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Abstract. In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of
model uncertainty are typically rather sensitive to the specification of the prior. In particular, “diffuse” priors on model-specific
parameters can lead to quite unexpected consequences. Here we focus on the practically relevant situation where we need to
entertain a (large) number of sampling models and we have (or wish to use) little or no subjective prior information. We aim
at providing an “automatic” or “benchmark” prior structure that can be used in such cases. We focus on the Normal linear
regression model with uncertainty in the choice of regressors. We propose a partly noninformative prior structure related to
a Natural Conjugate g-prior specification, where the amount of subjective information requested from the user is limited to
the choice of a single scalar hyperparameter g0j . The consequences of different choices for g0j are examined. We investigate
theoretical properties, such as consistency of the implied Bayesian procedure. Links with classical information criteria are
provided. More importantly, we examine the finite sample implications of several choices of g0j in a simulation study. The use

of the MC3 algorithm of Madigan and York (1995), combined with efficient coding in Fortran, makes it feasible to conduct large
simulations. In addition to posterior criteria, we shall also compare the predictive performance of different priors. A classic
example concerning the economics of crime will also be provided and contrasted with results in the literature. The main findings
of the paper will lead us to propose a “benchmark” prior specification in a linear regression context with model uncertainty.
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The issue of model uncertainty has permeated the econometrics and statistics literature for decades. An
enormous volume of references can be cited (only a fraction of which is mentioned in this paper), and special
issues of the Journal of Econometrics (1981, Vol.16, No.1) and Statistica Sinica (1997, Vol.7, No.2) are
merely two examples of the amount of interest this topic has generated in the literature. From a Bayesian
perspective, dealing with model uncertainty is conceptually straightforward: the model is treated as a further
parameter which lies in the set of models entertained (the model space). A prior now needs to be specified
for the parameters within each model as well as for the models themselves, and Bayesian inference can be
conducted in the usual way, with one level (the prior on the model space) added to the hierarchy —see, e.g.,
Draper (1995) and the ensueing discussion. Unfortunately, the influence of the prior distribution, which is
often straightforward to assess for inference given the model, is much harder to identify for posterior model
probabilities. It is acknowledged —e.g., Kass and Raftery (1995), George (1999)— that posterior model
probabilities can be quite sensitive to the specification of the prior distribution.

In this paper, we consider a particular instance of model uncertainty, namely uncertainty about which
variables should be included in a linear regression problem with k available regressors. A model here will
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be identified by the set of regressors that it includes and, thus, the model space consists of 2k elements.1

Given the issue of sensitivity to the prior distribution alluded to above, the choice of prior is quite delicate,
especially in the absence of substantial prior knowledge. Our aim here is to come up with a prior distribution
that leads to sensible results, in the sense that data information dominates prior assumptions. Whereas we
acknowledge the merits of using substantive prior information whenever available, we shall be concerned with
providing the applied researcher with a “benchmark” method for conducting inference in situations where
incorporating such information into the analysis is deemed impossible, impractical or undesired. In addition,
this provides a useful backdrop against which results arising from Bayesian analyses with informative priors
could be contrasted.

We will focus on Bayesian model averaging (BMA), rather than on selecting a single model. BMA follows
directly from the application of Bayes’ theorem in the hierarchical model described in the first paragraph,
which implies mixing over models using the posterior model probabilities as weights. This is very reasonable
as it allows for propagation of model uncertainty into the posterior distribution and leads to more sensible
uncertainty bands. From a decision-theory point of view, Min and Zellner (1993) show that such mixing over
models minimizes expected predictive squared error loss, provided the set of models under consideration is
exhaustive. Raftery, Madigan and Hoeting (1997) state that BMA is optimal if predictive ability is measured
by a logarithmic scoring rule. The latter result also follows from Bernardo (1979), who shows that the usual
posterior distribution leads to maximal expected utility under a logarithmic proper utility function. Such
a utility function was argued by Bernardo (1979) to be “often the more appropriate description for the
preferences of a scientist facing an inference problem”. Thus, in the context of model uncertainty, the use
of BMA follows from sensible utility considerations. This is the scenario that we will focus on. However,
our results should also be useful under other utility structures that lead to decisions different from model
averaging —e.g. model selection. This is because the posterior model probabilities will intervene in the
evaluation of posterior expected utility. Thus, finding a prior distribution that leads to sensible results in
the absence of substantive prior information is relevant in either setting.

