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Abstract

The conditions under which ordinary least squares (OLS) is an unbiased

and consistent estimator of the linear probability model (LPM) are unlikely

to hold in many instances. Yet the LPM still may be the correct model or,

perhaps, justified for practical reasons. A sequential least squares (SLS) esti-

mation procedure is introduced that may outperform OLS in terms of finite

sample bias and yields a consistent estimator. Monte Carlo simulations reveal

that SLS outperforms OLS, probit and logit in terms of mean squared error of

the predicted probabilities. An empirical example is provided.
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1. Introduction
The limitations of the Linear Probability Model (LPM) are well known. Estimated

probabilities based on OLS are not necessarily bounded on the unit interval and

unbiased (OLS) estimation implies that heteroscedasticity is present. Conventional

textbook advice points to probit or logit as the standard remedy. These models bound

the maximum likelihood estimated probabilities on the unit interval. However, the

fact that consistent estimation of the LPMmay be difficult does not imply that either

probit or logit is the correct specification of the probability model. In some cases it

is reasonable to assume that probabilities are generated from bounded linear decision

rules. Theoretical rationalizations for the LPM can be found in Rosenthal (1989) and

Heckman and Snyder (1997).

Despite the attractiveness of the logit and probit specifications for modeling a bi-

nary dependent variable as a function of covariates, OLS on the LPM remains a

venerable model in the literature. Recent applications of OLS on the LPM include

Klaassen and Magnus (2001), Bettis and Farlie (2001), Lukashin (2000), McGarry

(2000), Fairlie and Sundstrom (1999), Lucking-Reiley (2000), and Currie and Gruber

(1996). Empirical rationales for the LPM over probit or logit are plentiful. McGarry

points to ease of interpretation of marginal effects in the LPM, while Lucking-Reiley

cites a perfect correlation problem associated with the probit model for his particular

application. Fairlie and Sundstrom prefer LPM because it implies a simple expression

for the change in the unemployment rate between two censuses. Bettis and Farlie

choose LPM because of an extremely large sample size and other simplifications im-

plied by the linear model. Lukashin uses a linear probability model because it lends

itself to a model selection algorithm based on an adaptive gradient criterion. While

Currie and Gruber do not give any particular reason why they report LPM results in

favor of probit or logit, they do mention that the logit/probit results are similar to

the LPM results for their application.
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Other rationales for the LPM are suggested by complications arising from the use

of probit/logit models in certain contexts. One such occasion is the use of probit/logit

models with panel data. Fixed effects and random effects estimation is much more

involved in a logit model compared with a linear model. Likewise random effects

estimation with a probit model is not as simple as with a linear model, and a fixed

effects model cannot be consistently estimated with a probit model. Klaassen and

Magnus point to these complications in selecting the LPM over logit or probit in

their tennis application. Another rationale is perhaps justified in simultaneous equa-

tions/instrumental variable methods. The presence of dummy endogenous regressors

is problematic if the DGP is assumed to be probit or logit; these problems were first

considered by Heckman (1978). Suffice it to say that, while perhaps less popular

than logit and probit, the LPM model still finds its way into the literature for various

compelling reasons.

Some well-known LPM theorems are provided in Amemiya (1977), and the quintessen-

tial survey on binary dependent variables is Amemiya (1981). Standard econometrics

textbooks, such as Greene (2000) and Kmenta (1997), point out LPMmodelling com-

plications that can lead to biased and inconsistent OLS estimates. Nevertheless, the

literature is not sufficiently clear on the precise conditions under which OLS estima-

tion yields problematic estimators of the parameters of the LPM. The purpose of this

paper is: a) to rigorously lay out these conditions; b) to derive the finite-sample and

asymptotic biases of OLS when they are present; and c) to provide additional results

that shed light on the appropriateness or inappropriateness of OLS estimation of the

LPM. Moreover, this paper proposes a consistent sequential estimation strategy that

is functionally simpler than probit and logit in the sense that numerical optimization

is not required to produce the LPM estimates. Since the estimator is based on a

simple bias correction for OLS, the coefficients estimates produced are the true mar-

ginal effects and do not need to be transformed to yield readily interpretable results
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(as is the case with the non-linear logit and probit specifications). Other potential

applications of this estimator are explored later in the paper.

The plan of the paper is as follows. Section 2 provides a few theorems and re-

sults from OLS estimation of the LPM that have, heretofore, not been rigorously

presented. Section 3 introduces a sequential estimation technique, Sequential Least

Squares (SLS), for the LPM that is simple to implement. Section 4 presents a sim-

ulation study that compares results from the new sequential estimator to those from

OLS and finds that the sequential estimator outperforms OLS in terms of finite sam-

ple bias. Section 5 performs a simulation study demonstrating that the sequential

estimator outperforms probit and logit when the underlying data generation process

is LPM. The metric of performance is the mean squared error of the predicted prob-

abilities of the dependent variable. Section 6 presents an application to the choice of

whether or not to purchase health insurance; the empirical results of OLS, SLS, logit

and probit are compared. Section 7 summarizes and concludes.

2. LPM Specification and Main Results

A general way in which to specify the Data Generating Process (DGP) for the LPM

is as follows. Let yi be a binary random variable that takes on the values 0 or 1. Let

xi be a continuous random 1× k vector of explanatory variables on <k, β be a k × 1
vector of coefficients, and εi be an unobserved random error term. For convenience

we will define the following probabilities over the random variable xiβ ∈ <.

Pr(xiβ > 1) = π,

Pr(xiβ ∈ [0, 1]) = γ,

Pr(xiβ < 0) = ρ,

where π+γ+ρ = 1. Consider a random sample of data: (yi, xi); i ∈ N ;N = {1, ..., n}.
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In what follows it will be useful to introduce the following notation. Define the sets

κγ = {i | xiβ ∈ [0, 1]}, (1)

κπ = {i | xiβ > 1}.

which are the sets of all indices i such that xiβ is on the unit interval and of all indices

i such that xiβ > 1, respectively. Notice that κγ, κπ ⊆ N , κγ ∩ κπ = ∅. Equation

(1) implies

Pr(i ∈ κπ) = π, (2)

Pr(i ∈ κγ) = γ,

Pr(i /∈ κγ ∪ κπ) = ρ.

Let the values of yi be generated according to:

yi = 1 for i ∈ κπ, (3)

= xiβ + εi for i ∈ κγ,

= 0 otherwise.

(As convention dictates, we will assume the first element of the vector xi is always a

1, so that the first element of β is an intercept term.) The conditional probability

function for yi is then

Pr(yi = 1 | xi, i ∈ κπ) = 1, (4)

Pr(yi = 1 | xi, i ∈ κγ) = xiβ ,

Pr(yi = 0 | xi, i ∈ κγ) = 1− xiβ,

Pr(yi = 1 | xi, i /∈ κγ ∪ κπ) = 0.

Therefore, yi traces the familiar ramp function on xiβ, which can be thought of as the

cumulative distribution function of a continuous uniform random variable on [0,1].
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The DGP specification then implies the following error process:

εi = 0 for i ∈ κπ,

= yi − xiβ , i ∈ κγ,

= 0 for i /∈ κγ ∪ κπ.

Notice that εi is not binary and is realized with the following conditional probabilities

Pr(εi = 0 | xi, i ∈ κπ) = 1, (5)

Pr(εi = 1− xiβ | xi, i ∈ κγ) = xiβ ,

Pr(εi = − xiβ | xi, i ∈ κγ) = 1− xiβ,

Pr(εi = 0 | xi, i /∈ κγ ∪ κπ) = 1.

