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Abstract

We analyse the case where a unit root test is based on a Dickey-Fuller regression whose only

deterministic term is a fixed intercept. Suppose, however, as could well be the case, that the

actual data generating process includes a broken linear trend. It is shown theoretically, and

verified empirically, that under the I(1) null and I(0) alternative hypotheses the Dickey-Fuller

test can display a wide range of different characteristics depending on the nature and location

of the break.
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1 Introduction

Dickey-Fuller unit root tests are generally conducted through OLS estimation of regression

models incorporating either an intercept or a linear trend, and on occasion there is uncertainty

as to which of these specifications is appropriate, an issue considered by, for example, West

(1987) and Ayat and Burridge (2000). In particular, there is concern about the consequences

of an inappropriate specification. Unsurprisingly, the incorporation in an estimating model of

a redundant trend term leads to a reduction in test power under the I(0) alternative. More

interestingly, as West (1987) has demonstrated, if a fixed trend term is incorrectly omitted,

rejection probabilities are very small, irrespective of whether the I(1) null or I(0) alternative is

true.

In this note we consider the case where the only deterministic term in the estimating model

is a fixed intercept, but now allow the possibility of a broken trend in the data generating process

(DGP). We show theoretically and empirically that the Dickey-Fuller test can display a wide

range of different characteristics under both the I(1) null and I(0) alternative, dependent on

the nature and location of the break. In particular, in the case where the DGP is I(1) around

a broken trend we find that rejection probabilities of the null hypothesis can be very high. In

the case where the DGP is I(0) around a broken trend, the null hypothesis may still be rejected

very frequently. Neither of these outcomes would be anticipated from West’s analysis of the case

of an omitted fixed trend.

2 Trend Misspecification in the I(1) Case

Consider a DGP for T observations given by

yt =

(
α+ β1t+ vt t ≤ τT,

α+ β1τT + β2(t− τT ) + vt t > τT
(1)

where

vt = ρvt−1 + ηt (2)

with ρ = 1 and ηt is an IID sequence with mean zero and variance σ2. Here, yt is an I(1)

random walk process around a linear trend which changes value at observation τT .

Now suppose that

β1 = σT−1/2k1, (3)

β2 = σT−1/2k2.

The t−statistic variant of the Dickey-Fuller test, denoted DF , tests ρ = 1 in the fitted OLS

regression model

yt = α̂+ ρ̂yt−1 + η̂t (4)

where we include an intercept but no trend term.

The following theorem gives the asymptotic null distribution of DF .
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Theorem 1 Under the DGP (1)-(3)

DF ⇒ A

B

where

A = f1 − f2f3, B = (f4 − f22)1/2,
f1 =

1

2
{(k1 − k2)τ + k2}2 + 1

2
{W (1)2 − 1}+ {(k1 − k2)τ + k2}W (1),

f2 =
1

2
{k1τ(2− τ) + k2(1− τ)2}+

Z 1

0
W (r)dr,

f3 = k1τ + k2(1− τ) +W (1),

f4 =
1

3
{k21τ2 (3− 2τ) + k22(1− τ)3}+ k1k2τ(1− τ)2 +

Z 1

0
W (r)2dr

+2k1

Z τ

0
rW (r)dr + 2(k1 − k2){τ

Z 1

τ
W (r)dr −

Z 1

τ
rW (r)dr}.

Here W (r) is a standard Brownian Motion process.2,3

Clearly the limit distribution of DF is a complicated function of k1. k2 and τ , but we

can examine some special cases of the result that highlight the wide range of outcomes that can

occur.4 We do this by simulating the limiting functions ofW (·), generating samples of 5,000 IID
standard normal variates, over 10,000 replications. We concentrate on reporting the percentage

of rejections that would be achieved by nominal 5%-level tests, based on the limiting critical

values that would be appropriate for the Dickey-Fuller test if (4) were correctly specified.

(i) k1 = k2 : This is the case where there is no break in trend, and so a fixed trend term

has been omitted from the regression (4). This corresponds then to the situation analysed by

West (1987). However, in that paper the trend magnitude was fixed, leading to convergence

in probability to zero of the test statistic. Here, in view of the normalisation in (3), a proper

limiting null distribution follows. We have

f1 =
1

2
k21 +

1

2
{W (1)2 − 1}+ k1W (1),

f2 =
1

2
k1 +

Z 1

0
W (r)dr,

f3 = k1 +W (1),

f4 =
1

3
k21 +

Z 1

0
W (r)2dr + 2k1

Z 1

0
rW (r)dr.

