I (.) is the indicator function and h is called as bandwidth or smoothing
parameter. Rosenblatt [8] describes the kernel estimator as;

f (x) =
1

nh

n∑
i=1

K (ψi) (5)

where
∫∞
−∞K (ψ) dψ = 1 and ψi = xi−x

h
. Obviously if one choose the indicator

function as the kernel, 5 will be exactly same with 4 . Hence by replacing
the indicator function with smoothing functions that satisfies the condition of
unit integral, we can define different kernel estimators those are , indeed, just
smoothed histograms.One of the most common kernel function is standard
normal density function (as 3), generally called as gaussian kernel. For this

kernel bandwidth can be chosen h = n−
1
5σ(see Pagan and Ullah [6]).

As described kernel density estimation methods provides a continues dis-
tribution function for every random sample. The problem of goodness-of-fit,
then, becomes a problem of distance. We can simply measure the distance ,
in an Euclidian fashion, between kernel estimate of density and underlying
parametric distribution as follows;

D =

√∫ ∞

−∞
[f̂ (x)− f (x)]2dx (6)

where f̂ (x) is kernel estimation of the density, f (x) is the underlying distri-
bution’s probability density function. To integrate this function, numerical
integration methods can be used. Numerical integration approach in this pa-
per is a piecewise method integrates the function using Newton-Cotes formu-
las (see Burden and Faires [2]). The method is called Composite Trapezoidal
rule and can be written as follows;∫ a

b

f (x) dx =
h

2
[f (a) + 2

n−1∑
j=1

f (xj) + f (b)]− b− a

12
h2f ′′ (µ) . (7)

where h = (b− a) /n, and xj = a + jh for each j = 0, 1, ..., n. In this

formula, h
2
[f (a) + 2

n−1∑
j=1

f (xj) + f (b)] is the numerical integrated result for

the integral at the left hand side and b−a
12
h2f ′′ (µ) is the error of the numerical

integration. When the error is equal to zero, the numerical and analytical
integral will be the same. By this formula it is clear that as h goes to zero,
the error part of the equation tends to zero. And also as n goes to infinity,
h tends to zero. Then if n, number of integrated pieces, is large enough, the
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numerical integration will be approximately the same with analytical one. In
this paper n is taken 200, a and b, upper and lower limits of the integral, are
chosen 10 and -10 respectively.

The question, then, what is the critical values for the test? Critical
values can be found using Monte Carlo techniques. The method is quite
simple, one can generate a random sample coming from normal distribution
with a certain number of elements, and can apply the test and can store
the values that returned by the test. Repeating this process builds up a
probability distribution for the test statistics of the given sample size. And
repeating the experiment for different sample sizes completes the process.
Since the test is a distance test, it has only positive values and one should
check only right tail of the distribution. Table 1 obtained by repeating the
process 100000 times for each sample size. Convergence graphs of the test
statistics are shown at Figure 1.

3 Power and Size of the Test

After defining the test and obtaining critical values, we need to check power
and size of the test. I used Monte Carlo simulations for this purpose and
followed the methodology of Stengos and Wu [10].

The power can be defined as one minus probability of TypeII error or
equivalently the probability that test rejects the null hypothesis when it
should reject. I examined power of the distance to normality test against t
distribution , mixture of two normals , lognormal distribution, chi distribu-
tion, exponential distribution and 4 different version of generalized lambda
distribution.The normal distribution is also considered for the size of the test.
For each of the distributions, 100000 random samples are generated at size
n = 20, 50, 100, 200, 500 and 1000. Simulated distributions are listed below;
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Norm N (0, 1)
t5 t5

M2Norm
z1I (p ≤ 0.5) + z2I (p > 0.5)
where z1 ∼ N (−1, 1) , z2 ∼ N (1, 1) and p ∼ N (−1, 1)

LNorm exp (z) where z ∼ N (0, 1)
Chi3 χ2

3

Exp − ln (u) where u ∼ U (0, 1)

