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ABSTRACT

This paper extends and generalizes the BDS test presented by Brock, Dechert, Scheinkman, and
LeBaron (1996). In doing so it aims to remove the limitation of having to arbitrarily select a
proximity parameter by integrating across the correlation integral. The Monte Carlo simulation is
used to tabulate critical values of the alternative statistic. Previously published empirical studies
are replicated as well as power tests executed in order to evaluate the relative performance of the
suggested alternative to the BDS test. The results are favorable for the suggested alternative.

1. Introduction

Applications of deterministic nonlinear dynamics and chaos theory to the analysis of stochastic

economic time series are common in contemporary macroeconomics and finance. The pioneering

volume on the complexity of the economy, edited by Anderson, Arrow and Pines (1988), includes

a paper by Brock (1988) that is closely related to this topic.
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A non-parametric method of testing for nonlinear patterns in time series, devised by Brock,

Dechert and Scheinkman (1987) and developed in Brock, Dechert, Scheinkman and LeBaron

(1996) is known as the BDS test. The null hypothesis is that data in a time series is independently

and identically distributed (iid). The test is unique in its ability to detect nonlinearities independent

of linear dependencies in the data.

This paper suggests an alternative test that aims to offer some improvement over the BDS test.

Both methods are based on the theoretical concept of the correlation integral described by

Grassberger and Procaccia (1983). In order to conduct the BDS test, certain parameters must be

chosen arbitrarily, ex ante, with limited guidance from statistical theory. It is, therefore, likely that

inappropriate values will be chosen. The proposed alternative aims to remove the arbitrary

selection of the proximity parameter ε through integrating across correlation integral.

The paper continues with Section 2 that provides a brief theoretical background. Section 3

describes the new test and further generates critical values using Monte Carlo technique. Section 4

presents power tests and puts forth an empirical comparison of the alternative test statistic with the

BDS test by replicating three previously published studies. Section 5 briefly concludes.

2. Theoretical Background

Chaotic systems of low dimensionality can generate seemingly random numbers that may give an

impression of white noise, thereby hiding their true nature. Under presumed randomness, a

nonlinear pattern can hide without being detected. Exchange rates, stock market returns and other

macroeconomic variables of generally high frequency may originate from low dimensional-chaos.

Detection of nonlinear hidden patterns in such time series provides important information about

their behavior and improves forecasting ability over short time periods.

The analysis of chaotic systems often starts with computing a correlation dimension. This is

because of easy computation and the availability of sampling theory. The aforementioned BDS test

is based on such a technique and was designed to detect hidden patterns in stochastic time series.

This test is a non-parametric test of the null hypothesis that the data are independently and

identically distributed (iid) against an unspecified alternative. The procedure has power against

both deterministic and stochastic systems. The ability of this test to deal with stochastic time series

makes its application in modern macroeconomics and financial economics very appealing.

The test rests upon the concept of the correlation integral, developed by Grassberger and

Procaccia (1983), to distinguish between chaotic deterministic systems and stochastic systems. The

definition of this integral is simple: Let }{ tx be a scalar time series generated randomly according

to a density function f. Form m-dimensional vectors, called m-histories, ),,,( 11 −++= mttt
m
t xxxx � .



The correlation integral at embedding dimension m is computed as
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Thus, the correlation integral measures the fraction of pairs that lie within the tolerance distance ε

for the particular embedding dimension m.

The BDS statistic, for the time series of length T is then defined as
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where T is the sample size, ε is an arbitrarily chosen proximity parameter, and )(, εσ Tm is the

standard sample deviation of the statistic’s numerator that varies with dimension m.1 By using pairs

of m-histories that too often cluster together within a specific distance ε, the BDS test is able to

reveal hidden patterns that should not occur in truly randomly distributed data. While the BDS

statistic is easy to compute, it suffers from an obvious drawback—the values of two parameters, m

and ε must be determined ex ante.2

Heretofore, the BDS statistic, when used for testing, has often been evaluated for only few values

of the proximity parameter.3 This was brought about, in part, by the Monte Carlo studies of Hsieh and

LeBaron (1988) who tested the asymptotic normality of the statistic for only three values of the

parameter, and tabulated the corresponding critical values. It is worthwhile noting that originally an

important reason to develop the BDS-test was that point estimates of the correlation dimension

were very unstable across ε-values. The alternative test suggests to consider an OLS-estimate of

the correlation dimension over a range of ε-values, and is thus closer in spirit to the original

correlation dimension than the BDS-test.4

This paper proposes an alternative testing method that eliminates the arbitrariness in the

choice of the proximity parameter, leaving unresolved only the question regarding the choice of

embedding dimension.