2Note that in (3) the trend magnitudes are set proportional to T−1/2, following Leybourne and Newbold
(2000). It is this approach that leads DF having a non-degenerate limiting null distribution.

3In the general case where ηt is generated by a stationary AR(p) process ηt =
Pp

j=1
φjηt−j + εt, where εt is

an IID sequence with mean zero and variance σ2, the result continues to hold provided βi, i = 1, 2 is defined in

rescaled form as βi = σ(1−Pp

j=1
φj)

−1T−1/2ki and (4) is augmented with p lagged terms in ∆yt.The proof of

this result (and also that of Theorem 2) is straightforward and is given in Kim et al (2002).
4The most trivial special case is where k1 = k2 = 0. Here the regression model (4) is correctly specified, and

the limiting null distribution of Theorem 1 of course simplifies to the usual Dickey-Fuller distribution.
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As is obvious, these expressions do not depend on τ . It is also not necessary at this point to

consider this case in further detail, as it corresponds precisely to extremities of two cases to

be discussed later. These are k2 = 0, τ = 1 and k1 = 0, τ = 0 (though with k2 in this latter

specification playing the role of k1 in the above equations).

(ii) k2 = −k1 : The trend parameters either side of the break are equal and opposite in sign. We
have

f1 =
1

2
k21(2τ − 1)2 +

1

2
{W (1)2 − 1}+ k1(2τ − 1)W (1),

f2 =
1

2
k1(4τ − 2τ2 − 1) +

Z 1

0
W (r)dr,

f3 = k1(2τ − 1) +W (1),
f4 = k21{

1

3
− 2τ(1− τ)2}+

Z 1

0
W (r)2dr

+2k1

Z τ

0
rW (r)dr + 4k1{τ

Z 1

τ
W (r)dr −

Z 1

τ
rW (r)dr}.

It now emerges that the value of the break fraction has a large impact on rejection probabilities.

Figure 1 shows asymptotic rejection frequencies of nominal 5%-level DF tests plotted for all

values of the break fraction τ , and for various values of k1. For τ < 0.5 the test is undersized.

However, the picture changes for larger values of the break fraction, where very serious spurious

rejections of the unit root null hypothesis can occur - the most extreme case being for τ ≈ 0.7.
It is thus apparent that the omission of a broken trend can have quite different consequences

from the omission of an unbroken trend; the latter unambiguously results in an undersized test.

(iii) k2 = 0 : This is the case where there is an omitted trend in the early part of the series, but

none following the break. Here

f1 =
1

2
k21τ

2 +
1

2
{W (1)2 − 1}+ k1W (1),

f2 =
1

2
k1τ(2− τ) +

Z 1

0
W (r)dr,

f3 = k1τ +W (1),

f4 =
1

3
k21τ

2(3− 2τ) +
Z 1

0
W (r)2dr

+2k1{
Z τ

0
rW (r)dr + τ

Z 1

τ
W (r)dr −

Z 1

τ
rW (r)dr}.

Asymptotic rejection frequencies of nominal 5%-level DF statistics are shown in Figure 2. The

test over-rejects the unit root null hypothesis (except for very large values of τ), most severely

so for τ ≈ 0.4. In Figure 2, τ = 1 corresponds to an omitted unbroken trend and reduction in
size caused by this omission is clear.

(iv) k1 = 0 : This is the case where there is initially no trend, but the series trends after the
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break. We have

f1 =
1

2
k22(1− τ)2 +

1

2
{W (1)2 − 1}+ k2(1− τ)W (1),

f2 =
1

2
k2(1− τ)2 +

Z 1

0
W (r)dr,

f3 = k2(1− τ) +W (1),

f4 =
1

3
k22(1− τ)3 +

Z 1

0
W (r)2dr

−2k2{τ
Z 1

τ
W (r)dr −

Z 1

τ
rW (r)dr}.