Lam1
λ1 +

(
uλ3 −

(
1− uλ4

))
/λ2

where parameters Λ = [0, 0.19754, 0.134915, 0.134915]

Lam2
λ1 +

(
uλ3 −

(
1− uλ4

))
/λ2

where parameters Λ = [0,−1,−0.8,−0.8]

Lam3
λ1 +

(
uλ3 −

(
1− uλ4

))
/λ2

where parameters Λ = [0, 1, 1.4, 0.25]

Lam4
λ1 +

(
uλ3 −

(
1− uλ4

))
/λ2

where parameters Λ = [0,−1,−0.0075,−0.03]

Generalized Lambda distribution is an extended version of Tukey’s Lambda
Distribution. Inverse of the cumulative density function of generalized lambda
distribution can be written as follows;

F−1 (u) = λ1 +

(
uλ3 −

(
1− uλ4

))
λ2

(8)

Generalized lambda distribution can provide a wide range of symmetric and
asymmetric distributions. Lam1 is approximately the same with normal
distribution(see Figure 2,Figure 3,Figure 4,Figure 5).

Table 2 reports power and size tests. The simulations show that the dis-
tance to normality is less powerful with symmetric distributions like t5 and
M2Norm. On the other hand, the test performs very good against asymmet-
ric distributions so that it has quite high power even in small samples.For
all asymmetric distributions having larger sample size than 200, the test’s
power is equal to one with 95% confidence level.

Size of the test is trivial for our case, because the critical values have
already derived with Monte Carlo simulations. Table 2 shows that for all
samples, size is equal to the significance level of the test. An interesting
result is Lam1, an approximation to the normal distribution, have nearly
same outputs with normal distribution. While sample size increases , the
approximation starts to differ from exact normal distribution and test returns
different results.
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4 Empirical Results

In this paper, two types of normality problems will be considered. In the first
model, a random sample will be tested for the normality. For this purpose
three exchange rates will be used. The null hypothesis can be shown as
follows;

H0 : f (rt) = φ

(
rt − µ

σ

)
(9)

where rt = ln(xt/xt−1), xt is the exchange rate, φ is the probability density
function of standard normal distribution (3) and f is probability density
function of the data set.

First exchange rate is USD/TRL rate. The data includes 370 returns
between, 05.01.2004 and 20.06.20051. Its mean is −0.0001, so it has nearly
zero mean. Its standard deviation is 0.0079. The maximum return is observed
at 11.05.2004, in this day the exchange rate raised to 1.53 from 1.48. If the
return is standardized, it will be 4.23. This value should be quite rare if the
normal distribution assumption is hold actually. Its minimum is −0.02 that
becomes −2.51 after standardizing. Second exchange rate is EUR/TRL rate.
The data set covers the same interval. EUR/TRL exchange rate’s mean and
standard deviation are −0.0002 and 0.0074 and its maximum with in this
interval is 0.03. This return was observed at 28.04.2004. The minimum
return for the EUR/TRL is −0.02 at 01.06.2005. The standardized values
for the maximum and minimum are 4.15 and −2.65 respectively. Finally the
last exchange is GBP/TRL rate. The data comes from the same interval
again. The GBP/TRL rate has approximately zero mean and its standard
deviation is 0.0077, clearly its first two moment is very close to other rates.
The maximum and minimum of the returns are 0.031 and−0.018 respectively.
The maximum return was at 28.04.2004 and the minimum were at 13.05.2005.
The standardized returns for maximum and minimum are 4.11 and −2.40
respectively. Kernel smoothed densities of three data are shown at Figure 6
and the descriptive statistics for three series are reported at Table 3.

