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Abstract

This paper discusses a few interpretative issues arising from trend-cycle decomposi-
tions with correlated components. We determine the conditions under which correlated
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in growth rates, rather than in the levels; the hysteresis phenomenon; permanent-
transitory decompositions, where the permanent component has richer dynamics than
a pure random walk. Moreover, the consequences for smoothing and signal extraction
are discussed: in particular, we establish that a negative correlation implies that fu-
ture observations carry most of the information needed to assess cyclical stance. As
a result, the components will be subject to high revisions. The overall conclusion is
that the characterisation of economic fluctuations in macroeconomic time series largely
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1 Introduction

Measuring trends and cycles in macroeconomic time series is the topic of a very rich and
presumably endless debate. Unobserved components (UC) models assume orthogonal dis-
turbances (see, for instance, Harvey and Jäger, 1994) or perfectly correlated ones (Snyder,
1981); these restrictions are often enforced to produce just-identified decompositions, but
in some cases they are over-identifying. We will be concerned with these occurrences, in
which the correlation can be estimated from the available time series.

Morley, Nelson and Zivot (2002, MNZ henceforth) have recently made a significant
contribution to the topic: they consider a class of UC decompositions of U.S. real gross
domestic product (GDP) into a random walk trend and a purely AR(2) cycle, that de-
pends on the identifiable correlation between the trend and cycle disturbances and that
produces an ARIMA(2,1,2) reduced form. Within this class, MNZ compare the fit and
the components arising from the UC model assuming orthogonal disturbances and the
Beveridge-Nelson (BN, 1981) decomposition of the unrestricted ARIMA model, that fea-
tures perfectly and negatively correlated disturbances. The resulting decompositions pro-
duce different stylised facts, and in particular the BN cycle is characterised by a much
smaller amplitude and a shorter periodicity.

Since a degree of freedom is allowed from the fact that the UC model has one parameter
less than the ARIMA reduced form, they estimate the correlation between the trend
and cycle disturbances and find that the estimated value is negative, about -0.92, and
significantly away from zero. The resulting real time, or concurrent, estimates of the trend
and cycle in U.S. GDP closely resemble the BN components, which allows us to reconcile
the UC with the unrestricted reduced form.

The MNZ interpretation of the negative disturbance correlation is summarised in their
concluding remarks:

If we accept the implication that innovations to trend are strongly negatively
correlated with innovations to the cycle, then the case for the importance of
real shocks in the macro economy is strengthened. . . . For example, a positive
productivity shock, such as the invention of the Internet, will immediately shift
the long run path of output upward, leaving actual output below trend until
it catches up. This implies a negative contemporaneous correlation since this
positive trend shock is associated with a negative shock to the transitory compo-
nent of output. By contrast, a positive nominal shock, say a shift in Fed policy
towards stimulus will be a positive innovation to the cycle without any impact
on trend.

This paper is concerned with interpreting decomposition with correlated trend and cycle
disturbances. We argue that several observationally equivalent interpretations arise. In the
first place, for certain parameter combinations, correlated disturbances can just imply that
the cyclical component is underestimated. This is always the case when the correlation is
positive, in which case the covariation between the trend and the cycle can be attributed
to the latter, allowing it to display a moving average feature, but also arises under certain
conditions (a small trend-cycle disturbance variance ratio) for negative correlation values.
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However, the orthogonal decomposition imposes restrictions on the spectral density of the
series, that are not supported for U.S. GDP.

Section 2 sets up the basic framework, introducing the unobserved components model
that nests two special cases of interest: the UC model with correlated disturbances and the
orthogonal decomposition with ARMA(2,1) cyclical component. Section 3 derives the BN
decomposition in terms of the reduced form parameters. A standard tool to establish the
conditions under which alternative models are equivalent is the autocovariance generating
function (or the related spectral generating function); this is derived in section 4. We then
establish the conditions under which they are observationally equivalent (section 5).

Strongly negatively correlated disturbances imply that the spectral density of the first
differences of the series is not a global minimum at the long run frequency. We therefore
investigate whether a different UC model, the cyclical growth model (section 6), which
extracts a cycle from growth rates, and has similar implications on the spectral density,
can be rewritten in terms of a trend-cycle decomposition with correlated disturbances.
The conditions under which this is possible are established in section 7, where we also
show that we have to expect a negative correlation.

A reparameterisation of the cyclical trend model gives rise to the hysteresis model of
Jäger and Parkinson (1994), which postulates that the cycle modifies permanently the
trend and thus provides yet another interpretation.

In section 8 we show that the MNZ interpretation is consistent with the permanent-
transitory rather than trend-cycle decomposition of output; the former differs from the
latter in that the permanent component has richer dynamics than a simple random walk;
moreover the propagation mechanism of permanent and transitory disturbances features
a common autoregressive polynomial.

We provide two illustrations (section 9): the first, concerning U.S. GDP, shows that for
that series no such identifiability issues arise, as the MNZ model with correlated distur-
bances is the only representation consistent with the unrestricted ARIMA(2,1,2) model,
but we also show that the components are grossly underestimated in real time, since a
peculiar property of highly negatively correlated trend and cycle disturbances is that the
future is more informative than the past for signal extraction. As a result the cycle esti-
mates will be subject to large revisions and the final ones will display greater amplitude
than the real time ones.

The second deals with Italian real GDP and serves to illustrate that alternative expla-
nations of the nature of macroeconomic fluctuations arise with exactly the same likelihood.

In the concluding remarks we point out that all the results are conditional on a partic-
ular reduced form, that is itself a source of uncertainty in empirical applications.

2 Trend-Cycle decomposition with Correlated Components

Let us consider the following unobserved components model for decomposing output into a
random walk trend component, µt, and a stationary ARMA(2,1) stochastic cycle, denoted
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ψt:
yt = µt + ψt t = 1, 2, . . . , T,

µt = µt−1 + β + ηt,
ψt = φ1ψt−1 + φ2ψt−2 + κt + θκt−1,

(
ηt

κt

)
∼ WN

[(
0
0

)
,

(
σ2

η σηκ

σηκ σ2
κ

)]
, σηκ = rσησκ

(1)

Here WN denotes serially uncorrelated disturbances - white noise. The trend and cycle
disturbances are allowed to be contemporaneously correlated, with r being the correlation
coefficient. Complex stationary autoregressive roots can be imposed expressing φ1 =
2ρ cosλc and φ2 = −ρ2, where ρ and λc (representing the modulus and the phase of the
roots of the AR characteristic equation), lie respectively in [0, 1) and [0, π].