Estimation of the LPM typically proceeds by OLS on the model:

yi = xiβ + ui, i ∈ N,

where it is assumed that ui is a zero-mean random variable that is independent of

the xi. The resulting estimator will be problematic as proven in the sequel. Notice

that OLS specifies an error term ui, which is different than εi :

ui = 1− xiβ for i ∈ κπ,

= yi − xiβ for i ∈ κγ,

= −xiβ for i /∈ κγ ∪ κπ.

The conditional probability function for ui is

Pr(ui = 1− xiβ | xi, i ∈ κπ) = 1, (6)

Pr(ui = 1− xiβ | xi, i ∈ κγ) = xiβ ,

Pr(ui = − xiβ | xi, i ∈ κγ) = 1− xiβ,

Pr(ui = − xiβ | xi, i /∈ κγ ∪ κπ) = 1.
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It is extremely important in what follows to distinguish between ui, the OLS error,

and εi, the error of the true DGP, for it is this distinction that induces problems with

OLS of the LPM. Figure 1 illustrates this distinction: the first panel is the DGP for

the conditional mean function, the second panel is the LPM error (εi), and the third

panel is the OLS error (ui). Notice that ui can assume two different values: 1−
xiβ and − xiβ, while εi can assume three: 0, 1− xiβ and − xiβ. The conditional

probability functions of equations (4), (5) and (6) imply the following conditional

expectations

E(yi | xi, i ∈ κπ) = 1, (7)

E(yi | xi, i ∈ κγ) = xiβ ,

E(yi | xi, i /∈ κγ ∪ κπ) = 0,
E(εi | xi, i ∈ κπ) = 0,

E(εi | xi, i ∈ κγ) = 0,

E(εi | xi, i /∈ κγ ∪ κπ) = 0,
E(ui | xi, i ∈ κπ) = 1− xiβ,

E(ui | xi, i ∈ κγ) = 0,

E(ui | xi, i /∈ κγ ∪ κπ) = −xiβ.

The expectations make clear the obvious difference between ui and εi: ui only has

zero-mean when i ∈ κγ; εi always has zero-mean. This is also intuitively obvious in

Figure 1.

Theorem 1 If γ < 1, Ordinary Least Squares Estimation of the Linear Probability

Model is generally biased and inconsistent.
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Proof. The conditional expectation of the usual OLS error is

E(ui | xi, i ∈ κπ) = 1− xiβ,

E(ui | xi, i ∈ κγ) = 0,

E(ui | xi, i /∈ κγ ∪ κπ) = −xiβ.

Therefore, the conditional expectation of the OLS error, ui, is a function of xi with

probability (1− γ). Hence, OLS will be biased and inconsistent, if γ < 1.

The proof formalizes the specification error made when the OLS conditional mean is

assumed. This fact has been mentioned by a few authors but has never be stated with

any probabilistic rigor. The upshot of the theorem is that only those observations in

the set κγ have a well-behaved error associated with them, so OLS that includes any

observations outside of the set κγ will be problematic. In what follows we present a

few additional results, derive the finite and asymptotic sample biases, and suggest a

bias reduction method for OLS based on a sequential estimation strategy.

Remark 2 If κγ 6= N , OLS estimation is biased and inconsistent . That is, if the

sample used to estimate β contains any i /∈ κγ, then γ is necessarily less than 1, so

OLS is problematic.

Of course the entire problem is due to γ < 1, so the follow is not surprising.

Remark 3 If γ = 1, OLS is unbiased and consistent, because π = ρ = 0, E(ui |
xi) = 0 for all i ∈ N , and the conditional expectation function implied by the DGP

is:

E(yi | xi) = Pr(yi = 1 | xi) = xiβ, i ∈ N.

Therefore the usual OLS results hold under suitable regularity conditions.
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Define discrete random variables zi and wi where:

zi = 1 for i ∈ κγ,

= 0 otherwise.

wi = 1 for i ∈ κπ,

= 0 otherwise.

So, Pr(zi = 1) = γ and Pr(wi = 1) = π. Then an alternative specification of the

DGP in equation (3) is:

yi = wi + zixiβ + uizi; i ∈ N (8)

This specification is convenient, because it makes explicit the fact that ui is not the

correct error term associated with the DGP, instead εi = uizi is correct. It will also

be useful in the sequel. Notice,

uizi = 0 for i /∈ κγ,

= 1− xiβ for yi = 1, i ∈ κγ,

= − xiβ for yi = 0, i ∈ κγ.

Moreover, the conditional probability function for uizi is the same as εi:

Pr(uizi = 0 | xi, i ∈ κπ) = 1,

Pr(uizi = 1− xiβ | xi, i ∈ κγ) = xiβ ,

Pr(uizi = − xiβ | xi, i ∈ κγ) = 1− xiβ,

Pr(uizi = 0 | xi, i /∈ κγ ∪ κπ) = 1.

It is evident that E(uizi | xi) = 0, so the specification in equation (8) has a zero-mean
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error, which is independent of xi. Taking the unconditional mean of equation (8):

E(yi) = π + E(zixi)β +E(uizi)

= π + γE(zixi | zi = 1)β + γE(ziui | zi = 1)
= π + γE(xi | zi = 1)β + γE(ui | zi = 1)
= π + γµxγβ (9)

where

µxγβ = E (xi | zi = 1)β
= E (xiβ | zi = 1)

=

Z 1

0

xiβf (xiβ | zi = 1 ) d (xiβ)

=
1

γ

Z 1

0

xiβf (xiβ) d (xiβ) ,

and f(xiβ | zi = 1) is the bounded conditional probability density and f (xiβ) is

the bounded marginal probability density of xiβ. Since 0 < µxγβ < 1, and E (yi )

is a weighted average of 1, µxγβ, and 0, it follows that 0 < E (yi ) < 1. The mean

function of equation (9) will be used in the sequel. Consider the OLS estimator:

bβn =
"X
i∈N

x0ixi

#−1X
i∈N

x0iyi.

Substituting equation (8):

bβn =
"X
i∈N

x0ixi

#−1X
i∈N

x0i(wi + zixiβ + uizi). (10)

The data can be partitioned into those i ∈ κγ, those i ∈ κπ and those that are

in neither subset. Taking into consideration the values of zi and wi in these three
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regimes:

bβn =
"X
i∈N

x0ixi

#−1  X
i/∈κγ∪κπ

x0i(0) +
X
i∈κγ

x0i(xiβ + ui) +
X
i∈κπ

x0i(1)


=

"X
i∈N

x0ixi

#−1 X
i∈κγ

x0ixiβ +
X
i∈κγ

x0iui +
X
i∈κπ

x0i


Taking expectations conditional on xi:

E(bβn|xi) =
"X
i∈N

x0ixi

#−1 X
i∈κγ

x0ixiβ +
X
i∈κγ

x0iE(ui | xi, i ∈ κγ) +
X
i∈κπ

x0i


=

"X
i∈N

x0ixi

#−1 X
i∈κγ

x0ixiβ +
X
i∈κγ

x0i(0) +
X
i∈κπ

x0i


E(bβn|xi) =

"X
i∈N

x0ixi

#−1X
i∈κγ

x0ixiβ +

"X
i∈N

x0ixi

#−1X
i∈κπ

x0i 6= β, (11)

which is generally biased because γ < 1. The bias will persist asymptotically. When

γ = 1, κγ = N , the first term on the RHS reduces to β, the second term on the RHS

goes to 0, and bβn is unbiased.
The inconsistency of bβn follows in a similar fashion. Letting C denote the cardi-

nality operator, define nπ = C(κπ), nγ = C(κγ) and nρ = n − nπ − nγ. Let plim

denote the probability limit operator as n→∞. Assume plim£n−1Pi∈N x0ixi
¤
= Q

and plim
h
n−1γ

P
i∈κγ x0ixi

i
= Qγ where Q and Qγ are finite, (non singular) pos-

itive definite. Assume plim
£
n−1π

P
i∈κπ x

0
i

¤
= µ0xπ, plim

£
n−1

P
i∈N x0i

¤
= µ0x and

plim
h
n−1γ

P
i∈κγ x

0
iui
i
= 0, where µ0xπ and µ

0
x are finite vectors. Assume plim[n

−1nπ] =

π and plim[nγn−1] = γ. Then it is easy to show that

plim(bβn) = Q−1 (Qγβγ + πµ0xπ) 6= β.