Distance to normality test results for these data sets are given at Table 4.
The Jarque-Bera tests are also available at this table. We can see that for all
three data set Jarque-Bera test rejects the null hypothesis strongly, however
distance test failed to reject the null hypothesis at 95% for GBP/TRL data
set. As shown in the Figure 6 the GBP/TRL data is quite near to the
normal distribution line with respect to other series. Therefore the distance
test statistics for this data is also small so that the test could not reject the

1All data are taken from the web site of Turkish Central Bank.
(http://tcmbf40.tcmb.gov.tr)
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normality at 95% significance level. However at 90% confidence level for all
three data sets the normality is rejected2.

In second model, let us consider a regression. In this case the null hy-
pothesis can be defined as;

H0 : f (ε) = φ
( ε
σ

)
(10)

where ε is the vector of residuals of a regression like y = Xβ + ε. In this
study, the one-year interest rate yields of Turkish treasury bills are regressed
on increases3 on the number of firms in Turkey4.The data set includes 107
monthly observations between 1995-01 and 2003-11.

Results of the regression are reported at Table 5. The results show that
interest rates have a significant explanatory power on the increase in the
number of the firms(see Figure 7). However the R2 of the regression is only
22%. The distribution of the residulas is shown in Figure 8. The distance
test statistic is 0.126 and the test strongly rejects the null hypothesis5. Then,
common assumption pf classical regression does not hold for this model and
the inference using normality assumption will not be efficient.

5 Conclusion

In this paper, a non-parametric density testing procedure is described. The
test uses very simple euclidian definition of distance. Using this definition,
a distance defined between nonparametric estimation of the density and un-
derlying density for the test (In this paper normality is considered). Monte
Carlo simulations pointed out the test is very powerful against asymmetric
distributions and its power is very limited against t distribution. Against
asymmetric distributions the test produces good results even in the small
sample. Empirical evidences also supported the Monte Carlo results. Fur-
ther studies might repeat same strategy to test, let’s say, chi distribution at
certain degrees of freedom.

2The critical values for the distance test are 0.056 and 0.062 at 90% and 95% significance
levels respectively

3The definition is , in fact, the change in the number of firms but there is no decline
in the number of firms with in the interval in which study examines. Always number of
new firms were higher than number of firms closed.

4The interest rates are supplied by Riskturk MarketRisk module (www.riskturk.com)
and increases in the number of firms are at the web site of DIE (www.die.gov.tr)

5The critical value at 95% significance level is 0.091
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Table 1: The critical values for the distance to normality test.
α

Sample Size 0.5 0.75 0.85 0.9 0.95 0.975 0.99
10 0.105 0.126 0.136 0.143 0.154 0.162 0.172
11 0.103 0.124 0.135 0.142 0.152 0.161 0.171
12 0.101 0.122 0.133 0.141 0.151 0.160 0.171
13 0.099 0.120 0.131 0.139 0.150 0.159 0.170
14 0.097 0.119 0.130 0.138 0.149 0.159 0.169
15 0.095 0.117 0.128 0.136 0.147 0.157 0.168
16 0.094 0.115 0.126 0.134 0.146 0.155 0.167
17 0.092 0.113 0.125 0.133 0.145 0.155 0.165
18 0.091 0.112 0.123 0.131 0.143 0.153 0.164
19 0.089 0.110 0.122 0.130 0.141 0.151 0.163
20 0.088 0.109 0.120 0.128 0.140 0.150 0.162
21 0.087 0.108 0.119 0.127 0.139 0.149 0.160
22 0.086 0.106 0.118 0.125 0.137 0.148 0.158
23 0.085 0.105 0.117 0.124 0.136 0.146 0.157
24 0.084 0.104 0.116 0.123 0.134 0.144 0.156
25 0.083 0.103 0.115 0.122 0.134 0.144 0.156
26 0.082 0.102 0.113 0.121 0.132 0.142 0.154
27 0.081 0.101 0.112 0.120 0.131 0.141 0.153
28 0.081 0.100 0.111 0.119 0.130 0.140 0.151
29 0.080 0.099 0.110 0.118 0.129 0.139 0.150
30 0.079 0.098 0.109 0.117 0.128 0.138 0.149
31 0.078 0.097 0.108 0.116 0.127 0.137 0.148
32 0.078 0.097 0.107 0.115 0.126 0.136 0.147
33 0.077 0.095 0.106 0.114 0.125 0.135 0.146
34 0.076 0.094 0.105 0.113 0.124 0.133 0.145
35 0.076 0.094 0.105 0.112 0.123 0.133 0.145
36 0.075 0.093 0.104 0.111 0.122 0.132 0.144
37 0.075 0.093 0.103 0.110 0.122 0.131 0.142
38 0.074 0.092 0.102 0.110 0.121 0.131 0.142
39 0.073 0.091 0.102 0.109 0.120 0.129 0.140
40 0.073 0.091 0.101 0.108 0.119 0.129 0.140
41 0.073 0.090 0.100 0.107 0.118 0.127 0.138
42 0.072 0.089 0.099 0.107 0.117 0.126 0.138
43 0.071 0.089 0.099 0.106 0.116 0.126 0.137
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continues... α
Sample Size 0.5 0.75 0.85 0.9 0.95 0.975 0.99