Model (1) will be labelled UC(r, θ) to stress the dependence on the two “conflicting”
parameters. Its reduced form is the ARIMA(2,1,2) process:

∆yt = β +
θ(L)
φ(L)

ξt, ξt ∼ WN(0, σ2), t = 2, ..., T, (2)

where θ(L) = 1+ θ1L+ θ2L
2 and φ(L) = 1−φ1L−φ2L

2 are respectively the MA and AR
polynomials in the lag operator, L, and ∆ = 1− L.

The reduced form has six parameters, whereas UC(r, θ) has seven. Hence, the latter is
not identified and one has to restrict either r or θ. The orthogonal trend cycle decomposi-
tion considered by Clark (1987) imposes r = θ = 0, and thus will be denoted UC(0,0). The
MNZ paper is based on a comparison of UC(r, 0) with UC(0, 0). Harvey and Jäger (HJ),
although they entertain I(2) - local linear - trends, consider UC(0, θ), with a restricted θ,
since, as we illustrate immediately this is a function of ρ and λc.

As a matter of fact, HJ use the cyclic model:

ψt = ρ cosλcψt−1 + ρ sinλcψ
∗
t−1 + κt,

ψ∗t = −ρ sinλcψt−1 + ρ cosλcψ
∗
t−1 + κ∗t ,

(3)

such that the single equation representation for ψt is now the ARMA(2,1) process:

(1− φ1L− φ2L
2)ψt = (1− ρ cosλcL)κt + ρ sinλcκ

∗
t−1,

φ1 = ρ cosλc, φ2 = −ρ2. Harvey and Jäger assume that the cycle disturbances are uncor-
related with the trend disturbances and:

(
κt

κ∗t

)
∼ WN

[(
0
0

)
,

(
σ2

κ 0
0 σ2

κ

)]
,

so that the MA coefficient in ψt ∼ARMA(2,1) is the unique invertible solution of the
quadratic equation θ/(1 + θ2) = −0.5ρ cosλc; let us denote this by θ̃. When λc < π/2,
as occurs quarterly time series, the implied value for θ̃ is negative (this cœteris paribus
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produces a slightly more noisy cycle with respect to the pure AR(2) representation adopted
for UC(0, 0)).

The UC(0, θ̃) model has again an ARIMA(2,1,2) reduced form, but features five pa-
rameters, which leaves one degree of freedom that can be used either for estimating the
correlation between κt and κ∗t , or for allowing different variances. Or we may estimate the
trend-cycle correlation, perhaps assuming that κt and κ∗t are homoscedastic and equally
correlated with ηt.

3 The Beveridge-Nelson Decomposition

The Beveridge and Nelson decomposition of (2) is

yt = mt + ct, t = 1, ..., T. (4)

where the trend, mt, has the random walk representation:

mt = mt−1 + β +
θ(1)
φ(1)

ξt. (5)

and the cycle, ct, has the ARMA(2,1) representation:

φ(L)ct = (1 + ϑ∗L)
[
1− θ(1)

φ(1)

]
ξt, ϑ∗ = −φ2θ(1) + θ2φ(1)

φ(1)− θ(1)
. (6)

The latter can be shown using results from Proietti and Harvey (2000).
The following comments are in order:

1. The two components are driven by the innovations, ξt; the fraction θ(1)/φ(1), known
as persistence, is integrated in the trend, and its complement to 1 drives the cycle.
The sign of the correlation between the trend and the cycle disturbances is provided
by the sign of φ(1)−θ(1). This is negative for the ARIMA model of U.S. GDP fitted
by MNZ, but when persistence is less than one then trend and cycle disturbances
are positively and perfectly correlated.

2. The BN cycle has always an MA feature, unless φ2θ(1) + θ2φ(1) = 0. The MA
polynomial can be non invertible, i.e. |ϑ∗1| can be greater than 1, as it occurs for the
for the ARIMA model estimated for U.S. GDP.

3. The BN components, defined on the reduced form of UC models, are always coinci-
dent with the filtered, or real time time, estimates arising from the UC(r, θ) model,
whatever restriction we impose to make it identifiable (see Watson, 1989).

4. The filtered components of identified UC(r, θ) models are however estimated with
non zero mean square error even in the case r = −1, θ = 0. Hence, it would not
be correct to regard the BN trend and cycle as the estimates of the components
arising from UC(−1,0), as future observations reduce the estimation error. Section
9.1 investigates further this issue, where we show that the only case in which ψt is
actually an observed component in real time arises for r = 1.
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5. When the BN decomposition is interpreted as a model, the components are estimated
in real time with zero mean square error, after processing a suitable number of
observations so that the effect of initial conditions is marginalised, this being the
only source of uncertainty (assuming known parameters).

4 The Autocovariance Generating functions of UC models

In this section we provide expressions for the autocovariance generating function (ACGF)
of the UC(r, 0) model considered by MNZ and that of UC(0, θ) with θ unrestricted.

The ACGF of ∆yt, denoted g(L), is g(L) = σ2|θ(L)|2/|φ(L)|2, where |θ(L)|2 = θ(L)θ(L−1)
and |φ(L)|2 = φ(L)φ(L−1). That implied by the UC(r,0) model considered by MNZ is
(see Whittle, 1983):

gr(L) = g∆µ(L) + g∆ψ(L) + g∆µ,∆ψ(L) + g∆ψ,∆µ(L),

with

g∆µ(L) = σ2
η, g∆ψ(L) =

|1− L|2
|φ(L)|2 σ2

κ, g∆µ,∆ψ(L) =
1− L

φ(L−1)
rσησκ,

and g∆ψ,∆µ(L) = g∆µ,∆ψ(L−1) = rσησκ(1 − L−1)/φ(L), where the latter is the cross-
covariance generating function of (∆ψt, ∆µt).

Replacing L with the complex exponential e−ıλ = cosλ−ı sinλ, where ı is the imaginary
unit, gives the spectral generating function, that provides a decomposition of the variance
of ∆yt into the contribution of changes in the trend, in the cycle and the covariation (cross
spectral density) between the two.

Equating g(L) to gr(L) provides the way of deriving the reduced form parameters
(θ1, θ2, σ

2) from (ση, σκ, r) and of assessing the restrictions imposed by the UC model on
the reduced form.

Simple manipulations (see appendix A) show that gr(L) can be written as follows:

|φ(L)|2gr(L) = |φ(L)|2σ2
η + |1− L|2[σ2

κ + rσησκ(1 + φ1 + φ2 + φ2(L + L−1))]. (7)

For the UC(0, θ) model we have

|φ(L)|2gθ(L) = |φ(L)|2σ2
η∗ + |1− L|2|1 + θL|2σ2

κ∗ (8)

where, with a slight change of notation, σ2
η∗ and σ2

κ∗ denote the variance of the trend and
cycle disturbances when we assume in (1) that they are mutually uncorrelated at all leads
and lags.