This probability limit seems to imply that even if γ and π were known, bβn could not
be bias-corrected. Yet, the unconditional mean of yi in equation (9) seems to imply
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that if γ and π were known, an OLS regression of (yi−π) on (γxi) might produce an

unbiased estimate. Define the OLS estimator from such a transformed regression as:

bβ∗n =
"X
i∈N

γ2x0ixi

#−1X
i∈N

γx0i (yi − π) . (12)

Theorem 4 bβ∗n is biased and inconsistent for β.
Proof. After some algebra, equation (12) implies

bβ∗n = 1

γ

"X
i∈N

x0ixi

#−1X
i∈N

x0iyi −
1

γ

"X
i∈N

x0ixi

#−1X
i∈N

x0iπ

=
1

γ
β̂n −

π

γ

"X
i∈N

x0ixi

#−1X
i∈N

x0i.

Taking expectations

E(bβ∗n|xi) = 1

γ
E(β̂n|xi)−

π

γ

"X
i∈N

x0ixi

#−1X
i∈N

x0i.

=
1

γ


"X
i∈N

x0ixi

#−1X
i∈κγ

x0ixiβ +

"X
i∈N

x0ixi

#−1X
i∈κπ

x0i


− π

γ

"X
i∈N

x0ixi

#−1X
i∈N

x0i

6= β.

Thus, knowledge of π and γ to estimate E (yi|xi) by OLS does not in general lead

to an unbiased estimator of β. Moreover it does not lead to consistent estimation by

OLS:

plim(bβ∗n) = 1

γ
plim

³
β̂n

´
− π

γ

"
plim

Ã
n−1

X
i∈N

x0ixi

!#−1
plim

Ã
n−1

X
i∈N

x0i

!
=
1

γ

£
Q−1 (Qγβγ + µ0xππ)

¤− π

γ
Q−1µ0x

= Q−1
·
Qγβ + (µ0xπ − µ0x )

π

γ

¸
6= β.
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The bias will persist asymptotically. The problem with the estimators bβn and bβ∗n
is not that γ and π are unknown but that κγ is unknown, for if we knew κγ, we could

perform OLS only on those observations therein contained.

Remark 5 Therefore, sufficient information for unbiased and consistent OLS esti-

mation is knowledge of κγ.

Also notice that if κγ = N , then:X
i∈κγ

x0ixi =
X
i∈N

x0ixi, and
X
i∈κπ

x0i = 0.

Therefore, equation (11), reduces to:

E(bβn|xi) =
"X
i∈N

x0ixi

#−1X
i∈N

x0ixiβ +

"X
i∈N

x0ixi

#−1
0,

E(bβn|xi) = β,

unbiased for κγ = N . A similar argument can be made to show the consistency of

this estimate. Of course if γ = 1, then κγ = N.

Remark 6 Therefore, without knowledge of κγ and κπ, a sufficient condition for

unbiased OLS estimation when γ < 1 is κγ = N .

κγ = N is a weaker sufficient condition than γ = 1, but probably unlikely in

reasonably large samples. For any given random sample (yi, xi); i ∈ N , the Pr[κγ =

N ] = γn, so

lim
n→∞

Pr[κγ 6= N ] = lim
n→∞

(1− γn) = 1.

Remark 7 Therefore, without knowledge of κγ and κπ, if γ < 1 and κγ = N , then

as n → ∞, κγ 6= N with probability approaching 1, and bβn is asymptotically biased
and inconsistent.
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It should be noted that as the sample size grows, once the first observation xiβ /∈
[0, 1] appears in N then κγ 6= N and finite sample unbiasedness is lost also. Oddly

enough the estimator bβn could, under the right conditions, be reliable in small samples
and unreliable in large samples. If we had knowledge of the sets κγ and κπ, then a

consistent estimate of β could be based on the sub-sample:

bβκγ =
X
i∈κγ

x0ixi

−1X
i∈κγ

x0iyi, for κγ and κπ known,

bβκγ =
X
i∈κγ

x0ixi

−1X
i∈κγ

x0i(wi + zixiβ + uizi),

bβκγ =
X
i∈κγ

x0ixi

−1X
i∈κγ

x0i(xiβ + ui),

E(bβκγ |xi) = β, for κγ known.

This is tantamount to removing the observations i /∈ κγ. Then a consistent estimate

of γ is bγ = C(κγ)/n, and a consistent estimate of π is bπ = C(κπ)/n .

3. Sequential Least Squares

Based on the problems associated with OLS on the LPM, it is clear that an al-

ternative estimation approach is warranted. One could certainly envision myriad

sophisticated estimators that would be an improvement over OLS: an MLE technique

that estimated γ and π as well as β, a non-linear search algorithm that recognizes the

constraint xiβ ∈ [0, 1], some sort of splines technique that estimates the xiβ = 0 and
xiβ = 1 break points, etc.. However, our interest is to salvage OLS not to discard it,

so we now present a simple OLS correction technique.

If somehow the observations i /∈ κγ could be eliminated sequentially, then as the

elimination sequence grew: N would decrease to some set of observations that was a
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subset of κγ, while κπ → ∅, then bβn would converge in some probabilistic sense to β.
Therefore, an empirical strategy could involve finding a bβi∈κγestimate that ensures
that the predicted dependent variable is on the unit interval. One specific estimation

strategy is to identify the empirical subsets

bκ(1)γ = {i | i ∈ N ∩ xibβn ∈ [0, 1]},bκ(1)π∪ρ = {i | i ∈ N ∩ xibβn /∈ [0, 1]},

with cardinality C(bκ(1)γ ) = n
(1)
γ ≤ n and C(bκ(1)π∪ρ) = n

(1)
π∪ρ ≤ n. Then a subsample

estimate of β is obtained as

β̃
i∈bκ(1)γ

=

X
i∈bκ(1)γ

x0ixi


−1 X

i∈bκ(1)γ

x0iyi.

Define the subset

bκ(2)γ = {i | i ∈ bκ(1)γ ∩ xiβ̃i∈bκ(1)γ
∈ [0, 1]},

bκ(2)π∪ρ = {i | i ∈ bκ(1)γ ∩ xiβ̃i∈bκ(1)γ
/∈ [0, 1]},

with cardinality C(bκ(2)γ ) = n
(2)
γ ≤ n

(1)
γ and C(bκ(2)π∪ρ ) = n

(2)
π∪ρ ≤ n

(1)
γ . Then a second

subsample estimate is

β̃
i∈bκ(2)γ

=

X
i∈bκ(2)γ

x0ixi


−1 X

i∈bκ(2)γ

x0iyi.