44 0.071 0.088 0.099 0.106 0.116 0.125 0.137
45 0.071 0.088 0.098 0.104 0.115 0.124 0.135
46 0.070 0.087 0.097 0.104 0.115 0.124 0.135
47 0.070 0.086 0.097 0.104 0.114 0.124 0.135
48 0.069 0.086 0.096 0.103 0.113 0.122 0.133
49 0.069 0.085 0.095 0.102 0.113 0.122 0.132
50 0.069 0.085 0.095 0.102 0.112 0.121 0.132
51 0.068 0.085 0.094 0.101 0.111 0.120 0.131
52 0.068 0.084 0.094 0.100 0.111 0.120 0.130
53 0.067 0.084 0.093 0.100 0.110 0.119 0.130
54 0.067 0.083 0.093 0.099 0.109 0.119 0.129
55 0.067 0.083 0.092 0.099 0.109 0.118 0.129
56 0.066 0.082 0.092 0.098 0.108 0.117 0.128
57 0.066 0.082 0.091 0.098 0.108 0.117 0.127
58 0.066 0.081 0.091 0.097 0.107 0.116 0.126
59 0.065 0.081 0.090 0.097 0.107 0.116 0.126
60 0.065 0.080 0.090 0.096 0.106 0.115 0.125
61 0.065 0.080 0.089 0.096 0.106 0.114 0.125
62 0.064 0.080 0.089 0.095 0.105 0.114 0.124
63 0.064 0.079 0.089 0.095 0.104 0.113 0.123
64 0.064 0.079 0.088 0.094 0.104 0.113 0.122
65 0.064 0.079 0.088 0.094 0.103 0.112 0.122
66 0.063 0.078 0.087 0.094 0.103 0.112 0.122
67 0.063 0.078 0.087 0.093 0.103 0.111 0.122
68 0.063 0.078 0.087 0.093 0.102 0.111 0.120
69 0.063 0.077 0.086 0.092 0.102 0.110 0.120
70 0.062 0.077 0.086 0.092 0.101 0.110 0.119
71 0.062 0.077 0.085 0.092 0.101 0.109 0.119
72 0.062 0.077 0.085 0.091 0.101 0.109 0.119
73 0.061 0.076 0.085 0.091 0.101 0.109 0.119
74 0.061 0.076 0.085 0.091 0.100 0.108 0.118
75 0.061 0.075 0.084 0.090 0.099 0.107 0.117
76 0.061 0.075 0.084 0.090 0.099 0.108 0.117
77 0.061 0.075 0.083 0.089 0.098 0.106 0.116
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continues... α
Sample Size 0.5 0.75 0.85 0.9 0.95 0.975 0.99