                                                          
1 Even though in econometric literature sample statistics are traditionally marked by Greek letters with
“hats,” or by upper case Latin letters, we preferred here to adhere to the established notation introduced by
Brock, Dechert, Scheinkman, and LeBaron (1996).
2 Limited guidance can be found for example in Dechert (1994), Brock, Dechert, Scheinkman and LeBaron
(1996), and de Lima (1992).
3 For several recent applications see Hsieh (1993), Olmeda and Perez (1995), Cecen and Erkal (1996),
Kočenda (1996), Serletis and Gogas (1997), and Chwee (1998) among others . For other sources see section
4 of the paper.
4 This conscious description was brought up by one of the referees.



3. An Alternative Test

The alternative test is based on the correlation integral described by equations (1) and (2). It is,

however, constructed in a manner that radically differs from the BDS statistic (3). It uses a number

of tolerance distances chosen from a specific range for each particular embedding dimension.

FIG. I

Trajectories of the plotted ln(Cm(ε)) against ln(ε) at various embedding dimensions m
(A) Unconstrained and (B) Constrained Case
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The log of the correlation integral, ))(ln( εmC , is plotted against the log of the proximity

parameter, )ln(ε , for a particular embedding dimension m. Because numerous tolerance distances

ε are used, such a plot yields a map of trajectories as illustrated in Figure IA, where pure white



noise was used as input data to form such trajectories. These trajectories are downward sloping and

become steeper as dimension m becomes larger. At higher levels of m, the absence of pairs lying

within the tolerance distance results in increased variance, and the far sections of the trajectories

become highly erratic. If a larger number of matched pairs had been included, the variance would

asymptotically decrease and the erratic portion of the trajectories would straighten. In order to

preserve the sections with a constant slope, value of correlation integral Cm(ε ) is constrained so

that it maximizes the power of the test, or implicitly, minimizes error of the second kind. The map

of trajectories then looks like Figure IB.5

To summarize, an alternative test of the iid hypothesis is developed by calculating the slope of

the log of the correlation integral versus the log of the proximity parameter over a broad range of

values of the proximity parameter. The slope coefficients, mβ , can be estimated as
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where )ln(ε  is the log of proximity parameter (tolerance distance), ))(ln( εmC is the correlation

integral value, m is the embedding dimension, and the variables with a bar denote the mean of their

counterparts without a bar.6 Since a range of different tolerance distances ε is used the slope

coefficients mβ  do not depend on an arbitrary choice of ε. The same is true for the choice of

dimension m. Again, a range of dimensions m is used which gives enough variety to capture a more

complex dimensional structure without eliminating unexplored opportunities.

One theoretical feature of the slope coefficients mβ  is that under the null hypothesis that the

data are iid, these slopes should equal the respective embedding dimension m at which the statistic is

calculated (i.e. mm =β ).7 However, slope coefficient estimates mβ  are smaller than respective

embedding dimension m, i.e. mm ≤β . To show this we assumed in (1) that under the null

                                                          
5 The plot of slopes serves only for a purpose of illustration. Such a representation was used in a conditional
variance analysis of exchange rates in Kočenda (1996). We agree with one of the referees that the idea of
measuring this slope is shown in the article by Brock (1986) where it is stated that “Natural scientists
construct Grassberger-Procaccia dimension plots of lnCm(ε)

 
against ln(ε) and attempt to measure the slopes

mα�  of these G-P plots for each embedding dimension m.” This idea also occurs in Brock (1988) which is
cited in the first section of the paper. However, to our knowledge no one has ever used the estimated
coefficients to base a statistical test on them.
6 As mβ is, in fact, an OLS estimate of the slope coefficient, by econometric tradition it should be labeled as

mβ̂ . For the sake of notational simplicity, we decided to omit the hat.
7 See Hsieh (1991).