Broadly speaking, we can distinguish three strands of related literature in the context of model uncertainty.
Firstly, we mention the fundamentally oriented statistics and econometrics literature on prior elicitation and
model selection or model averaging, such as exemplified in Box (1980), Zellner and Siow (1980), Draper (1995)
and Phillips (1995) and the discussions of these papers. Secondly, there is the recent statistics literature on
computational aspects. Markov chain Monte Carlo methods are proposed in George and McCulloch (1993),
Madigan and York (1995), Geweke (1996) and Raftery et al. (1997), while Laplace approximations are found
in Gelfand and Dey (1994) and Raftery (1996). Finally, there exists a large literature on information criteria,
often in the context of time series, see, e.g., Hannan and Quinn (1979), Akaike (1981), Atkinson (1981), Chow
(1981) and Foster and George (1994). This paper provides a unifying framework in which these three areas
of research will be discussed.

In line with the bulk of the literature, the context of this paper will be Normal linear regression with
uncertainty in the choice of regressors. We abstract from any other issue of model specification. We present
a prior structure that can reasonably be used in cases where we have (or wish to use) little prior information,
partly based on improper priors for parameters that are common to all models, and partly on a g-prior
structure as in Zellner (1986). The prior is not in the natural-conjugate class, but is such that marginal
likelihoods can still be computed analytically. This allows for a simple treatment of potentially very large
model spaces through Markov chain Monte Carlo model composition (MC3) as introduced in Madigan and
York (1995). In contrast to some of the priors proposed in the literature, the prior we propose leads to valid
conditioning in the posterior distribution (i.e., the latter can be interpreted as a conditional distribution given
the observables) as it avoids dependence on the values of the response variable. The only hyperparameter
left to elicit in our prior is a scalar g0j for each of the models considered. Theoretical properties, such
as consistency of posterior model probabilities, are linked to functional dependencies of g0j on sample size
and the number of regressors in the corresponding model. In addition (and perhaps more importantly), we
conduct an empirical investigation through simulation. This will allow us to suggest specific choices for g0j

to the applied user. As we have conducted a large simulation study, efficient coding was required. This code

1 Of course, more models arise if we consider other aspects of model specification, but this will not be addressed here. See,
e.g., Hoeting, Raftery and Madigan (1995, 1996) for treatments of variable transformations and outliers, respectively.

2



(in Fortran-77) has been made publicly available on the World Wide Web.2

Section 1 introduces the Bayesian model and the practice of Bayesian model averaging. The prior structure
is explained in detail in Section 2, where expressions for Bayes factors are also given. The setup of the
empirical simulation experiment is described in Section 3, while results are provided in the next section.
Section 5 presents an illustrative example using the economic model of crime from Ehrlich (1973, 1975), and
Section 6 gives some concluding remarks and practical recommendations. The Appendix presents results
about asymptotic behaviour of Bayes factors.

1. THE MODEL AND BAYESIAN MODEL AVERAGING

We consider n independent replications from a linear regression model with an intercept, say α, and k
possible regression coefficients grouped in a k-dimensional vector β. We denote by Z the corresponding n×k
design matrix and we assume that r(ιn : Z) = k + 1, where r(·) indicates the rank of a matrix and ιn is an
n-dimensional vector of 1’s.

This gives rise to 2k possible sampling models, depending on whether we include or exclude each of the
regressors. In line with the bulk of the literature in this area —see, e.g., Mitchell and Beauchamp, 1988,
George and McCulloch, 1993 and Raftery et al., 1997—, exclusion of a regressor means that the corresponding
element of β is zero. Thus, a model Mj , j = 1, . . . , 2k, contains 0 ≤ kj ≤ k regressors and is defined by

y = αιn + Zjβj + σε, (1.1)

where y ∈ <n is the vector of observations. In (1.1), Zj denotes the n × kj submatrix of Z of relevant
regressors, βj ∈ <kj groups the corresponding regression coefficients and σ ∈ <+ is a scale parameter.
Furthermore, we shall assume that ε follows an n-dimensional Normal distribution with zero mean and
identity covariance matrix.