78 0.060 0.075 0.083 0.089 0.098 0.106 0.116
79 0.060 0.074 0.083 0.089 0.098 0.106 0.116
80 0.060 0.074 0.083 0.089 0.098 0.106 0.115
81 0.060 0.074 0.082 0.088 0.097 0.105 0.115
82 0.060 0.074 0.082 0.088 0.097 0.105 0.115
83 0.059 0.073 0.081 0.087 0.096 0.104 0.113
84 0.059 0.073 0.081 0.087 0.096 0.104 0.113
85 0.059 0.072 0.081 0.087 0.096 0.104 0.113
86 0.059 0.072 0.081 0.087 0.095 0.103 0.112
87 0.058 0.072 0.080 0.086 0.095 0.103 0.113
88 0.058 0.072 0.080 0.086 0.095 0.103 0.112
89 0.058 0.072 0.080 0.086 0.094 0.102 0.112
90 0.058 0.071 0.080 0.085 0.094 0.102 0.111
91 0.058 0.071 0.080 0.085 0.094 0.102 0.111
92 0.058 0.071 0.079 0.085 0.093 0.101 0.111
93 0.057 0.071 0.079 0.085 0.093 0.101 0.110
94 0.057 0.070 0.078 0.084 0.093 0.100 0.109
95 0.057 0.070 0.078 0.084 0.092 0.100 0.109
96 0.057 0.070 0.078 0.083 0.092 0.100 0.109
97 0.056 0.070 0.078 0.083 0.092 0.100 0.109
98 0.056 0.070 0.078 0.083 0.092 0.099 0.108
99 0.056 0.069 0.077 0.083 0.091 0.099 0.108
100 0.056 0.069 0.077 0.083 0.091 0.099 0.107
200 0.045 0.056 0.062 0.066 0.073 0.079 0.086
500 0.034 0.041 0.045 0.048 0.053 0.057 0.062
1000 0.027 0.032 0.035 0.038 0.041 0.044 0.048
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Table 2: Power and size of distance to normality test
n=20 n=50 n=100 n=200 n=500 n=1000

0.95 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95 0.99
Norm 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

t5 0.07 0.02 0.08 0.03 0.14 0.07 0.29 0.16 0.73 0.55 0.97 0.92
M2Norm 0.09 0.02 0.17 0.05 0.28 0.11 0.48 0.23 0.83 0.62 0.98 0.93
LNorm 0.83 0.66 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Chi3 0.47 0.24 0.89 0.72 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Exp 0.65 0.41 0.98 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Lam1 0.05 0.01 0.05 0.01 0.05 0.01 0.04 0.01 0.04 0.01 0.04 0.01
Lam2 0.65 0.55 0.97 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lam3 0.41 0.17 0.86 0.63 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
Lam4 0.28 0.13 0.30 0.14 0.90 0.77 1.00 0.99 1.00 1.00 1.00 1.00

Table 3: Descriptive statistics for three exchange rate returns
USD/TRL EUR/TRL GBP/TRL

Mean -0.00 -0.00 -0.00
StDev 0.01 0.01 0.01
Max 0.03 0.03 0.03
Min -0.02 -0.02 -0.02
Skewness 0.60 0.50 0.57
Excess Kurtosis 1.28 1.10 1.34

Table 4: Test statistics for three exchange rates. (**Rejected at 0.95 and *
rejected at 0.9)

Distance Test Jarque-Bera
USD/TRL 0.102** 45.35**
EUR/TRL 0.068** 33.12**
GBP/TRL 0.059* 46.19**

Table 5: Regression statistics
Variable Coefficient Std.Error t-Statistic Prob.
Constant 893.0792599 494.1753072 1.807211423 0.073592888
Interest 30.74945928 5.637318116 5.454625525 3.29E-07
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Figure 1: Convergence graphs of the test statistics at 0.99, 0.95, and 0.9
significance levels.
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Figure 2: Graph of Lam1
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Figure 3: Graph of Lam2
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Figure 4: Graph of Lam3
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Figure 5: Graph of Lam4
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Figure 6: Kernel vs. Normal distribution for three exchange rate returns
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Figure 7: Graph of the regression
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Figure 8: Density graph of the residuals
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