hypothesis the series xt is randomly generated according to density function f . Then for small ε
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By the virtue of equation (1) for sufficiently small ε it holds that
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By Jensen’s inequality

( ) ( )( ))(ln))(ln( ,, εε TmTm CECE ≤ . (9)

Combining previous results, namely (7), (8), and (9), it follows that for large T and small ε

( ) ( )( ) ( ) )ln()ln(ln)(ln))(ln( ,, εεεε mkmxxPCECE stTmTm +≅<−≅≤ .8 (10)

As in the regression

( ) eC Tm ++= )ln()(ln , εβαε , (11)

the left hand variable has a negative bias from

)ln()ln( εmkm + . (12)

Therefore, the smaller ε, the smaller the bias, so that the estimated coefficient satisfies

[ ] .mE ≤β (13)

This completes the explanation of why the slope coefficient estimates mβ  are smaller than the

respective embedding dimension m.

                                                          
8 Equality holds in linear cases.



If the data are identically and independently distributed, then the slope coefficients mβ  must

stay within certain confidence intervals. Therefore, in order to derive the statistical properties of this

test, a Monte Carlo study with 10,000 replications of the distribution of these slopes under the null

hypothesis is performed.9 In order to obtain the “whitest” white noise observations, a compound

random number generator was employed. It is based on the idea of Collings (1987) and

constructed from 17 generators described by Fishman and Moore (1982). This method was chosen

for two reasons. First, a compound random number generator effectively eliminates repetitiveness

in the data caused by the limitations of computer hardware. Secondly, other methods such as

obtaining hypothetically white noise residuals by estimating a generating process (i.e. AR, ARCH,

GARCH, etc.) may possess some unaccounted for structural form which would bias the critical

values in a Monte Carlo simulation.10

The simulations generated groups of iid samples containing 500, 1000, and 2500 observations

distributed normally with a zero mean and unit variance. Each sample was exposed to the

computational procedure of the correlation integral allowing for nine embedding dimensions m(2-

10) and 41 tolerance distances ε ranging over the interval σσ 0.1,25.0  in equal increments. Then,

slope coefficient estimates of mβ  were calculated according to equation (4).

To obtain the most accurate slope coefficient estimates of mβ  of the constant slope portions

of the trajectories, a cut-off point was set to eliminate the erratic portion of the trajectories at the

highest embedding dimensions, m(7-10).11 The cut-off point represents the number of matches that

maximizes the power of the test or, implicitly, minimizes error of the second kind. By simulation it

was found that such a number lies in the interval between 40 to 50. To be on the safe side, the

value of the correlation integral was constrained to be 50.12 Such a cut-off point does not affect the

analysis for lower embedding dimensions m, but considerably reduces the increasing variance as

embedding dimension m grows larger and tolerance distance ε becomes smaller.

                                                          
9 Monte Carlo simulations are used instead of offering a distribution theory because the test is non-parametric.
10 The issues of how the asymptotic distribution of the test statistics might be affected by the estimation
process is discussed by de Lima (1998).
11 The main problem is that as m increases, fewer and fewer non-overlapping m-histories will be available.
This means that for samples of moderate size only a low-dimensional chaos will be characterized. Deviation
of critical values is thus greater for small data size. This is similar also in case of the BDS.
12 The “cut-off” value for Cm(ε) must be chosen before slope coefficient estimates are computed. Cm(ε) = 50
resulted from simulations that were compared with various trajectories (see Figure I) resulting from the
analysis conducted on different time series.



Finally, quantiles for the slope coefficient estimates mβ  at different dimensional levels were

tabulated.13 Table I presents the quantiles to allow a hypothesis testing at levels of 1, 2, 5, and 10

percents for a time series of 500 observations. Tables II and III present the quantiles for a time

series of the length 1000 and 2500 observations, respectively. Let Lα and Uα be lower and upper

bounds of the (100 - α) percentage confidence interval. If )()( αα UxLx >∨< , then the null

hypothesis of iid can be rejected at the α percent confidence level.