We now need to specify a prior distribution for the parameters in (1.1). This distribution will be given
through a density function

p(α, βj , σ | Mj). (1.2)

In Section 2, we shall consider specific choices for the density in (1.2) and examine the resulting Bayes
factors. We group the zero components of β under Mj in a vector β∼j ∈ <k−kj , i.e.,

Pβ∼j |α,βj ,σ,Mj
= Pβ∼j |Mj

= Dirac at (0, . . . , 0). (1.3)

We denote the space of all 2k possible models by M, thus

M = {Mj : j = 1, . . . , 2k}. (1.4)

In a Bayesian framework, dealing with model uncertainty is, theoretically, perfectly straightforward: we
simply need to put a prior distribution over the model spaceM

P (Mj) = pj , j = 1, . . . , 2k, with pj > 0 and
2k∑
j=1

pj = 1. (1.5)

Thus, we can think of the model in (1.1)-(1.5) as the usual linear regression model where all possible regressors
are included, but where the prior on β has a mixed structure, with a continuous part and a discrete point
mass at zero for each element. In other words, the model index Mj really indicates that certain elements of
β (namely β∼j) are set to zero, and, as discussed in Poirier (1985), we always condition on the full set of
available regressors.

2 Our programs, which can be found at mcmcmc.freeyellow.com should be slightly adapted before they can be used in other
problems. More flexible software to implement the approach in Smith and Kohn (1996) can be found at www.agsm.unsw.edu.au/
∼mikes, whereas the BMA webpage of Chris Volinsky at www.research.att.com/ ∼volinsky/bma.html lists various resources of
relevance to BMA.
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With this setup, the posterior distribution of any quantity of interest, say ∆, is a mixture of the posterior
distributions of that quantity under each of the models with mixing probabilities given by the posterior
model probabilities. Thus

P∆ | y =
2k∑
j=1

P∆ | y,Mj
P (Mj | y), (1.6)

provided ∆ has a common interpretation across models. This procedure, which is typically referred to as
Bayesian model averaging (BMA), is in fact the standard Bayesian solution under model uncertainty, since
it follows from direct application of Bayes’ theorem to the model in (1.1)–(1.5) —see, e.g., Leamer (1978),
Min and Zellner (1993), Osiewalski and Steel (1993) and Raftery et al. (1997).

Posterior model probabilities are given by

P (Mj | y) =
ly(Mj)P (Mj)∑2k

h=1 ly(Mh)P (Mh)
=

 2k∑
h=1

P (Mh)
P (Mj)

ly(Mh)
ly(Mj)

−1

, (1.7)

where ly(Mj), the marginal likelihood of model Mj , is obtained as

ly(Mj) =
∫

p(y | α, βj , σ, Mj)p(α, βj , σ | Mj)dαdβjdσ, (1.8)

with p(y | α, βj , σ, Mj) and p(α, βj , σ | Mj) defined through (1.1) and (1.2), respectively.
Two difficult questions here are how to compute P (Mj | y) and how to assess the influence of our prior

assumptions on the latter quantity. Substantial research effort has gone into examining each of them:
In cases where ly(Mj) can be derived analytically, the computation of P (Mj | y) is, in theory, straight-

forward, through direct application of (1.7). However, the large number of terms (2k) involved in the latter
expression often makes this computation practically infeasible. A common approach is to resort to an MCMC
algorithm, by which we generate draws from a Markov chain on the model spaceM with the posterior model
distribution as its stationary distribution. An estimate of (1.7) is then constructed on the basis of the models
visited by the chain. An important example of this is the MC3 methodology of Madigan and York (1995),
which uses a Metropolis-Hastings updating scheme —see, e.g., Chib and Greenberg (1995). MC3 was imple-
mented in the context of BMA in linear regression models by Raftery et al. (1997), who consider a natural
conjugate prior structure in (1.2). The latter paper also proposes an application of the Occam’s window
algorithm of Madigan and Raftery (1994) for deterministically finding the models whose posterior probability
is above a certain threshold. Under a g-prior distribution for the regression coefficients, the use of the fast
updating scheme of Smith and Kohn (1996) in combination with the Gray code order, allows for exhaustive
evaluation of all 2k terms in (1.7) when k is less than about 25 —see George and McCulloch (1997).

Computing P (Mj |y) is a more complex problem when analytical evaluation of ly(Mj) is not available.
In that case, the reversible jump methodology of Green (1995), which extends usual Metropolis-Hastings
methods to spaces of variable dimension, could be applied to construct a Markov chain jointly over parameter
and model space. An alternative approach was proposed by George and McCulloch (1993), who instead
of zero restrictions in (1.3), assume a continuous prior distribution concentrated around zero for these
coefficients. In this way, they get around the problem of a parameter space of varying dimension and are
still able to propose a Gibbs sampling algorithm to generate a Markov chain. Their approach is based on
a zero-mean Normal prior for β given Mj , where large and small variances are respectively allocated to
regression coefficients included in and “excluded” from Mj . Thus, they are required to choose two prior
variances, and results are typically quite sensitive to this choice. As the ratio of the variances becomes large,
the mixing of the chain will often be quite slow. An alternative Gibbs sampler that can deal with prior
point mass at zero and displays better mixing behaviour was proposed in Geweke (1996). A deterministic
approach in the vein of Occam’s window was taken by Volinsky, Madigan, Raftery and Kronmal (1997), who
approximate the value of ly(Mj) and use a modified leaps-and-bounds algorithm to find the set of models to
average over (i.e., the models with highest posterior probability).