5 Can orthogonal decompositions generate correlated trends
and cycles?

The question just posed seems a contradiction in terms, but it summarises the content of
this section, in which we show the conditions under which UC(0, θ) models can generate
UC(r, 0) models and viceversa.
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These can be derived equating the corresponding ACGFs, i.e.

gθ(L) = gr(L),

which amounts to equalling the right hand sides in (7) and (8). The solution gives the
system of three nonlinear equations:

σ2
η∗ = σ2

η

θσ2
κ∗ = φ2rσησκ

(1 + θ2)σ2
κ∗ = σ2

κ + rσησκ(1 + φ1 + φ2)
(9)

The first equation follows immediately from gθ(1) = gr(1) and states that the size of
the RW trend for both models must equal the spectral generating function at the zero
frequency (the long run variance). In terms of the reduced form parameters, σ2

η∗ = σ2
η =

[θ(1)/φ(1)]2σ2.
Moreover, the ratio of the second and the third provide the quadratic equation:

θ

1 + θ2
= φ2r

ση

σκ

[
1 + r

ση

σκ
(1 + φ1 + φ2)

]−1

, (10)

which can be solved for θ, and when real solutions are available, we select the invertible
one to get the UC(0, θ) model observationally equivalent to UC(r, 0).

Figure 1 shows the values of θ as a function of the ratio ση/σκ (in abscissa) and various
values of r. The plot is conditional on the AR parameters estimated by MNZ for U.S.
GDP, that is φ1 = 1.34 and φ2 = −0.71.

Denoting with A the right hand side of (10), an admissible solution for θ is available
when 1 − 4A2 > 0, i.e. −0.5 < A < 0.5; this is exactly the same condition under which
gr(e−ıλ) is a global minimum at the zero frequency: as a matter of fact, the first and
second order conditions for a minimum at that frequency,

d

dλ
gr(e−ıλ)

∣∣∣∣
λ=0

= 0,
d2

dλ2
gr(e−ıλ)

∣∣∣∣∣
λ=0

> 0,

require A > −0.5, whereas gr(e−ıπ) > gr(0) requires A < 0.5. This states the fundamental
fact that the orthogonal decomposition UC(0, θ) imposes that the spectral density of ∆yt

is a minimum at zero, a result already established in Lippi and Reichlin (1992).
As figure 1 shows, any UC(r, 0) model with positively correlated disturbances can be

reinterpreted in terms of an orthogonal UC(0, θ) model with negative θ. Heuristically,
the covariation between the trend and the cycle (the cross-spectrum) is attributed to the
cycle, making it more variable by the addition of an MA feature.

We can allow for negative correlation provided that the ratio ση/σκ is small, i.e. the
trend disturbance is a minor source of variation. In conclusion, when the spectral density
of ∆yt is a minimum at zero, the cross spectrum between the components absorbs part
of the cyclical variability; this can be reallocated to the cyclical component, which is
underestimated by the UC(r,0) model.
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In this perspective, when (10) has an admissible solution, the test of H0 : r = 0
within the UC(r, 0) model amounts to testing H0 : θ = 0 in the UC(0, θ) model, i.e. the
(orthogonal) cycle is a pure AR(2) process devoid of the MA feature.

The UC(r, 0) model adapted by MNZ to U.S. GDP has ση/σκ = 1.24/0.75 = 1.65
and r = −0.92. Figure 1 makes clear that there is no admissible UC(0, θ) model that
is observationally equivalent to theirs. This can be taken as evidence that the spectral
density of the changes in U.S. GDP is not a global minimum at the zero frequency.

6 Cyclical Growth and Hysteresis

Consider now an UC model that postulates that ∆yt can be additively decomposed into
a cyclical component and orthogonal noise:

∆yt = β + ψt + η∗t , η∗t ∼ WN(0, σ2
η∗),

ψt = φ1ψt−1 + φ2ψt−2 + κ∗t + θκ∗t−1, κ∗t ∼ WN(0, σ2
κ∗),

E(η∗t κ∗t ) = 0.
(11)

The idea is that of representing underlying growth as a smooth cyclical process. This
decomposition is at the basis of the dynamic factor model for a coincident index by Stock
and Watson (1991). There, given a set of N coincident indicators, ∆yit, i = 1, . . . , N , that
could be written as ∆yit = δiψt + η∗it, where δi is the loading of the i-th indicator on the
shared cycle, η∗it is the idiosyncratic component, uncorrelated with ψt and across i, and
we ignore the drift term for simplicity, the coincident index is obtained integrating the
smoothed estimates of ψt.

Model (11) is consistent with the classical cycle definition of recessions as periods of ab-
solute declines in economic activity; these would show up as periods of negative underlying
growth, where the latter is defined as β +ψt. The Kalman filter and smoother can then be
used to evaluate the probability of a recessionary event, Prob(ψt < −β|YT ), i.e. a nega-
tive growth at time t, where Yt denotes the available information up to and including time
t. More complex events, such as the probability of a trough, Prob{ψt < −β)

⋂
(ψt−1 >

ψt < ψt+1)|YT }), can be evaluated using the simulation smoother, see De Jong and Shep-
hard (1995), which generates draws from the joint distribution ψ1, . . . , ψt, . . . , ψT |YT . The
resulting business cycle chronology would produce recessions that have shorter duration
than expansions, without the need for entertaining a nonlinear model to account for this
particular asymmetry.

Model (11) has again an ARIMA(2,1,2) reduced form, and six parameters, but differ-
ent implications. In its original specification, it simply produces estimates of underlying
growth that are smoother than the original observations; it can also be interpreted as a
cyclical trend model, as in Harvey (1989, p. 46), such that the trend is coincident with
the observations, i.e. yt = µt and µt = µt−1 + β + ψt + η∗t .

It is also observationally equivalent to the Jäger and Parkinson (1994) hysteresis model,
which is such that a deviation cycle can still be defined, but the cycle modifies also
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permanently the trend. The hysteresis model is specified as follows:

yt = µt + ψt, t = 1, 2, . . . , T,

µt = µt−1 + (1 + θ)ψ∗t−1 + η∗t , η∗t ∼ WN(0, σ2
η∗),

ψ∗t = φ1ψ
∗
t−1 + φ2ψ

∗
t−2 + κ∗t , κ∗t ∼ WN(0, σ2

κ∗)

(12)

and E(η∗t κ∗t ) = 0. Notice that the cycle, ψ∗t , is redefined as a pure second order AR
process; (1 + θ) represents the hysteresis parameter, i.e. the fraction of the cycle that is
integrated in the trend. Obviously, θ = −1 yields again the additive decomposition into
orthogonal trend and cycle that corresponds to the Clark model UC(0, 0). A test of no
hysteresis, H0 : θ = −1, would be non standard, since the parameter lies on the boundary
of the parameter space under the null.