TABLE I

Quantiles of the Slope Coefficients βm
for a Sample Size of 500 Observations

Quantile ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 ββββ8 ββββ9 ββββ10

0.5% 1.833 2.721 3.552 4.262 4.872 5.381 5.755 5.810 3.643
1.0% 1.839 2.731 3.570 4.293 4.934 5.510 5.881 6.020 4.561
2.5% 1.848 2.751 3.603 4.341 5.020 5.614 6.055 6.343 5.493
5.0% 1.858 2.768 3.632 4.395 5.096 5.719 6.224 6.573 6.163

95.0% 1.934 2.928 3.955 4.907 5.876 6.915 8.007 9.418 11.120
97.5% 1.940 2.944 3.983 4.954 5.955 7.043 8.215 9.903 12.009
99.0% 1.946 2.958 4.015 5.010 6.042 7.179 8.514 10.465 13.131
99.5% 1.950 2.974 4.035 5.056 6.129 7.296 8.750 10.990 14.238

“m” denotes an embedding dimension. Based on 10,000 replications.

TABLE II

Quantiles of the Slope Coefficients βm
for a Sample Size of 1,000 Observations

Quantile ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 ββββ8 ββββ9 ββββ10

0.5% 1.859 2.773 3.671 4.465 5.212 5.801 6.348 6.670 6.461
1.0% 1.865 2.787 3.687 4.481 5.247 5.844 6.444 6.779 6.908
2.5% 1.874 2.802 3.702 4.533 5.295 5.958 6.592 6.998 7.266
5.0% 1.882 2.815 3.720 4.567 5.345 6.051 6.686 7.230 7.547

95.0% 1.935 2.914 3.931 4.927 5.885 6.868 7.883 8.986 10.335
97.5% 1.940 2.923 3.959 4.970 5.951 6.950 8.027 9.162 10.761
99.0% 1.945 2.938 3.981 5.005 6.027 7.034 8.313 9.465 11.363
99.5% 1.947 2.947 4.017 5.045 6.076 7.108 8.448 9.642 11.979

“m” denotes an embedding dimension. Based on 10,000 replications.

                                                          
13 The “slope test” does not simultaneously test that (theoretically) β1 = 1 and β2 = 2 ... and βm = m and so it
too has a problem when some of the slopes are in the right range, and some are not.



TABLE III

Quantiles of the Slope Coefficients βm
for a Sample Size of 2,500 Observations

Quantile ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 ββββ8 ββββ9 ββββ10

0.5% 0.980 2.783 3.707 4.597 5.425 6.177 6.883 7.568 8.122
1.0% 1.103 2.789 3.718 4.616 5.447 6.211 6.927 7.635 8.199
2.5% 1.278 2.802 3.731 4.642 5.479 6.263 7.015 7.718 8.322
5.0% 1.499 2.811 3.743 4.658 5.518 6.298 7.067 7.777 8.433

95.0% 1.920 2.884 3.855 4.858 5.822 6.757 7.688 8.618 9.572
97.5% 1.923 2.888 3.864 4.886 5.857 6.795 7.743 8.702 9.692
99.0% 1.927 2.894 3.876 4.908 5.893 6.863 7.805 8.781 9.865
99.5% 1.928 2.897 3.886 4.931 5.923 6.891 7.855 8.842 10.006

“m” denotes an embedding dimension. Based on 10,000 replications.

4. Power Tests and Empirical Comparison

4.1 Power Tests

We applied both the BDS and our alternative to the artificially generated nonlinear data resulting

from the processes described below. This eliminates the problem of removing linear structure by

taking residuals from a fitted linear model. We performed a power test for both tests to judge their

performance at 5% significance level (and thus fixed probability of the „first-type“ error). When

the test is applied to the nonlinear series, the relative number of acceptances of null hypothesis at

the given significance level corresponds to the probability that the test is subject to the „second-

type“ error—accepting null hypothesis when it is not true. The test that has smaller probability of

the „second-type“ error (probability of the „first-type“ error being fixed) is regarded as having the

greater power.

The first model used is the nonlinear moving average (NLMA) in the following form:

ttttx εεε += −− 215. . (14)

The tε  terms are iid normal. The second model is the ARCH model of Engle (1982), which can be

represented in the following form:

),0(~ tt hNx , �
=

−+=
q

i
itit xh

1

2
0 αα (15)

where in this case q = 1, 0α = 1, and 1α  = 0.5.14

Table IV shows the power of the test against specific models for lengths of 500, 1000, and

                                                          
14 Both processes (models and values of parameters) correspond (due to replication exactness) to those used



2500 observations. The numbers represent the frequency of rejection at the 5% confidence level.