Figure 3 shows asymptotic rejection frequencies of nominal 5%-level DF tests. The contrast

with Figure 2 is rather dramatic as now the test under-rejects the null for all values of τ . So,

even though this case might be thought of as being similar to the previous one, its consequences

for DF are actually very different. Note again that here τ = 0 corresponds to the case where

there is an omitted unbroken trend.

3 Trend Misspecification in the I(0) Case

Suppose that yt is generated via (1) and (2) but now |ρ| < 1, so that vt is assumed to follow a
stationary AR(1) process. As in West (1987), β1 and β2 are now assumed fixed (not depending

on the sample size) and defined as

β1 = σk1, (5)

β2 = σk2.

Then we have the following result for the large sample behaviour of DF .

Theorem 2 Under the DGP (1), (2) and (5)

T−1/2DF p→ A∗

B∗

where

A∗ = −1
2
(k1 − k2)g1, B∗ = g1/22 (g3 − g42)1/2,

g1 = τ(1− τ){τk1 + (1− τ)k2},
g2 = 2(1− ρ)− 1

4

(k1 − k2)2g21
(g3 − g42) − {τk1 + (1− τ)k2}2 + τk21 + (1− τ)k22,

g3 =
1

3
(k1 − k2)(k2 − 2k1)τ3 + (k1 − k2)2τ2 + (k1 − k2)k2τ + 1

3
k22,

g4 = −1
2
(k1 − k2)τ2 + (k1 − k2)τ + 1

2
k2.
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Though the probability limit is a complicated function of the parameters involved, the main

issue of interest here is simply whether DF diverges to +∞ or −∞, that is, whether the test
has asymptotic power of 0% or 100% and this is determined by the sign of the numerator term,

A∗. It is straightforward to establish that A∗ > 0 in the region P = P1 ∪ P2 where

P1 = {(k1, k2) : k2 < k1 and k2 < − τ

(1− τ)
k1},

P2 = {(k1, k2) : k2 > k1 and k2 > − τ

(1− τ)
k1}.

and A∗ < 0 in the region N = N1 ∪N2 where

N1 = {(k1, k2) : k2 < k1 and k2 > − τ

(1− τ)
k1},

N2 = {(k1, k2) : k2 > k1 and k2 < − τ

(1− τ)
k1}.

Again we can consider the special cases of this result corresponding to (i)-(iv) of the previous

section.

(i0) k1 = k2 : We have the same conclusion as in West (1987) that DF
p→ 0 in the omitted

unbroken trend case.

(ii0) k2 = −k1 : Here we find {k2 = −k1} ⊂ P (N) for τ < 0.5 (τ > 0.5) so that DF has

asymptotic power of 0% for τ < 0.5 and 100% for τ > 0.5.

(iii0) k2 = 0 : In this case {k2 = 0} ⊂ N , such that DF has asymptotic power of 100% for all τ .

(iv0) k1 = 0 : Here {k1 = 0} ⊂ P , so DF has asymptotic power of 0% for all τ . Again then,

even though this might be thought of as similar to (iii0), its consequences for DF are completely
different.

4 Finite Sample Simulation Evidence

As a check on the reliability of the predictions of Theorems 1 and 2 in finite samples, we

conducted a small simulation exercise for the situation where k2 = −k1.
In the I(1) case, we generated 10,000 replications from the DGP (1)-(3) with ηt standard

normal and k1 = 6. Figure 1 suggests that the most serious spurious rejections of the unit root

null are liable to occur for values of the break fraction τ around 0.7. Table 1 gives the rejection

percentages of DF at nominal 5%-level. Here we see that, although the convergence is a little

slow, the asymptotic result yields a reliable predictor of what will be found, both qualitatively

and quantitatively, in moderate-sized samples.5

For the I(0) case, we generated the DGP (1), (2) and (5) with k1 = 0.6 and ρ = 0.95. The

results are given in Table 2. Again, our asymptotic results are a good indicator of what will be

5The enties for T =∞ are taken from Figure 1.
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found in moderate-sized samples; the lack of any power when τ < 0.5, and consistency of DF

when τ > 0.5 are both quite evident.