That (12) is observationally equivalent to the cyclical growth model (11) can be seen
on writing

ψt =
1 + θL

φ(L)
κ∗t =

1 + θ

φ(L)
κ∗t−1 +

∆
φ(L)

κ∗t = (1 + θ)ψ∗t−1 + ∆ψ∗t ,

replacing in (11) and defining the components appropriately to give (12). The additive
cycle emerges since the MA feature in ψt enables to disentangle ∆. The hysteresis model
was proposed for unemployment by Jäger and Parkinson (1994) to formalise the idea that
a rise in cyclical unemployment can lead to a permanent increase in the natural rate1.

7 Can Cyclical Growth generate Correlated Trends and Cy-
cles?

Using the same expedient of equating the ACGFs we establish a set of conditions under
which (11) can provide a trend - cycle decomposition with correlated disturbances, i.e.
can be written as an UC(r, 0) process.

Denoting the ACGF of ∆yt implied by (11) with

gc(L) =
|1 + θL|2
|φ(L)|2 σ2

κ∗ + σ2
η∗ ,

the identity gc(1) = gr(1), arising from equating the long run variances, yields:

σ2
η∗ = σ2

η −
(1 + θ)2

φ(1)2
σ2

κ∗ (13)

Replacing in the equation gc(L) = gr(L), we show in appendix B that we can uniquely
determine the cycle MA parameter θ in (11) for given values of the correlation parameter

1The authors, however, failed to recognise that the model is just identified and used an additional series
to support estimation of the hysteresis parameter.
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r and the ratio ση/σκ in UC(r, 0), as the admissible invertible solution of the quadratic
equation:

(1 + θ)2

(1 + θ)2 [φ1(1− φ2) + 2φ2] + θφ(1)2
=

r(ση/σκ)
1 + r(ση/σκ)(1 + φ1 + φ2)

. (14)

Figure 2 shows the values of θ as a function of the ratio ση/σκ (in abscissa) and various
values of r. The plot is conditional on the AR parameters estimated by MNZ for U.S.
GDP, that is φ1 = 1.34 and φ2 = −0.71.

Only negative values of r are considered, with r = −0.92 representing the value es-
timated by MNZ for U.S. GDP. When r = 0 the solution θ = −1 arises for any value
of the ratio ση/σκ, in which case the hysteresis parameter is zero and the model can be
orthogonally decomposed into a RW trend and a purely AR(2) cycle. This is easily seen
from (14). No admissible solutions exists for a positive r and in general an UC trend-cycle
decomposition with positively correlated disturbances cannot be isomorphic to a cyclical
growth model or a model with hysteresis effects. This is so since model (11) implies a
spectral density for ∆yt that has a local, but not a global, minimum at the zero frequency.

Comparing figure 2 with figure 1 we notice that observationally equivalent models arise
when r is negative and the ratio ση/σκ is small; the value implied for θ is high and negative.
For high values of ση/σκ and a negative correlation greater than -0.5 there need not exist
an equivalent cyclical growth model. This occurs for instance, when ση/σκ = 1.65 and
r = −0.92: we need either a lower correlation or standard deviation ratio to have a model
interpretable as (11).

8 Permanent-Transitory Decomposition

Let us return to the UC(r,0) model. MNZ interpret a negative r in terms of ηt → κt,
i.e. positive trend disturbances induce negative cyclical shocks; however, correlated trends
and cycle disturbances can also be interpreted reversing the MNZ casuation: a positive
cycle disturbance reduces permanently potential output. This is a particular form of
hysteresis, with a fraction, say h, of the cyclical disturbance being integrated in the trend,
working in the opposite direction of (12), for which the hysteresis parameter, (1 + θ), is
non negative, although the latter integrates ψ∗t−1 rather than hκt. As a matter of fact,
using the orthogonalisation ηt = η∗t +hκt, where the second addend is the linear projection
of ηt on κt, so that E(η∗t , κt) = 0 and h = rση/σκ, we could write ∆µt = β + η∗t + hκt,
which supports the interpretation that κt modifies permanently the trend (κt → ηt).

Another interpretation corresponds to the orthogonalisation

κt = κ∗t + ωηt, ω = r
σκ

ση
, E(κ∗t , ηt) = 0;

replacing into (1), with θ = 0, and rearranging, we achieve the following orthogonal
decomposition of GDP into a permanent component, y

(P)
t , and a transitory component,
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y
(T)
t :

yt = y
(P)
t + y

(T)
t , t = 1, 2, . . . , T,

φ(L)∆y
(P)
t = b + [φ(L) + ω∆]ηt ηt ∼ WN(0, σ2

η)
φ(L)y(T)

t = κ∗t , κ∗t ∼ WN(0, σ2
κ∗)

(15)

with σ2
κ∗ = σ2

κ(1 − ω2), b = φ(1)β. The permanent component is generated by an
ARIMA(2,1,2) process, since the term in square brackets on the right hand side is an
MA(2) polynomial.

Actually, MNZ seem to refer to this decomposition when they speak of nominal shocks
that do not affect the trend (κ∗t ) and of a new economy shock that induces a negative
output gap: the latter can be associated to the transitory effects of ηt, that amount
ωηt/φ(L) (notice that r < 0 implies ω < 0).

We labelled (15) as a permanent-transitory decomposition because it is very close to the
spirit of the Blanchard and Quah (1989) decomposition: effectively, (15) is characterised
by the fact that the transmission mechanism of permanent and transitory disturbances
has a common feature, represented by the polynomial φ(L), which is present in both the
components. Another similar feature is the high order for the MA order of the permanent
component.