Derivation of critical values is described in the previous section. The power of the test against

specified models is comparable to the power of the BDS statistic shown in Hsieh and LeBaron

(1988) and Brock, Dechert, Scheinkman, and LeBaron (1996). However, due to the characteristics

of the correlation integral, the power generally declines at the highest levels of embedding

dimension.

TABLE IV

Power Test of Slope Coefficients βm
Null of iid Rejected at 5% Level

Process ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 ββββ8 ββββ9 ββββ10

NLMA, 500 obs. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.50
NLMA, 1000 obs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NLMA, 2500 obs. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ARCH, 500 obs. 0.99 0.97 0.84 0.68 0.65 0.56 0.42 0.19 0.01
ARCH, 1000 obs. 1.00 0.99 0.96 0.87 0.83 0.73 0.64 0.38 0.17
ARCH, 2500 obs. 0.39 0.71 0.73 0.72 0.58 0.51 0.50 0.49 0.35

“m” denotes an embedding dimension.

Series that exhibit zero autocorrelation structure, as the above models do, are evidently

atypical. The following examples of empirical comparisons suggest the usefulness and added value

of the proposed testing method.

4.2 Empirical Comparison

High frequency financial data fully reflect the stylized fact of changing variance over time.

Numerous financial time series were studied and found to contain linear as well as non-linear

dependencies. An appropriate model that would account for conditional heteroskedasticity in such

time series should be able to remove possible nonlinear patterns in the data. Standardized (fitted)

or corrected residuals from such a model are ideal for the BDS test, as well as for the suggested

alternative method, because they should be independent under the null model. Thus, the test is not

only of non-linearity but also of correct specification.

Three empirical studies were replicated in order to yield comparisons between the two tests.

For clarity, notation throughout this section is identical to that used in the original studies. Results

show that the suggested alternative is able to detect remaining non-linear dependencies in

standardized (fitted) residuals where the BDS test does not.

                                                                                                                                                              
in Brock, Dechert, Scheinkman, and LeBaron (1996).



4.2.1 Analysis of ARCH corrected weekly exchange rates

Kugler and Lenz (1990) analyzed non-linear dependence of weekly exchange rate changes for four

currencies against the US dollar from 1979 to 1989 (575 observations, the rate of change of the log

exchange rate tt Sx log∆= ). The data were corrected to account for the present ARCH process by

transformation into the ARCH corrected rate of changes in the form
5.06

1

2
0 logˆˆloglog

�
�

�

�

�
�

�

�
∆+∆=∆ �

=
−

τ
τταα tt

h
t SSS (16)

where α-coefficients were obtained by OLS regression of 2)log( tS∆ on constant and six lagged

variables. Such ARCH corrected rates of changes were subjected to the BDS test using embedding

dimensions N = 2,3,4, and 5, and tolerance distances ε = 0.5, 0.75, 1.0, and 1.5 of the standard

deviation of the sample. Kugler and Lenz (1990) found that the described correction successfully

removed nonlinearity from the Swiss Franc and Deutsche Mark. However, the BDS test did not

allow rejection of the null hypothesis for the French Franc (specifically at levels of N = 4 and 5)

and Japanese Yen (specifically at levels of N = 3,4, and 5).

We have replicated the original study with the same results and applied the corrected rates to

the alternative test. The results are presented in Table V. As in the original study, the null

hypothesis is rejected for the French Franc and Japanese Yen. Contrary to the original analysis,

however, the alternative test finds remaining non-linear dependency in the residuals of the

Deutsche Mark. The Swiss Franc is the only currency where the null of iid cannot be rejected.

TABLE V

Slope Coefficients βm of
ARCH(6) Corrected Changes in Exchange Rates

Currency ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 ββββ8 ββββ9 ββββ10

DMUS 1.850d 2.736c 3.593c 4.328c 5.126 5.900 6.480 6.474d 7.255
FFUS 1.865 2.806 3.652 4.259a 4.913b 5.701d 6.401 6.720 7.626
SFUS 1.876 2.811 3.807 4.809 5.748 6.533c 7.529 7.583 8.527
YNUS 1.818a 2.705a 3.583c 4.481 4.990c 5.479b 5.987c 6.783 7.566

“m” denotes an embedding dimension. Superscripts denote significance at levels of :
(a) 1%, (b) 2%, (c) 5%, and (d) 10%.