We can repeat this process in general:

β̃
i∈bκ(j)γ

=

X
i∈bκ(j)γ

x0ixi


−1 X

i∈bκ(j)γ

x0iyi, j = 1, ..., J

for

bκ(j)γ = {i | i ∈ bκ(j−1)γ ∩ xiβ̃i∈bκ(j−1)γ
∈ [0, 1]},

bκ(j)π∪ρ = {i | i ∈ bκ(j−1)γ ∩ xiβ̃i∈bκ(j−1)γ
/∈ [0, 1]}, j = 2, ..., J
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with cardinality C(bκ(j)γ ) = n
(j)
γ ≤ n

(j−1)
γ and C(bκ(j)π∪ρ ) = n

(j)
π∪ρ ≤ n

(j−1)
γ until conver-

gence in the sense that all the observations in the final subsample satisfy xiβ̃i∈bκ(J)γ
∈

[0, 1] . The final estimate will be

β̃
i∈bκ(J)γ

=

X
i∈bκ(J)γ

x0ixi


−1 X

i∈bκ(J)γ

x0iyi. (13)

Call this the Sequential Least Squares (SLS) estimator. The convergence of the

sequential estimators imply

n
(j)
γ

n
(j−1)
γ

→ 1 and n
(j)
π∪ρ → 0 (14)

as n→∞ and j → J . This condition must hold in order for the trimming to converge

in any meaningful way, or else the entire sample would ultimately be discarded.

Theorem 8 If prediction error xi(β̃i∈bκ(j)γ
− β) is a continuous random variable on <

and if Pr{xiβ̃i∈bκ(j)γ
∈ [0, 1]} → 1 as n → ∞ and as j → J, then the SLS estimator

β̃
i∈bκ(J)γ

is consistent for β.

Proof. See Appendix.

It is not entirely clear when the condition Pr{xiβ̃i∈bκ(j)γ
∈ [0, 1]} → 1 as n →

∞ and as j → J will hold, since the probability in question is a function of the

random variable xi, whose distribution is unknown, in general. However, Horrace

and Oaxaca (2001) show that under certain conditions normality of xi is sufficient

to ensure Pr{xiβ̃i∈bκ(j)γ
∈ [0, 1]} → 1, so the set of possible distributions of xi that

satisfies the convergence conditions is certainly not empty. In the sequel we perform

a simulation study that examines the extent to which the SLS estimator outperforms

OLS in terms of sample bias.
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Define sets based on the final estimator β̃
i∈bκ(J)γ

:

bκ∗γ = {i | xiβ̃i∈bκ(J)γ
∈ [0, 1]},

bκ∗π = {i | xiβ̃i∈bκ(J)γ
> 1},

bκ∗ρ = {i | xiβ̃i∈bκ(J)γ
< 0},

bκ∗π∪ρ = bκ∗π ∪ bκ∗ρ
= {i | xiβ̃i∈bκ(J)γ

/∈ [0, 1]}.

Notice the difference between bκ∗γ and bκ(J)γ , and between bκ∗π∪ρ and bκ(J)π∪ρ. bκ∗γ, and bκ∗π∪ρ
are based on the entire sampleN and bκ(J)γ and bκ(J)π∪ρ are based on the subsample bκ(J−1)γ .

Then insofar as β̃
i∈bκ(J)γ

is consistent for β, consistent estimates of the probabilities

γ, π, and ρ can be obtained from

γ̃ =
C(bκ∗γ)
n

π̃ =
C(bκ∗π)
n

ρ̃ = 1− π̃ − γ̃,

Note that if n(1)γ = n, then no trimming is necessary, N = bκ(J)γ = bκ∗γ and γ̃ =

1. Clearly, this estimator should only be used if the sample size is large, since

observations xiβ ∈ [0, 1] will be trimmed with positive probability. When the final

SLS estimator is used to predict yi we are assured that eyi = xiβ̃i∈bκ(J)γ
∈ [0, 1] for

i ∈ bκ∗γ, however this will not necessarily be the case for all eyi, i ∈ N . As is usually

the case, prediction of yi can be performed as follows:

eyi = 1 for xiβ̃i∈bκ(J)γ
> 1 for i ∈ N

eyi = xiβ̃i∈bκ(J)γ
for xiβ̃i∈bκ(J)γ

∈ [0, 1] for i ∈ N

eyi = 0 for xiβ̃i∈bκ(J)γ
< 0 for i ∈ N.
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We now present a brief simulation study that demonstrates that the SLS trimming

estimator β̃
i∈bκ(J)γ

is generally less biased that the OLS estimator bβn.
4. Simulation Study: SLS Versus OLS

A simulation study was conducted to assess the performance of the SLS estimator

against the OLS estimator in terms of finite sample bias. Initially, we are concerned

with understanding the nature of the OLS bias when γ < 1 and seeing if the SLS

estimator is an improvement over OLS. To assess estimator performance for different

values of γ, requires selecting γ, π and β then finding an appropriate multivariate

distribution for the xi to generate data such that Pr{xiβ ∈ [0, 1]} = γ and Pr{xiβ >

1} = π. For xi with large dimensionality this would be a monumental task, therefore

we restrict attention to the bivariate model

yi = 1 for i ∈ κπ,

= β0 + β1xi + εi for i ∈ κγ,

= 0 otherwise,

where β0, β1 and xi are scalars. We also assume that xi has a normal distribution

with mean µ and variance σ. Given these restrictions on the data generation process,

it is a relatively simple procedure to select γ, π, β0 and β1, and then to calculate µ

and σ, such that Pr{β0+ β1xi ∈ [0, 1]} = γ and Pr{β0+ β1xi > 1} = π. To generate

data in this way, notice that for β1 > 0

Pr{β0 + β1xi ∈ [0, 1]} = Pr {gi ∈ [c, c]} ,

c =
−β0 − β1µ

β1σ
,

c =
1− β0 − β1µ

β1σ
,
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where gi is a standard normal random variate. Given γ, π, β0 and β1, the necessary

µ and σ can be calculated by solving

Φ−1(1− γ − π) =
−β0 − β1µ

β1σ
,

Φ−1(1− π) =
1− β0 − β1µ

β1σ
,

where Φ−1 is the inverse cumulative distribution function of a standard normal ran-

dom variate. That is,

µ = −β0
β1
− Φ−1(1− γ − π)

β1 [Φ
−1(1− π)− Φ−1(1− γ − π)]

σ =
1

β1 [Φ
−1(1− π)− Φ−1(1− γ − π)]

As a practical matter, the sample size, n, must be fairly large to ensure that the SLS

procedure doesn’t trim the entire sample, (i.e. bκ(J)γ = ∅). Since the SLS estimator
trims realizations xiβ ∈ [0, 1] with positive probability, if there are only a few of these
observations in a small sample, then they may all be trimmed during the procedure.

Large n is not an unreasonable restriction to impose on the study, since the SLS

estimator should only be used in situations where the sample size is fairly large.