To show that these features have to be expected from a Structural VAR decomposition,
let us focus on the simple case where ∆yt is modelled in conjunction with another ancillary
stationary variable xt, and that the model is a first order bivariate autoregression:

(I −ΦL)(∆yt, xt)′ = ξt, ξt ∼ WN(0,Σ),

where Φ = {φij} and Σ are 2 × 2 matrices, and we ignore for simplicity the presence of
a drift. Inverting the AR matrix polynomial, denoting φ(L) = det(I −ΦL), and defining
orthogonal standardised permanent and transitory disturbances by means of the matrix
Γ = {γij}, such that (

ηt/ση

κ∗t /σκ∗

)
= Γ−1ξt, Σ = ΓΓ′,

the resulting permanent-transitory decomposition of yt, yt = y
(P)
t + y

(T)
t , is as follows7:

φ(L)∆y
(P)
t = [(1− φ22L)γ11 + φ12γ21L] ηt

ση
,

φ(L)∆y
(T)
t = [(1− φ22L)γ12 + φ12γ22L] κ∗t

σκ∗
= γ∗∆ κ∗t

σκ∗

(16)

In deriving (16) we have enforced the restriction that κ∗t has only transitory effects on
output, which, implying [(1− φ22)γ12 + φ12γ22] = 0, allows to extract the common factor
∆ in the representation for ∆y

(T)
t , for a suitable γ∗. This, together with three bilinear

restrictions imposed by Σ = ΓΓ′, exactly identifies the decomposition.
The relevant feature of (16) is the presence of the common AR(2) polynomial φ(L) =

(1−φ11L)(1−φ22L)−φ12φ21L
2. In general, apart from cancellation effects, y

(P)
t ∼ARIMA(Np, 1, p)

and y
(T)
t ∼ ARMA(Np, p− 1) with a common AR polynomial, where N and p denote the

number of time series and p the VAR order, respectively.
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The permanent component arising from the structural VAR(1) has an MA(1) poly-
nomial, whereas that in (15) has a second order MA feature. However, we can think of
decomposing a bivariate ARMA(1,1) model along the same lines and this would produce
y

(P)
t ∼ARIMA(2, 1, 2) and y

(T)
t ∼ ARMA(2, 1), which now differs from (15) for the MA

order for the transitory component, but we can constrain the AR and MA coefficients so
as to yield a purely AR(2) transitory component.

9 Illustrative Examples

In this section we illustrate the interpretative issues arising from the trend cycle decom-
position with correlated disturbances with respect to U.S. GDP and the Italian GDP. We
start by comparing the fit produced by the unrestricted ARIMA(2,1,2) model, the UC(r, 0)
model, UC(0, θ), and the cyclical growth (CG) model.

Model estimation is carried out in the frequency domain. The likelihood is defined in
terms of the stationary representation of the various models, that is in terms of ∆yt, t =
1, . . . , T ∗. The appealing feature of estimation in the frequency domain is that we can con-
trol one of the sources of variability of estimation results, consisting of initial conditions
in the presence of nonstationary effects. The assumptions under which the likelihood is
derived are the same for all the models and this guarantees that observationally equiva-
lent models give exactly the same inferences, as we will see below. We refer to Nerlove,
Grether and Carvalho (1995) and Harvey (1989, sec. 4.3) for a comprehensive treatment
on frequency domain estimation.

While the time domain likelihood of UC models is based on a recursive orthogonalisa-
tion, known as the prediction error decomposition, performed by the Kalman filter, the
frequency domain one is based on an alternative orthogonalisation, achieved through a
Fourier transform. Denoting the Fourier frequencies by λj = 2πj

T ∗ , j = 0, 1, . . . , (T ∗ − 1),
the likelihood function is defined as follows:

loglik = −1
2



T ∗ log 2π +

T ∗−1∑

j=0

[
log gm(λj) + 2π

I(λj)
gm(λj)

]



where gm(λj) = gm(e−ıλj ) denote the spectral generating function of the m-th model
evaluated at frequency λj , and I(λj) is the periodogram:

I(λj) =
1
2π

[
c0 + 2

T ∗−1∑

τ=1

cτ cos(λjτ)

]

where cτ denotes the sample autocovariance at lag τ ,

cτ =
1
T ∗

T−τ∑

t=1

(∆yt − ∆̄y)(∆yt−τ − ∆̄y), ∆̄y =
1
T ∗

T ∗∑

t=1

∆yt.

The index m refers alternatively the ARIMA model, UC(r, 0), UC(0, θ), and the cyclical
growth model given in (11). The corresponding spectral generating functions are straight-
forwardly derived from the ACGFs presented in sections 4 and 7.
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All the computations were performed in Ox 3.0 (Doornik, 2001) and programmes are
available upon request. Signal extraction was performed by the Kalman filter and smoother
using the library of state space function SsfPack 2.3 by Koopman et al. (2000), linked to
Ox 3.0. Appendix C briefly reviews the state space representation and the main methods
and algorithms used in the discussion. For a thorough exposition of the state space
methodology we refer to Harvey (1989) and Durbin and Koopman (2001).

9.1 U.S. GDP

We consider the U.S. GDP series for the sample period 1947.1-2001.4 in chained 1996
dollars, made available electronically by the U.S. Bureau of Economic Analysis. The
series is an extension of that considered by MNZ, but it leads to the same conclusions.
Table 1 presents the main estimation results along with some diagnistics. Q(12) is the
Ljung-Box portmanteau test statistic for residual autocorrelation based on the first 12
autocorrelations, and we also present the Doornik and Hansen (1994) test of normality.
Both are computed on the standardised Kalman filter innovations (see appendix C).

Table 1: Parameter estimates and diagnostics for models of quarterly U.S. real GDP,
1947.1-2001.4; (r) denotes a restricted parameter.

ARIMA UC(r, 0) UC(0, θ) CG
φ1 1.39 1.39 1.50 1.37
φ2 -0.79 -0.79 -0.58 -0.71
θ1 -1.14
θ2 0.63
σ2 0.8717
r -0.97 0(r)

σ2
η (σ2

η∗) 1.3397 0.5512 0.6063
σ2

κ (σ2
κ∗) 0.3254 0.1005 0.0211

θ 0(r) 1.00 1.00
loglik -295.71 -295.71 -297.18 -296.00
Q(12) 8.94 8.94 11.56 7.59

Normality 17.96 17.96 24.81 20.71

The ARIMA model and UC(r, 0) provide exactly the same likelihood inferences. Hence
the reduced form of the latter coincides with the unrestricted ARIMA(2,1,2) model fitted
to the series. The correlation parameter is high and negative (-.97), and the ratio ση/σκ

is about 2. The persistence parameter implied by the two models is 1.24: for UC(r, 0) it
is computed from the steady state Kalman filter as the first element of the vector Pzf−1,
corresponding to the weight assigned to the current innovation ξt in the real time estimates
of the trend; see equation (21).

UC(0, θ) and the cyclical growth model yield a lower likelihood and the former slightly
worse diagnostics; with hindsight we interpret the richer residual autocorrelation pattern
as a consequence of underestimation of the zero frequency variance component. It is also
noticeable that the estimated MA cycle parameter θ lies in both cases on the boundary
of the parameter space; this interesting result is a clear expression of the fact that those
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models encounter some difficulty in interpolating the sample periodogram.
The fit of the periodogram (raw sample spectrum) can be seen from figure 3, which

presents I(λj) along with the estimated spectral density functions gm(λj). Notice that
CG implies the same estimate at the zero frequency as the ARIMA model and UC(r, 0),
and thus the same persistence. On the other hand, the spectral density fitted by UC(0,θ)
is characterised by a spectral peak taking place at a lower frequency, and therefore the
resulting cycle estimates are characterised by a larger period; also, θ = 1 implies gθ(0) =
gθ(π) as the cycle is strictly non invertible at the π frequency.