4.2.2 Analysis of daily exchange rates

Brock, Hsieh, and LeBaron (1991, p.130) analyzed the daily closing bids for the five major

currencies in U.S. Dollars: Swiss Franc (SF), Canadian Dollar (CD), Deutsche Mark (DM), British

Pound (BP), and Japanese Yen (JY) during the period from January 2, 1974 to December 30, 1983

(2,510 observations).15

Rates of change are calculated by taking the first logarithmic differences between successive

trading days. The data were prefiltered by an AR process with daily dummies to remove linear

dependency. In order to capture variance-nonlinearity, a GARCH model was estimated. The

specification of the model resulted in the mean equation:

tHHtRRtWWtTTtMM

j

i
iit uDDDDDrr +++++++= �

=
− βββββββ ,,,,

1
10 (17)

where, ),,0(~1 ttt hDu −Ω  and variance equation

HHtRRtWWtTTtMMttt DDDDDhuh φφφφφφψφ +++++++= −− ,,,,1
2
10 (18)

where tr  is the rate of change of the nominal exchange rate at time t, tMD , , tTD , , tWD , , and

tRD , , are dummy variables for Monday, Tuesday, Wednesday, and Thursday; and HD  is the

number of holidays between two successive trading days excluding week-ends. Daily dummies

were included to capture the daily effects of fluctuations that are known to materialize in

correlation at financial markets and thus might affect the analysis. The order of the AR process was

determined to be j = 6, 5, 6, and 0 respectively for SF, CD, DM, and BP.

After estimation, the overall fit of the model is assessed by performing diagnostic tests on

standardized residuals 2
1

/ ttt huz = , where ut is the residual of the mean equation (17), and th  is

the estimated conditional variance from equation (18). The BDS test finds no evidence of

nonlinearity in standardized residuals of SF, some nonlinearity (at dimensions 8, 9, and 10) for the

DM, and strong nonlinearity for CD and BP.

The findings of Brock, Hsieh, and LeBaron (1991, pp. 140 and 155) were replicated.16 The

standardized residuals were then subjected to the alternative test. The slope coefficients derived

from this test are presented in the Table VI. DM and BP show the presence of nonlinearity at the

1% significance level no matter what embedding dimension is considered. CD and SF show some

presence of nonlinearity at various significance levels depending on embedding dimension m. The

                                                          
15 Japanese Yen was dropped from the replication because of data inconsistency.
16 There is a descriptive error in Brock, Hsieh, and LeBaron (1991) on this subject. On p. 140 it is claimed
that the BDS test finds no evidence of nonlinearity in CD. However, on p. 155 the table shows that statistics
for CD are significant at the 1% level, thus, supporting evidence of nonlinearity in standardized residuals of
this currency.



alternative test confirmed the presence of nonlinearity in DM, CD, and BP and, contrary to original

study, detected remaining nonlinearity in the supposedly independent residuals of SF.

TABLE VI

Slope Coefficients βm of
Standardized Residuals from AR(p)-GARCH(1,1) Model

Currency ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 ββββ8 ββββ9 ββββ10

CD 1.875 2.808d 3.718b 4.595a 5.491d 6.405 7.193 8.016 8.568
SF 1.861 2.784b 3.707a 4.631c 5.488d 6.205b 6.835a 7.308a 8.171b

DM 1.855 2.774a 3.702a 4.557a 5.289a 5.918a 6.383a 6.756a 7.140a

BP 0.998b 2.475a 3.140a 3.661a 4.010a 4.328a 4.629a 4.935a 4.952a

“m” denotes an embedding dimension. Superscripts denote significance at levels of :
(a) 1%, (b) 2%, (c) 5%, and (d) 10%.