Therefore we select sample sizes of n = 500, 1000 and 2000. Simulation iterations

were arbitrarily set at 100 to calculate the empirical bias of the OLS and SLS estimates

of β0 and β1. Parameter values were arbitrarily selected as γ = 0.25 and 0.75, π =

0.10, 0.20, β0 = -0.50, 0.50, and β1 = 1.00, 2.00. Results are contained in Tables 1 -

4. In all tables the OLS estimators are bβ0 and bβ1, while the SLS estimators are β̃0
and β̃1.

There were 48 simulations runs in total, and in all but 5 cases the SLS estimators

had lower magnitude of bias. In those 5 cases where OLS was better the difference

in magnitude of bias was at the fourth decimal place. For example in Table 1, the

last row shows Bias(bβ0) = −0.0010 and Bias(β̃0) = −0.0011, so the difference in

19



magnitude of the biases is only 0.0001. In most case where SLS was superior the

difference in biases was large (especially when γ was small). For example in the

first row of Table 1, we see that Bias(bβ0) = 0.2456 and Bias(β̃0) = −0.0151. This
is not an atypical difference. The magnitude of the bias of the SLS is generally

decreasing in n, although this is not always the case. However, when the bias

does increase as n increases, the increases are small and probably due to sampling

variability and not a lack of inconsistency. For example, in Table 3 for the first three

rows, Bias(β̃1) = 0.0554, 0.0132, 0.0147 for n = 500, 1000, 2000, respectively. Some

general observations concerning the OLS estimates are: a) the OLS biases persist

as n gets large, b) the OLS biases are larger when γ is smaller (especially for bβ1, γ
seems to affect the slope parameter more then the intercept), and c) the bias of the

OLS intercept is larger in magnitude when π is larger (i.e. π tends to affect the OLS

intercept). It is evident from the simulations that the OLS bias for β1 is equal to

β1 (γ − 1) which implies plimβ̂1 = β1γ. In this case knowing γ would lead to a simple

consistent estimator of the slope parameter.1

The simulations certainly suggest that the SLS estimator generally outperforms the

OLS estimator in terms of estimation bias. Figure 2 depicts this bias reduction of

SLS over OLS. For the purposes of illustration, this figure contains a single simulation

run where β0 = 0, β1 = 1, γ = 0.75, and π = 0.10. The heavy line represents the

fitted values for SLS, the medium line are the fitted values for OLS, and the light

line is the true LPM data generating process. Clearly, the SLS fitted values reflect a

smaller bias than the OLS fitted values.
1This is a special case that follows from the assumption of a normal distribution on the x0s in

a simple regression model. Horrace and Oaxaca (2001) prove the special case and derive the more

complicated bias for the OLS estimator for the constant term β0. An alternative simulation study

was performed in which xi had a uniform distribution. The results, available upon request, show

that SLS outperforms OLS in terms of finite sample bias of the estimates.
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5. Simulation Study: SLS versus Logit and Probit
A simulation study was conducted to assess the performance of the SLS estimator

against Logit and Probit when the underlying data generation process is LPM. Since

logit and probit are commonly employed in dependent variable econometric analysis,

a comparison seemed necessary even though it is presumed that the DGP is LPM,

implying that logit and probit are misspecified models. Such a study presents several

problems, but the largest problem stems from the fact that probit and logit are non-

linear estimations techniques while SLS and the LPM are linear. Therefore, while

bias comparisons of OLS and SLS to the LPM seem natural, bias comparisons of

logit and probit to the LPM are not readily forthcoming. Specifically, for logit and

probit the estimates of the marginal effect β1 are functions of the value of xi, which

raises the question of how one should assess the bias of logit or probit on the LPM,

which has a constant slope on xiβ ∈ (0, 1). Because evaluation of the probit/logit
marginal effects at the mean of xi is so popular among empiricists, we initially sought

to evaluate the bias of the marginal effects at the mean. However, logit and probit

tended to be highly biased at the mean of xi. For example, a typical simulation run

is depicted in Figure 3. Here, β0 = 0, β1 = 1, γ = 0.75, π = 0.10, and the empirical

mean of xi = 0.508. Since β1 = 1 and β0 = 0, the x-axis in the figure is xi. It is

clear from the figure that near the mean of xi (about 0.50), probit is upward biased

relative to SLS. Therefore, bias at the mean was discarded as a means of evaluating

logit and probit on the LPM. However, it is useful to point out that the practice of

evaluating the marginal effects at the mean of xi for logit and probit, may lead to

biased results when an LPM DGP is suspected.

An alternative evaluation criterion that could be equally applied to SLS and probit

or logit is the mean squared error of the predicted probabilities for SLS and probit or

logit. That is, the simulated LPMdata implied a known probability that yi = 1, which

could be compared to the predicted probabilities of SLS, logit and probit. Predicted
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probability errors for the sample could then be squared, summed and averaged to

produce an estimate of the mean squared error of the prediction probabilities. For SLS

(and OLS which was ultimately included in the comparison), predicted probabilities

greater than 1 where converted to 1 and those less than 0 where converted to 0 before

constructing the MSE estimates.

To do this, we selected only two sample sizes of n = 500 and 1000. Simulation

iterations were again set at 100 to calculate the MSE of the predicted probabilities of

the OLS, probit, logit and SLS. Again we assumed that xi was normally distributed.

(An alternative simulation study was also performed assuming that xi followed a

uniform distribution; the results, which are not reported, were similar to the present

study.) Parameter values were again selected as γ = 0.25 and 0.75, π = 0.10, 0.20,

β0 = -0.50, 0.50, and β1 = 1.00, 2.00 (as in the simulation study of section 4).

This implied 32 simulation runs, the results of which are contained in Tables 5, 6,

7 and 8. In all cases probit and logit are superior to OLS, and SLS is superior to

probit and logit. The magnitude of the MSE for all models is generally unaffected

by the values of β0 and β1; for example the first and third rows of Table 5 are very

similar (changing β1 ceteris paribus) as are the first and fifth (changing β0 ceteris

paribus). Not surprisingly, increasing the sample size tends to decrease the MSE for

all models. This is always the case for the consistent SLS procedure (and for probit

and logit), but is not always true for the inconsistent OLS procedure. Notice that as

γ decreases from Table 5 to Table 7, the MSE of OLS tends to significantly increase

(by a magnitude of ten-fold), while the MSE of SLS generally does not. This seems

to reflect an increased OLS bias associated with smaller γ (remember OLS and SLS

are equivalent when γ = 1). Also notice that as γ decreases from Table 5 to Table 7,

the MSE of probit and logit seems to decrease. This is not surprising since logit and

probit perform better for extreme values than for median values of xiβ when the DGP

is LPM, and since smaller γ implies that a greater proportion of the observed xiβ will
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be extreme. For median values of xiβ, probit and logit are more highly misspecified,

so the larger γ of Table 5 produces more xiβ near the median values and, hence, large

MSE for probit and logit.2

6. Application
An brief empirical example is presented below that illustrates the SLS approach

and contrasts its results with OLS LPM, probit, and logit. The data are taken from

the NLSY79 and pertain to 1998. The binary event is whether or not an individual

is covered by health insurance:

hinsi = 1 if the individual is currently covered by health insurance

= 0 otherwise.
We define the index function as follows:

Ii = β0+β1blacki+β2 otheri +β3femalei +β4ntinci+β5 (ntinc)
2
i +β6empi, where

black and other are race dummy variables for blacks and other nonwhites, female is

a dummy variable for gender, ntinc is household net income ($1,000’s), and emp is a

dummy variable for current employment. The LPM specification is given by hinsi =

Ii+εi and the probit and logit specifications are described by prob(hinsi = 1) = prob

(Ii + εi ≥ 0) . We examine two variations on the SLS method. The first variation is
to use the White Heteroscedastic-Consistent Variance/Covariance matrix to produce

robust standard errors for the SLS estimates. Another variation is to employ FGLS

with weights 1/ [(ŷi) (1− ŷi)] , where ŷi is the predicted value of hinsi from the SLS

estimated equation.