Finally, it should be noted that our results are specific to Dickey-Fuller tests and do not

necessarily apply to other test procedures. For example, for series of T = 100 observations

from the DGP of Table 1, we found for the test of Pantula et al (1994) (based on weighted

symmetric estimation) and the test of Elliott et al (1996) (based on GLS demeaning) virtually

no rejections for nominal 5%-level tests. The same conclusion was obtained for series of this

length for these alternative tests for the generating process with k1 = 6, k2 = 0. However, for

DF applied to data from such a process we found rejection rates of 32.2%, 44.3% and 31.9% for

respective values of τ of 0.2, 0.4., and 0.6 - in close agreement with the asymptotic results of

Figure 2.

5 An Empirical Example

As a simple empirical illustration of one of our results, we consider monthly data on the United

States M1 money stock for the period 1991.01-2002.12 (T = 120). We assess the properties

of the log of this series, denoted yt, using Vogelsang and Perron’s (1998) additive outlier test

procedure. Defining the dummy variable dt(τ̄) = (t− τ̄T )1[t > τ̄T ] we fit via OLS the following

model permitting a break in trend

yt = α̂+ β̂1t+ β̂2dt(τ̄) + v̂t. (6)

for 0.15 ≤ τ̄ ≤ 0.85. The estimated trend breakpoint is then τ̂ = argmax |tβ̂2(τ̄)| where tβ̂2(τ̄)
is the t−statistic for testing β2 = 0. After estimating (6) with τ̂ in place of τ̄ , the unit root test

is the t−statistic for testing ρ = 0 in the model

v̂t = ρ̂v̂t−1 +
pX
j=1

φ̂j∆v̂t−j + ε̂t. (7)

For (6) we obtained the values

α̂ β̂1 β̂2 β̂1 + β̂2 τ̂

6.6961 0.00941 -.01000 -0.000 59 0.36

(1238.9) (47.97) (-41.48) (-1.41)

( t−statistics given in parentheses) indicating change from a significant to insignificant trend

at observation τ̂T = 43 (1993.12). The unit root test (7) yielded a value of -2.01 (with p = 1,

chosen from downwards testing at the 10%-level from pmax = 4), where the 10%-level null critical

value is -4.08. This analysis therefore suggests that this series might be characterized by special

case (iii) of Theorem 1, that is, an I(1) process with an early trend component (present up to

fraction 0.36 of the series) but no trend thereafter. For such a process, Figure 2 would then

predict that a Dickey-Fuller test which incorporates only an intercept term will spuriously reject

the unit root null hypothesis. In fact, we find here that such a statistic (with p = 1 selected

as above) yields a value of -3.01, which easily rejects the unit root null at the 5%-level (critical

value -2.89).
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6 Summary

In this note we have shown that in the presence of a broken trend, the behaviour of a Dickey-

Fuller unit root test based only on a fitted intercept is highly unpredictable. Whether such

a test is badly undersized or yields severe spurious rejections in the I(1) case, has trivial or

substantial power in the I(0) case, all depends crucially on the nature, location and magnitude

of the break. This is in stark contrast to the situation of an unattended fixed trend, as in this

case the Dickey-Fuller test unambiguously displays under-sizing and lack of power. Indeed, it

is this very feature that helps “identify” an omitted trend - if a test with an intercept does not

reject the null, and one including an additional trend does reject the null, an informal decision

rule is to reject the unit root null in favour of I(0) about a fixed trend. In the case of a broken

trend, however, our results demonstrate that such informal rules will not operate and hence

they highlight the need for a rigorous approach to determining the trend properties of a series

when testing for a unit root. We conjecture that a sequential trend modelling strategy, such as

that advocated by Ayat and Burridge (2000) if extended to allow for a break in trend, might be

fruitfully employed in this situation.
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Table 1. I(1) case: size of DF for nom. 5%-level tests (k2 = −k1; k1 = 6.0).
T

τ 100 200 400 ∞
0.5 3.3 4.5 4.8 5.4

0.6 17.2 21.1 23.2 25.3

0.7 36.2 41.0 43.4 46.7

0.8 31.4 34.3 36.8 38.7

0.9 9.4 10.3 11.1 10.9

Table 2. I(0) case: power of DF for nom. 5%-level tests (k2 = −k1; k1 = 0.6; ρ = 0.95).
T

τ 100 200 400

0.3 0.0 0.0 0.0

0.4 0.0 0.0 0.0

0.5 1.1 0.0 0.0

0.6 2.9 14.1 99.6

0.7 30.2 99.7 100.
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