4.2.3 Analysis of weekly exchange rates

Kugler and Lenz (1993) analyzed the non-linear dependence of exchange rate changes for ten

currencies against the US dollar. They used weekly end of period data of the Australian dollar

(ADUS), Canadian dollar (CDUS), Belgian Franc (BFUS), French Franc (FFUS), Deutsche Mark

(DMUS), Dutch Guilder (HFUS), Italian Lira (LTUS), Spanish Peseta (PTUS), Swiss Franc

(SFUS), and Japanese Yen (YNUS). The sample period is from 1979 to 1989 (575 observations,

the rate of change of the log exchange rate tt Sx log∆= ). The LM test performed on the rates of

change clearly indicates the presence of ARCH process, and the BDS test decisively rejects the

null of iid. In order to check whether the detected dependence can be attributed solely to an ARCH

process, the authors estimated the following GARCH-M model

�
=

− ++∆+=∆
3

1
40 loglog

τ
ττ ηβββ tttt hSS (19)

12
2
110 −− ++= ttt hh αηαα ttt hεη = .

In equation (19) linear dependencies of the AR type are allowed for, as the estimated pure

GARCH-M model showed signs of residual autocorrelation for some currencies. For all currencies

the GARCH coefficients 1α̂ and 2α̂  are highly significant from zero. Thus, ARCH effects are

important for all currencies. Finally, the fitted residuals ttt h/ˆ ηε =  were subjected to the BDS

test (tolerance distance of one standard deviation and embedding dimensions N = 2, 3, 4, and 5

were used). Results revealed no indication of dependence in the fitted residuals of any currency.

We have replicated the study with the same results. The fitted residuals tε̂  were then

subjected to the alternative test. The results, which are presented in Table VII, confirmed the



original findings of independence for only 5 of the 10 currencies (CDUS, FBUS, FFUS, HFUS,

and SFUS). Contrary to the original analysis the alternative test detected remaining non-linear

dependencies in the fitted residuals for the rest of the supposedly independent currencies (ADUS,

DMUS, LTUS, PTUS, and YNUS).

TABLE VII

Slope Coefficients βm of
Fitted Residuals from AR(3)-GARCH(1,1)-M Model

Currency ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 ββββ8 ββββ9 ββββ10

ADUS 1.751a 2.630a 3.498a 4.385d 5.001c 5.726 6.462 6.848 7.470
CDUS 1.843c 2.772 3.725 4.614 5.270 5.799 6.472 6.947 7.214
DMUS 1.860 2.739c 3.557b 4.368d 5.188 5.896 6.606 7.272 8.247
FBUS 1.839b 2.783 3.764 4.534 5.304 5.751 6.416 7.263 7.988
FFUS 1.874 2.825 3.643 4.335c 5.124 5.992 6.833 7.258 8.278
HFUS 1.876 2.826 3.682 4.615 5.417 6.099 6.691 7.258 7.267
LTUS 1.860 2.772 3.563b 4.242a 4.912b 5.441b 5.755a 6.191c 7.325
PTUS 1.769a 2.524a 3.064a 3.323c 3.498a 3.901a 4.102a 4.451a 4.845a

SFUS 1.877 2.832 3.850 4.703 5.471 6.216 7.239 8.124 9.107
YNUS 1.844c 2.741c 3.709 4.535 5.314 5.700 6.307d 7.414 8.170

“m” denotes an embedding dimension. Superscripts denote significance at levels of :
(a) 1%, (b) 2%, (c) 5%, and (d) 10%.

5. Conclusion

This paper has presented a new method of testing for iid. The method originates in chaos theory

and is based on the concept of the correlation integral. The test is suggested as an alternative to the

widely used nonparametric BDS test. The paper extends and generalizes the BDS test presented by

Brock, Dechert, Scheinkman, and LeBaron (1996). In doing so it aims to remove a limitation of

arbitrary selection of a proximity parameter ε through integrating across correlation integral. The

alternative statistic is developed by calculating the slope of the log of the correlation integral versus

the log of the proximity parameter over a broad range of values of the proximity parameter for

different embedding dimensions. Monte Carlo simulations are used to tabulate critical values of the

slope coefficients mβ  at different significance levels.

The power of the new method is tested against artificial nonlinear data. In addition, three

previously published empirical studies (that used the BDS test) are replicated in order to evaluate

the relative performance of the suggested alternative to the BDS test. The proposed test is applied

to standardized (corrected) residuals from different models and finds nonlinear dependencies in

cases where the published results using the BDS test did not find them.
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