The results are reported in Table 9. The SLS estimator converged on the 10th

iteration and trimmed the sample from 6,860 observations to 4,302. Perhaps the

most obvious difference between the SLS methods and the other estimators is that
2Based on simulations in which xi was drawn from a uniform distribution, SLS outperformed

OLS, logit, and probit in terms of mean squared error of the predicted probabilities. These results

are available upon request.
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the variable black is estimated by the SLS methods to have a positive and statistically

significant effect on the probability of having health insurance, whereas the estimated

effects of this variable are not statistically significant in the OLS, Probit, and Logit

models. The coefficients on the remaining variables retain their signs and statistical

significance across the different models. The robust standard errors for the SLS model

are very nearly the same as the SLS estimated standard errors. In the case of the

SLS/FGLS model, the estimated coefficients are about the same as the SLS estimates,

though the estimated standard errors are uniformly smaller than the SLS standard

errors and the robust standard errors. As a check we confirmed that the SLS/FGLS

model yielded probability predictions that remained bounded in the unit interval.

In Table 10 we report the sample means for the full sample and the trimmed

sample. It is clear from a comparison of the two sets of means that violations of the

unit interval boundary conditions for the predicted probabilities obtained from OLS

estimation of the LPM model are associated with being white, female, higher net

family income, and currently employed.

7. Concluding Remarks
Although it is theoretically possible for OLS estimation of the LPM to yield un-

biased estimators conditional on the sample, this generally would require fortuitous

circumstances. Furthermore, consistency of OLS is shown to be an exceedingly rare

occurrence as one would have to accept extraordinary restrictions on the joint distri-

bution of the regressors. Therefore, OLS is frequently a biased estimator and almost

always an inconsistent estimator of the LPM. Despite estimation difficulties, the LPM

is still frequently used in modeling probabilities. This is partly due to theoretical ar-

guments that justify the linear specification and partly due to the ease of using OLS

to estimate the model.

In this paper an alternative estimation strategy has been introduced (SLS) that is
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fairly easy to implement and offers the promise of significantly reducing the bias from

OLS. The conditions under which SLS is consistent are rigorously derived. Monte

Carlo simulations with a two parameter LPM support our conjectures about the bias

reducing properties of SLS. These simulations also point to the persistence of OLS

bias as the sample size increases, which is to be expected when OLS is not consistent.

Monte Carlo simulations also suggest that SLS outperforms logit and probit when

the DGP is LPM.

Standard errors have not yet been derived for SLS that incorporate the statistical

effect of the sequential trimming procedure. It is clear that SLS is not efficient. The

absence of rogue predictions of yi outside of the unit interval at the outset implies

heteroscedastic errors. Conditioning on the final trimmed sample bκ(J)γ , one could use

a feasible GLS estimator that weights the observations by 1/
p
(ỹi) (1− ỹi) , where

ỹi = xiβ̃i∈bκ(J)γ
∈ [0, 1]. The estimated standard errors would be obtained in the usual

way.

It would be interesting to explore alternative trimming rules for the SLS. For ex-

ample Seung Ahn (personal communication) has suggested that trimming predicted

probabilities outside the interval [−ω, 1 + ω] for ω > 0 may result in a sequen-

tial estimator that has lower MSE for parameter estimates. This is the classical

bias/efficiency trade-off. Since SLS with ω = 0, trims ”good” observations with

positive probability. SLS with ω > 0, may result in a larger final sample size n(J)γ

(lower variance) at the cost of higher bias of the parameter estimates. Of course this

remains to be seen.

Other generalizations of the SLS approach are suggested by complications arising

from the use of probit/logit models in certain contexts. One such occasion is the use

of probit/logit models with panel data. Fixed effects and random effects estimation is

much more involved in a logit model compared with a linear model. Likewise random

effects estimation with a probit model is not as simple as with a linear model, and
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a fixed effects model cannot be consistently estimated with a probit model. Another

example is simultaneous equations/instrumental variable methods. The presence of

dummy endogenous regressors is problematic if the DGP is assumed to be probit or

logit. Generalization of the SLS approach to these cases has the potential to provide

researchers with attractive alternative modeling and estimation strategies.
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Table 1. γ = 0.75, π = 0.10

β0 β1 n Bias(bβ0) Bias(β̃0) Bias(bβ1) Bias(β̃1)

-0.50 1.00 500 0.2456 -0.0151 -0.2470 0.0139

1000 0.2486 -0.0089 -0.2470 0.0112

2000 0.2489 -0.0082 -0.2501 0.0072

-0.50 2.00 500 0.2523 -0.0072 -0.5022 0.0204

1000 0.2485 -0.0085 -0.4983 0.0158

2000 0.2499 -0.0041 -0.4997 0.0082

0.50 1.00 500 0.0000 -0.0005 -0.2476 0.0072

1000 0.0003 0.0014 -0.2516 0.0032

2000 0.0003 0.0001 -0.2504 -0.0001

0.50 2.00 500 -0.0018 -0.0024 -0.4956 0.0257

1000 0.0009 0.0010 -0.4969 0.0079

2000 -0.0010 -0.0011 -0.5090 -0.0124
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Table 2. γ = 0.75, π = 0.20

β0 β1 n Bias(bβ0) Bias(β̃0) Bias(bβ1) Bias(β̃1)

-0.50 1.00 500 0.2576 -0110 -0.2487 0.0173

1000 0.2502 -0121 -0.2480 0.0096

2000 0.2522 -0018 -0.2497 -0.0002

-0.50 2.00 500 0.2626 -0066 -0.5103 0.0208

1000 0.2523 -0014 -0.4981 0.0015

2000 0.2516 -0036 -0.4963 0.0068

0.50 1.00 500 0.0030 -0012 -0.2443 0.0160

1000 0.0041 -0001 -0.2487 0.0092

2000 0.0038 -0002 -0.2473 0.0110

0.50 2.00 500 0.0044 0.0003 -0.4947 0.0356

1000 0.0022 -0.0029 -0.4901 0.0237

2000 0.0063 0.0023 -0.5042 -0.0048
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Table 3. γ = 0.25, π = 0.10

β0 β1 n Bias(bβ0) Bias(β̃0) Bias(bβ1) Bias(β̃1)

-0.50 1.00 500 0.6916 -0.0533 -0.7498 0.0554

1000 0.6920 -0.0140 -0.7498 0.0132

2000 0.6934 -0.0122 -0.7498 0.0147

-0.50 2.00 500 0.6930 -0.0456 -1.4993 0.0889

1000 0.6930 -0.0095 -1.5006 0.0192

2000 0.6937 -0.0058 -1.4990 0.0184

0.50 1.00 500 -0.0610 0.0093 -0.7515 0.0391

1000 -0.0574 0.0014 -0.7501 0.0100

2000 -0.0579 0.0014 -0.7502 0.0108

0.50 2.00 500 -0.0535 0.0071 -1.4970 0.0838

1000 -0.0569 0.0022 -1.4985 0.0339

2000 -0.0591 0.0023 -1.5014 0.0096
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Table 4. γ = 0.25, π = 0.20

β0 β1 n Bias(bβ0) Bias(β̃0) Bias(bβ1) Bias(β̃1)