The results hence confirm MNZ findings, pointing out that among the unobserved
components models considered, the UC(r, 0) model is the only one that can be reconciled
with the unrestricted ARIMA(2,1,2) model of GDP. However the interpretative issues
raised in section 8 still hold.

This is not quite the end of the story, as we proceed to assess the estimates of the
signals resulting from the UC(r,0) model. The real time estimates of the trend, µ̃t|t, and
the cycle, ψ̃t|t, arising from UC(r, 0) will be coincident to the BN components. They are
characterised by a perfect negative correlation and the real time estimates of the cycle
will have a non invertible ARMA(2,1) representation: as a matter of fact, the parameter
values reported in table 1 imply a value for the ϑ∗ coefficient in (6) that is equal to -1.46.

If the BN decomposition is estimated as a model, that is we set up a state space model
consisting of equations (4)-(6), after processing a suitable small number of observations
the real time and final estimates are fully coincident. On the other hand, the estimates
arising from UC(r,0) are subject to large revisions as new observations become available.
This can be clearly seen from figure 4, which displays the the real time and final estimates
of the cycle, ψ̃t|T . The final estimates contradict the assertion that the cycle has a small
amplitude, their range going from about -5% to +5%.

The reason for this apparently puzzling phenomenon will be now discussed. Loosely
speaking it relates to the fact that the real time estimates provide a gross underestimation
of the signals as compared with the smoothed estimates, which depend heavily on future
observations. Derivation and discussion of the weighting patterns for filtering and smooth-
ing is presented in Harvey and Koopman (2000). Here we concentrate on showing that the
percentage reduction in estimation uncertainty, or equivalently the gains in reliability, due
to the availability of future observations is inversely related to the correlation coefficient
between the trend and cycle disturbances.

For this purpose we consider a sequence of UC(r,0) with r taking values in [-1,1], fixing
the remaining parameters, φ1, φ2, ση and σκ, at their estimated values as they appear in
table 1; changing the ratio ση/σκ leaves the results of this analysis unaffected. In table 2
we report the implied persistence parameter, the MA parameter of the ARMA(2,1) model
generating the real time estimates, ϑ∗, and the increase in reliability of the cycle estimates
when we use a doubly infinite sample. The latter is defined as the percentage reduction
in the estimation error variance when we compare the real time estimates with the final
ones:

100
P̄

(ψ)
t|t − P

(ψ)
t|∞

P̄
(ψ)
t|t

,
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Table 2: Implied persistence, BN cycle moving average coefficient, and percentage reduc-
tion in estimation error variance of the cyclical component for UC(r,0) models (1) with
ση/σζ = 2.03 and AR parameters φ1 = 1.39 and φ2 = −0.79 and different trend-cycle
correlation, r.

r θ(1)/φ(1) ϑ∗ % Reduction
-1.00 1.27 -1.35 100.00
-0.90 1.18 -1.79 84.11
-0.75 1.08 -3.33 68.41
-0.25 0.89 1.37 38.90
0.00 0.82 0.65 29.02
0.25 0.77 0.35 20.58
0.50 0.73 0.19 13.09
0.75 0.70 0.08 6.29
0.90 0.68 0.03 2.46
1.00 0.67 0.00 0.00

where, using results presented in appendix C, and in particular (22), P̄
(ψ)
t|t is the steady

state estimation error variance of the real time cyclical component and P
(ψ)
t|∞ is that of the

corresponding final estimates, using a doubly infinite sample.
Notice that when r = 1 the BN or real time estimates have the same AR(2) represen-

tation as the true component (ϑ∗ = 0); the process generating them is coincident with the
maintained model for the unobserved component, so that current and past (i.e. real time)
information is all we need to form this estimate. On the contrary, when r is negative the
distribution of the weights for extraction of the cycle, based on a doubly infinite sample,
are highly skewed towards the future. As a matter of fact, when r = −1 the cycle is
estimated with zero mean square error using a doubly infinite sample, but the real time
estimates are characterised by high uncertainty. This is why we get a 100% increase in
reliability from processing future observations.

It is also noticeable that a small negative correlation such as r = −0.25 yields a persis-
tence that is less than one and, therefore, real time or BN components with perfectly and
positively correlated disturbances. It should be recalled from section 3 that the correlation
sign depends on persistence.

In conclusion, if we accept that trend and cyclical disturbances are negatively correlated
as implied by MNZ, then we must be willing to accept also that essential information for
assessing the cyclical pattern lies in future observations and that our signals are prone to
high revisions.

9.2 Italian GDP

The second example, concerning Italian real quarterly GDP at 1995 prices, available for
the sample period 1970.1-2001.2, provides a case in which the cyclical growth model and
the trend cycle decomposition with correlated disturbances provide exactly the same in-
ferences, that are in turn coincident with those arising for the unrestricted ARIMA(2,1,2)
model. As a result, alternative explanations of the nature of macroeconomic fluctuations
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arise with exactly the same likelihood.
The estimated parameters, along with diagnostics, are presented in table 3. It is clear

that ARIMA, UC(r,0) and CG are observationally equivalent and produce a good fit
in terms of residual autocorrelation and normality. The orthogonal decomposition with

Table 3: Parameter estimates and diagnostics for models of quarterly Italian real GDP,
1970.1-2000.2; (r) denotes a restricted parameter.

ARIMA UC(r, 0) UC(0, θ) Cycl. Growth
φ1 1.43 1.43 1.54 1.43
φ2 -0.74 -0.74 -0.80 -0.74
θ1 -1.04
θ2 0.41
σ2 0.5073
r -0.90 0(r)
σ2

η 0.7454 0.3556 0.2821
σ2

κ 0.3567 0.0332 0.1102
θ 0(r) 1.00 -0.37

loglik -133.87 -133.87 -136.46 -133.87
Q(12) 5.11 5.11 15.22 5.11

Normality 2.70 2.70 3.44 2.70

ARMA(2,1) cycle, UC(0,θ), yields a lower likelihood and there is significant autocorre-
lation left in the residuals. As in the previous example this is the likely consequence of
underestimation of the spectral density at the long run frequencies. It is also noticeable
that also for the Italian GDP the parameter θ is forced to the boundary: hence, there is
less support for the additive decomposition of the series into orthogonal components.