-0.50 1.00 500 0.7371 -0.0301 -0.7488 0.0327

1000 0.7354 -0.0116 -0.7493 0.0084

2000 0.7382 -0.0155 -0.7498 0.0185

-0.50 2.00 500 0.7344 -0.0430 -1.5009 0.0775

1000 0.7368 -0.0221 -1.5000 0.0409

2000 0.7362 -0.0035 -1.4985 0.0071

0.50 1.00 500 -0.0135 -0.0032 -0.7491 0.0270

1000 -0.0119 0.0050 -0.7497 0.0421

2000 -0.0131 -0.0002 -0.7501 0.0146

0.50 2.00 500 -0.0121 0.0035 -1.4988 0.0861

1000 -0.0111 0.0024 -1.5001 0.0343

2000 -0.0135 0.0007 -1.4989 0.0391
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Table 5. γ = 0.75, π = 0.10

β0 β1 n MSE(byOLS) MSE(byprobit) MSE(byLogit) MSE(bySLS)
-0.50 1.00 500 0.00407 0.00150 0.00193 0.00061

1000 0.00418 0.00131 0.00172 0.00034

-0.50 2.00 500 0.00432 0.00137 0.00176 0.00053

1000 0.00410 0.00118 0.00158 0.00024

0.50 1.00 500 0.00419 0.00172 0.00217 0.00085

1000 0.00424 0.00121 0.00161 0.00030

0.50 2.00 500 0.00427 0.00153 0.00195 0.00063

1000 0.00417 0.00128 0.00169 0.00033

Table 6. γ = 0.75, π = 0.20

β0 β1 n MSE(byOLS) MSE(byprobit) MSE(byLogit) MSE(bySLS)
-0.50 1.00 500 0.00417 0.00152 0.00194 0.00063

1000 0.00406 0.00124 0.00165 0.00030

-0.50 2.00 500 0.00419 0.00152 0.00196 0.00063

1000 0.00408 0.00131 0.00172 0.00035

0.50 1.00 500 0.00417 0.00141 0.00182 0.00051

1000 0.00397 0.00130 0.00171 0.00032

0.50 2.00 500 0.00417 0.00156 0.00199 0.00060

1000 0.00419 0.00118 0.00157 0.00029
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Table 7. γ = 0.25, π = 0.10

β0 β1 n MSE(byOLS) MSE(byprobit) MSE(byLogit) MSE(bySLS)
-0.50 1.00 500 0.03653 0.00095 0.00124 0.00061

1000 0.03623 0.00068 0.00095 0.00026

-0.50 2.00 500 0.03637 0.00085 0.00113 0.00049

1000 0.03630 0.00074 0.00103 0.00030

0.50 1.00 500 0.03636 0.00097 0.00126 0.00069

1000 0.03623 0.00068 0.00095 0.00026

0.50 2.00 500 0.03628 0.00081 0.00108 0.00046

1000 0.03614 0.00076 0.00105 0.00030

Table 8. γ = 0.25, π = 0.20

β0 β1 n MSE(byOLS) MSE(byprobit) MSE(byLogt) MSE(bySLS)
-0.50 1.00 500 0.04090 0.00090 0.00118 0.00057

1000 0.04080 0.00072 0.00099 0.00028

-0.50 2.00 500 0.04122 0.00092 0.00120 0.00049

1000 0.04073 0.00076 0.00103 0.00031

0.50 1.00 500 0.04076 0.00094 0.00123 0.00059

1000 0.04098 0.00068 0.00095 0.00026

0.50 2.00 500 0.04117 0.00098 0.00128 0.00067

1000 0.04108 0.00069 0.00097 0.00030
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Table 9. Application

OLS SLS SLS/FGLS Probit Logit

Variable Coeff. Coeff. Coeff. Coeff. Coeff.

constant 0.4671 0.3127 0.3177 -0.4002 -0.8335

(s.e.) (0.0145) (0.0204, 0.0237) (0.0215) (0.0615) (0.1072)

black -0.0025 0.0243 0.0146 -0.0091 0.0215

(s.e.) (0.0097) (0.0133, 0.0138) (0.0074) (0.0436) (0.0784)

other -0.0444 -0.0493 -0.0646 -0.1805 -0.2937

(s.e.) (0.0181) (0.0239, 0.0253) (0.0224) (0.0792) (0.1406)

female 0.0636 0.0946 0.1076 0.2738 0.4833

(s.e.) (0.0085) (0.0122, 0.0123) (0.0075) (0.0398) (0.0721)

ntinc 0.0057 0.0111 0.0102 0.0255 0.0487

(s.e.) (0.0002) (0.0005, 0.0005) (0.0004) (0.0011) (0.0021)

ntinc2 -1.72E-05 -3.32E-05 -3.05E-05 -7.55E-05 -1.44E-04

(s.e.) (8.61E-07) (1.59E-06, 1.61E-06) (1.24E-06) (4.24E-06) (8.23E-06)

emp 0.1367 0.1427 0.1644 0.4816 0.7968

(s.e.) (0.0113) (0.0150, 0.0162) (0.0118) (0.0484) (0.0855)

Obs. 6,860 4,302 4,302 6,860 6,860

R2 0.136 0.152 0.180 0.216 0.222

s.e. = standard error. For SLS, second standard error is "robust standard error".

Probit and logit marginal effects evaluated at the sample mean of each variable.

For probit and logit reported R2 is pseudo-R2.
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Table 10. Sample Means

Variable Full Sample Trimmed Sample % Change

hins 0.8329 0.7678 -7.82

black 0.2774 0.3173 14.38

other 0.0583 0.0686 17.67

female 0.5135 0.4633 -9.78

ntinc 54.8350 35.1407 -35.92

ntinc2 5,266.0 2,942.2 -44.13

emp 0.8245 0.7915 -4.00

Observations 6,860 4,302 -37.29
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APPENDIX 1

Proof of Theorem 8:

Let eyi = xiβ̃i∈bκ(j)γ
.

Since yi = xiβ + εi, eyi = yi + xi(β̃i∈bκ(j)γ
− β)− εi,

so the predicted yi is a function of the true yi and a prediction error. We would

like to investigate how the magnitude and direction of the prediction error affects the

trimming process and vice versa. Therefore, consider the following cases

Case 1. Suppose some xiβ > 1. This implies yi = 1 and εi = 0, therefore

eyi = 1 + xi(β̃i∈bκ(j)γ − β).

That is the predicted value will equal 1 plus the prediction error and the xiβ > 1

will be trimmed if the prediction error is such that:

xi(β̃i∈bκ(j)γ
− β) > 0, or

xi(β̃i∈bκ(j)γ
− β) < −1.

Case 2. Suppose xiβ < 0. This implies yi = 0 and εi = 0, therefore

eyi = xi(β̃i∈bκ(j)γ − β),

and xiβ < 0 will be trimmed if either

xi(β̃i∈bκ(j)γ
− β) > 1, or

xi(β̃i∈bκ(j)γ
− β) < 0.
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Case 3. Suppose xiβ ∈ [0, 1]. This implies yi = xiβ, therefore

eyi = xiβ + xi(β̃i∈bκ(j)γ
− β),

and xiβ ∈ [0, 1] will be trimmed if either

xi(β̃i∈bκ(j)γ
− β) > 1− xiβ, or

xi(β̃i∈bκ(j)γ
− β) < −xiβ.

These cases imply the following relationship between the size of the prediction error

and the trimming of different classes of observations xiβ:

If xi(β̃i∈bκ(j)γ
− β) < −1, trim xiβ < 0 or xiβ ∈ [0, 1] or xiβ > 1.