Figure 5 compares the parametric fit of the periodogram ordinates I(λj) provided by
the various models: the estimated spectral density functions gm(λj)/(2π) are of course
coincident for ARIMA, UC(r,0) and CG, whereas for UC(0,θ) the considerations are the
same as those we made for U.S. GDP.

Several interesting features arise from the plot of the smoothed estimates of the com-
ponents, µ̃t|T and ψ̃t|T , available in figure 6. As far as UC(r,0) is concerned, the cyclical
component is estimated with a relatively low mean square error but the confidence bounds
increase sharply at the end of the sample, this being a consequence of the peculiar weight-
ing pattern, that gives more weight to future observations with respect to orthogonal
decompositions. The confidence intervals for the very last data point give an idea of the
amount of uncertainty that affects real time estimates.

The amplitude of the fluctuations and the cycle chronology are roughly the same as that
implied by the orthogonal decomposition, UC(0, θ); however, the UC(r,0) cycle features
a major recessionary pattern in 1971-1972, when the trend is well above yt (see the first
panel).

Finally, for the cyclical growth model we present the estimated negative growth proba-
bilities Prob(ψt+β < 0|Yt), computed from the smoothing distribution ψt|YT ∼ N(ψ̃t|T , P

(ψ)
t|T ).

We could use these estimates to establish a perhaps näıve, but quite simple, business cycle
chronology, e.g. focussing attention on probabilities greater than 0.5 and affecting two
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or more consecutive quarters. According to this criterion three major recessions would
emerge, the first two associated with the two oil shock (around 1973-1974 and 1981-1983)
and the third in 1991-1992. The other events from the second half of the nineties would
hardly be considered as recessions, as they lack both depth and duration.

The cycle chronology arising from CG leads that arising form the orthogonal deviation
cycle extracted by UC(0, θ), in accordance with the the fact that the former is defined in
terms of the first differences of the series, rather than the levels.

10 Concluding Remarks

This paper has addressed some of the subtleties and interpretative issues that arise from
trend-cycle decompositions with correlated components. Conditional on an ARIMA(2,1,2)
reduced form representation, we have considered several observationally equivalent possible
explanations: alternative representations for the cyclical component, accounting for richer
dynamics, permanent-transitory decompositions, a cycle in growth rates, consistent with
the classical definition of a business cycle, the hysteresis model, according to which the
cycle modifies permanently the trend.

We also investigated the consequences of having highly and negatively correlated dis-
turbances for signal extraction. The conclusion was that the role of future observations
in reducing the uncertainty increases with the size of the correlation coefficient. Hence,
large revisions have to be expected.

All this statements were made maintaining a particular ARIMA reduced form, but in
real life this is itself an additional source of uncertainty. For instance, Harvey and Jäger
(1994) entertained an orthogonal trend-cycle decomposition to the U.S. real GDP series,
allowing for a stochastic slope in the trend, so that the latter is an I(2) process. The same
model provides a data-coherent decomposition of the Italian GDP, see Proietti (2002).
Discriminating among UC models unconditionally, i.e. without assuming a particular
reduced form, is a far more complex issue, since, despite the recent advances in testing
and model specification in the unobserved components framework (see Harvey, 2001), it is
impossible to get analytic results, due to the unavailability of a common estimable reduced
form.
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A Proof of results (7)

The ACGF of UC(r, 0) can be rewritten as:

|φ(L)|2gr(L) = |φ(L)|2σ2
η + |1− L|2σ2

κ + [(1− L)φ(L−1) + (1− L−1)φ(L)]σηκ.

Replacing the polynomial decompositions

φ(L) = φ(1) + (1− L)φ∗(L), φ∗(L) = φ∗0 − φ∗1L,
φ(L−1) = φ(1) + (1− L−1)φ∗(L−1), φ∗(L−1) = φ∗0 − φ∗1L−1,
φ∗0 = φ1 + φ2, φ∗1 = −φ2,

in the term in square brackets, and using the identities

|1− L|2 = (1− L)(1− L−1) = 2− L− L−1 = (1− L) + (1− L−1),

we get

(1− L)φ(L−1) + (1− L−1)φ(L) = |1− L|2[φ(1) + φ∗(L) + φ∗(L−1)]
= |1− L|2[1 + φ1 + φ2 + φ2(L + L−1)].

B Proof of results (14)

Replacing |1 + θL|2 = (1 + θ)2 − θ|1− L|2 in the ACGF of (11)

|φ(L)|2gc(L) = |φ(L)|2σ2
η∗ + |1 + θL|2σκ∗

and equating gc(1) = gr(1) we get result (13). Substituting into the gc(L) = gr(L) and
gathering terms we get:
[
(1 + θ2)

φ(1)2 − |φ(L)|2
φ(1)2

− θ|1− L|2
]

σ2
κ∗ = |1−L|2[σ2

κ+rσησκ(1+φ1+φ2+φ2(L+L−1))].

(17)
Now, the polynomial |φ(L)|2 on the left hand side can be written:

|φ(L)|2 = φ(1)2 + |1− L|2
{
|φ∗(L)|2 + φ(1)

[
φ∗0 + φ∗1(1− |1 + L|2)

]}

where the polynomial φ∗(L) = φ∗0 − φ∗1L is given in appendix A. The right hand side of
(17) then becomes:

−|1− L|2
[
θ +

(1 + θ)2

φ(1)2
{
|φ∗(L)|2 + φ(1)

[
φ∗0 + φ∗1(1− |1 + L|2)

]}]
σ2

κ∗ .

or, equivalently,

−|1− L|2
[
(1 + θ)2

φ(1)2
(
φ1(1− φ2) + 2φ2 + φ2(L + L−1)

)
+ θ

]
σ2

κ∗ .
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The factor |1−L|2 thus cancels out and, matching the coefficients associated to the same
powers of L, we get the two equations:

rσησκ = − (1+θ)2

φ(1)2
σ2

κ∗

σ2
κ + rσησκ(1 + φ1 + φ2) = −

[
(1+θ)2

φ(1)2
(φ1(1− φ2) + 2φ2) + θ

]
σ2

κ∗ .
(18)

which, together with (13) allow to determine the parameters of UC(r, 0) from those of the
cyclical growth model (11) and viceversa, when a solution is admissible. Dividing the two
equations in (18) gives the result stated in (14).

C Estimation of unobserved components

State Space representation The UC models considered in the main text admit the
time-invariant state space representation:

yt = z′αt, t = 1, 2, . . . , T,
αt = Tαt−1 + c + Rεt,

(19)

with εt ∼ NID(0, Q) and α1 ∼ NID(α̃1|0,P 1|0), independently of εt, ∀t. Initialisation of
the state vector when nonstationary state components are present is discussed in Koopman
(1997).

For instance, the system matrices for the UC(r, 0) model are:

z =




1
1
0


 , T =




1 0 0
0 φ1 1
0 φ2 0


 , c =




β
0
0


 , R =




1 0
0 1
0 0


 , Q =

[
σ2

η σηκ

σηκ σ2
κ

]

For the Beveridge-Nelson decomposition, considered as a model, the system matrices are
the same except for R and Q, which are 3× 1 and scalar, respectively:

R =




%
1− %

−(θ2 + φ2%)


 , Q = σ2,

where % = θ(1)/φ(1) is the persistence parameter. On the other hand, for UC(0,θ) we
need to replace R and Q by:

R =




1 0
0 1
0 θ


 , Q =

[
σ2

η∗ 0
0 σ2

κ∗

]
;

finally, the state space representation for the cyclical growth model is obtained also re-
placing z and T by:

z =




1
0
0


 , T =




1 1 0
0 φ1 1
0 φ2 0


 .
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Kalman Filter The Kalman filter (Anderson and Moore, 1979), is the well-known
recursive algorithm for computing the minimum mean square estimator of αt and its
mean square error (MSE) matrix conditional on Yt−1 = {y1, y2, . . . , yt−1}. Defining
α̃t|t−1 = E(αt|Yt−1), P t|t−1 = E[(αt − α̃t|t−1)(αt − α̃t|t−1)′|Yt−1], it is given by the set of
recursions:

ξt = yt − z′α̃t|t−1, ft = z′P t|t−1z

kt = TP t|t−1zf−1
t

α̃t+1|t = T α̃t|t−1 + c + ktξt, P t+1|t = TP t|t−1T
′ + RQR′ − ktk

′
tft

(20)

ξt = yt − E(yt|Yt−1) are the filter innovations or one-step-ahead prediction errors, with
variance matrix ft.

Steady State The innovations and the state one-step-ahead prediction error, xt =
αt − α̃t|t−1, can be written as

ξt = z′xt, xt+1 = Ltxt + Rεt,

where Lt = T−ktz
′. Thus, xt follows a VAR(1) process that is (asymptotically) stationary

if the autoregressive matrix Lt, known as the closed loop matrix in system theory, converges
to a matrix L = T − kz′, whose eigenvalues lie all inside the unit circle.

The basic properties that ensure convergence to such stabilising solution are detectabil-
ity and stabilisability (see Burridge and Wallis, 1988). They imply that, independently
of initial conditions, P t+1|t converges at an exponential rate to a steady state solution
P , satisfying the Riccati equation P = TPT ′ + RQR′ − kk′f, with k = TPzf−1 and
f = z′Pz, and the Kalman gain vector k is such that L has all its eigenvalues inside the
unit circle.

Real time estimates The real time or concurrent estimates of the states and the esti-
mation error covariance matrix are given respectively by:

α̃t|t = α̃t|t−1 + P t|t−1zf−1
t ξt, P t|t = P t|t−1 − P t|t−1zz′P t|t−1f

−1
t . (21)

The estimated unobserved components in α̃t|t are the same as those arising from the BN
decomposition of the implied ARIMA reduced form representation. The MA parameters
of the reduced form representation can be uniquely derived from the steady state using
Pzf−1. Notice, however, that in the steady state we need zz′f−1 to be equal to the
pseudo-inverse of P for the components to be estimated with zero error, i.e. observable
with respect to current and past information. For the BN model f = σ2 = Q, Pzf−1 = R
and P = RQR′, which ensures that when the system has reached a steady state, the
components are estimated in real time with zero mean square error.

Final estimates We can keep track of revisions, due to the accrual of further observa-
tions, by using a fixed-point smoothing algorithm. Elaborating results in de Jong (1989),
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and assuming that the system has reached a steady state, we have, for a fixed t and for
l ≥ 0, the following smoothing recursions:

α̃t|t+l = α̃t|t + PL′rt|t+l, P t|t+l = P̄ t|t − PL′N t|t+lLP ,

rj|t+l = L′rj+1|t+l + zf−1ξj+1, N j|t+l = L′N j+1|t+lL + zz′f−1,
(22)

j = t + l, t + l − 1, . . . , t, where P̄ t|t = P − Pzz′P f−1 and the backwards recursions are
initialised rt+l|t+l = 0, N t+l|t+l = 0.

Now, as l → ∞ (i.e. assuming a doubly infinite sample), rj|t+l is a backward first
order stationary vector autoregression, and N j|t+l is its covariance matrix. The final state
estimation error covariance matrix, denoted P t|∞, solves P t|∞ = P −PNP , where N is
the steady state solution of the backward smoothing equation, N j|t+l = L′N j+1|t+lL +
zz′f−1, j = t + l, . . . , t, as l → ∞; a unique stable solution for N exists provided the
characteristic roots of L are less than unity in modulus, which is already the condition for
a steady state solution. The elements of the solution are obtained from

vec(N) = (I −L′ ⊗L′)−1vec(zz′f−1).

Hence, P t|∞ contains the final estimation error covariance matrix, and can be written:

P t|∞ = P̄ t|t − P (zz′f−1 −N)P .

The second term on the right hand side, which is obviously positive semi-definite, measures
the total reduction in the estimation uncertainty as we go from the real time to the final
estimates.
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Figure 1: Plot of θ (vertical axis) in UC(0, θ) as a function of the parameters ση/σκ

(horizontal axis) and r of an UC(r, 0) model.
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Figure 2: Plot of θ (vertical axis), the MA parameter of the cyclical growth model, as a
function of the parameters ση/σκ (horizontal axis) and r of an UC(r, 0) model.
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Figure 3: U.S. GDP, 1947.1-2001.4. Periodogram, I(λj), and parametric spectral densities
of ∆yt, gm(λj)/(2π), estimated by the ARIMA(2,1,2) model, the UC(r,0), UC(0,θ) and
cyclical growth model.
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Figure 4: Plot of series and smoothed estimates arising from the model UC(r,0). Series
with trend, µ̃t|T (first panel); real time (ψ̃t|t) and smoothed (ψ̃t|T ) estimates of the cyclical
component.
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Figure 5: Italy, GDP, 1970.1-2001.2. Periodogram, I(λj), and parametric spectral densi-
ties of ∆yt, gm(λj)/(2π), estimated by the ARIMA(2,1,2) model, the UC(r,0), UC(0,θ)
and cyclical growth model.
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Figure 6: Italian GDP, 1970.1-2001.2. Smoothed estimates of trend and cycle arising from
the UC(r,0) model (top), UC(0,θ) (centre). For the cyclical growth model we present
Prob(ψt + β < 0|YT ) (bottom left) and the smoothed estimates of underlying growth,
β + ψ̃t|T .
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