If xi(β̃i∈bκ(j)γ
− β) ∈ [−1,−xiβ], trim xiβ < 0 or xiβ ∈ [0, 1].

If xi(β̃i∈bκ(j)γ
− β) ∈ [−xiβ, 0], trim xiβ < 0 only.

If xi(β̃i∈bκ(j)γ
− β) ∈ [0, 1− xiβ], trim xiβ > 1 only.

If xi(β̃i∈bκ(j)γ
− β) ∈ [1− xiβ, 1], trim xiβ ∈ [0, 1] or xiβ > 1.

If xi(β̃i∈bκ(j)γ
− β) > 1, trim xiβ < 0 or xiβ ∈ [0, 1] or xiβ > 1.

Notice that when the prediction error is small in magnitude (close to zero) then with

probability zero an observation xiβ ∈ [0, 1] will be trimmed. When the prediction er-
ror is large then with positive probability an observation xiβ ∈ [0, 1] will be trimmed.
Notice that for all values of the prediction error some xiβ /∈ [0, 1] will be trimmed
with positive probability. Define the following probabilities (all conditional on the

subsample i ∈ bκ(j)γ ):
Pr{Trim xiβ > 1 | xi(β̃i∈bκ(j)γ

− β) < −1} = bπj1
Pr{Trim xiβ ∈ [0, 1] | xi(β̃i∈bκ(j)γ

− β) < −1} = bγj1
Pr{Trim xiβ < 0 | xi(β̃i∈bκ(j)γ

− β) < −1} = bρj1
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Pr{Trim xiβ > 1 | xi(β̃i∈bκ(j)γ − β) ∈ [−1,−xiβ]} = bπj2 = 0
Pr{Trim xiβ ∈ [0, 1] | xi(β̃i∈bκ(j)γ

− β) ∈ [−1,−xiβ]} = bγj2
Pr{Trim xiβ < 0 | xi(β̃i∈bκ(j)γ − β) ∈ [−1,−xiβ]} = bρj2
Pr{Trim xiβ > 1 | xi(β̃i∈bκ(j)γ

− β) ∈ [−xiβ, 0]} = bπj3 = 0
Pr{Trim xiβ ∈ [0, 1] | xi(β̃i∈bκ(j)γ − β) ∈ [−xiβ, 0]} = bγj3 = 0
Pr{Trim xiβ < 0 | xi(β̃i∈bκ(j)γ

− β) ∈ [−xiβ, 0]}] = bρj3 = 1
Pr{Trim xiβ > 1 | xi(β̃i∈bκ(j)γ

− β) ∈ [0, 1− xiβ]} = bπj4 = 1
Pr{Trim xiβ ∈ [0, 1] | xi(β̃i∈bκ(j)γ − β) ∈ [0, 1− xiβ]} = bγj4 = 0
Pr{Trim xiβ < 0 | xi(β̃i∈bκ(j)γ

− β) ∈ [0, 1− xiβ]} = bρj4 = 0
Pr{Trim xiβ > 1 | xi(β̃i∈bκ(j)γ

− β) ∈ [1− xiβ, 1]} = bπj5
Pr{Trim xiβ ∈ [0, 1] | xi(β̃i∈bκ(j)γ

− β) ∈ [1− xiβ, 1]} = bγj5
Pr{Trim xiβ < 0 | xi(β̃i∈bκ(j)γ

− β) ∈ [1− xiβ, 1]} = bρj5 = 0
Pr{Trim xiβ > 1 | xi(β̃i∈bκ(j)γ

− β) > 1} = bπj6
Pr{Trim xiβ ∈ [0, 1] | xi(β̃i∈bκ(j)γ − β) > 1} = bγj6
Pr{Trim xiβ < 0 | xi(β̃i∈bκ(j)γ

− β) > 1} = bρj6
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Also, define conditional on the subsample i ∈ bκ(j)γ
Pr{xi(β̃i∈bκ(j)γ

− β) < −1} = δj1

Pr{xi(β̃i∈bκ(j)γ
− β)} ∈ [−1,−xiβ]} = δj2

Pr{xi(β̃i∈bκ(j)γ
− β)} ∈ [−xiβ, 0]} = δj3

Pr{xi(β̃i∈bκ(j)γ
− β)} ∈ [0, 1− xiβ]} = δj4

Pr{xi(β̃i∈bκ(j)γ
− β) ∈ [1− xiβ, 1]} = δj5

Pr{xi(β̃i∈bκ(j)γ
− β) > 1} = δj6.

Then conditional on the subsample i ∈ bκ(j)γ :
Pr{Trim xiβ ∈ [0, 1]} = bγj1δj1 + bγj2δj2 + bγj5δj5 + bγj6δj6
Pr{Trim xiβ /∈ [0, 1]} = bρj1δj1 + bρj2δj2 + δj3 + bρj6δj6 + bπj1δj1 + δj4 + bπj5δj5 + bπj6δj6
but bρjt = 1− bγjt − bπjt, t = 1, 2, ...6. Hence:
Pr{Trim xiβ ∈ [0, 1]} = bγj1δj1 + bγj2δj2 + bγj5δj5 + bγj6δj6
Pr{Trim xiβ /∈ [0, 1]} = (1− bγj1)δj1 + (1− bγj2 − bπj2)δj2 + δj3 + δj4 + bπj5δj5 + (1− bγj6)δj6
If δj3+δj4 → 1, as n→∞, j → J then Pr{Trim xiβ /∈ [0, 1]}→ 1, implying Pr{Trim
xiβ ∈ [0, 1]}→ 0. That is , the probability of making a trimming mistake approaches

zero. But

δj3 + δj4 = Pr{xi(β̃i∈bκ(j)γ
− β) ∈ [−xiβ, 0] or [0, 1− xiβ]}

= Pr{xi(β̃i∈bκ(j)γ
− β) ∈ [−xiβ, 1− xiβ]}

= Pr{xiβ̃i∈bκ(j)γ
∈ [0, 1]}

Therefore, a sufficient condition for convergence is

Pr{xiβ̃i∈bκ(j)γ ∈ [0, 1]}→ 1.
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Insofar as n
(j)
γ

n
(j−1)
γ

is an estimate for Pr{xiβ̃i∈bκ(j)γ ∈ [0, 1]} the requirement that Pr{xiβ̃i∈bκ(j)γ ∈
[0, 1]}→ 1 should ensure convergence n

(j)
γ

n
(j−1)
γ

→ 1 in the sample, but this is not guaran-

teed. If Pr{xiβ̃i∈bκ(j)γ ∈ [0, 1]}→ 1 then Pr{Trim xiβ ∈ [0, 1]}→ 0. This is equivalent

to saying that

if Pr{xiβ̃i∈bκ(j)γ
∈ [0, 1]}→ 1, then Pr{xiβ ∈ [0, 1] ∀i ∈ bκ(J)γ }→ 1

in the limit as n → ∞, j → J . Therefore, in the probability limit bκ(j)γ will consist

only of xiβ ∈ [0, 1]. This is not to say that bκ(j)γ →
p
κγ. Indeed,

bκ(j)γ →
p
Λn = {i = 1, 2, ... | xiβ ∈ [0, 1] ∀i},

Λn ⊆ κγ. Then it is easy to show that

β̃
i∈bκ(J)γ

→
p
β̃i∈Λn →p β.
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Figure 1.  Comparison of OLS and LPM Errors. 
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Figure 2. Comparison of SLS and OLS on the LPM 

 
 

 
 

 
 

 
Figure 3.  Comparison of SLS and Probit on the LPM. 
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