Apart from purely computational aspects, just described, the issue of choosing a “sensible” prior distri-
bution seems further from being resolved. From (1.7) it is clear that the value of P (Mj | y) is determined
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by the prior odds [P (Mh)/P (Mj)] and the Bayes factors [Bhj ≡ ly(Mh)/ly(Mj)] of each of the entertained
models versus Mj . Bayes factors are known to be rather sensitive to the choice of the prior distributions for
the parameters within each model. Even asymptotically, the influence of this distribution does not vanish
—see, e.g., Kass and Raftery (1995) and George (1999). Thus, under little (or absence of) prior informa-
tion, the choice of the distribution in (1.2) is a very thorny question. Furthermore, the usual recourse to
improper “non-informative” priors does not work in this situation, since improper priors can not be used
for model-specific parameters [attempts to overcome this include the explicit or implicit use of training sam-
ples, using, e.g., intrinsic Bayes factors as in Berger and Pericchi (1996) or fractional Bayes factors as in
O’Hagan (1995), which, although conceptually quite interesting, suffer from a number of inconsistencies]. As
a consequence, most of the literature has focussed on “weakly-informative” proper priors, which are often
data-dependent through the response variable —as the prior in, e.g., Raftery et al. (1997). George and
Foster (1997) propose an empirical Bayes approach (in a case with known σ) to elicit prior hyperparameters,
in order to avoid the computational difficulties of a full Bayesian analysis with a further level of hierarchy.
Whilst we do not wish to detract from the potential usefulness of data-dependent priors in certain contexts,
we note that they do not allow for valid conditioning, in the sense that the posterior distribution can not
be interpreted as a conditional distribution given the observables (although the hope, of course, is that the
product of likelihood and “prior” still constitutes a suitable basis for inference in such cases). Here, we focus
on priors that avoid dependence on the values of the response variable and, thus, avoid this (in our view,
undesirable) property. We will propose certain priors and study their behaviour in comparison with other
priors previously considered in the literature.

As a final remark before concluding this section, we note that, in line with the majority of recent Bayesian
literature in this area, we consider a prior distribution that allows for the actual exclusion of regressors from
some of the models —see (1.3). For us, the rationale behind this choice is that, when faced with a modelling
scenario with uncertainty in the choice of covariates, the researcher will often ask herself questions of the
form “Does the exclusion of certain subsets of regressors lead to a sensible model?”, thus interpreting the
exclusion of regressors not like a dogmatic belief that such regressors have no influence whatsoever on the
outcome of the process being modelled but, rather, as capturing the idea that the model which excludes
those regressors is a sensible one. Just how sensible a model is will be quantified by its posterior probability,
which combines prior information (or lack of it) with data information via Bayes’ theorem. Of course, there
might be situations in which utility considerations —e.g., cost of collecting regressors versus their predictive
ability, or some other consideration specific to that particular problem— dictate that certain regressors be
dropped from the model even if their inclusion is sensible by the criterion mentioned above. In such cases,
the use of a continuous prior concentrated around zero —as in George and McCulloch (1993)— instead of
(1.3) or, as a Referee suggested, conducting continuous inference about the full vector β followed by removal
of regressors according to utility considerations, could be preferable. However this paper will not consider
design issues and, as mentioned in the Introduction, focusses on the case where neither substantive prior
information nor a problem-specific decision theory framework are available, rendering our approach more
natural. For more comments on the issue of discrete versus continuous priors, see Raftery, Madigan and
Volinsky (1996) and the ensueing discussion.

2. PRIORS FOR MODEL PARAMETERS AND THE CORRESPONDING BAYES FACTORS

In this section, we present several priors —i.e., several choices for the density in (1.2)— and derive the
expressions of the resulting Bayes factors. In the sequel of the paper, we shall examine the properties (both
finite-sample and asymptotic) of the Bayes factors.

2.1. A natural conjugate framework

Both for reasons of computational simplicity and for the interpretability of theoretical results, the most
obvious choice for the prior distribution of the parameters is a natural conjugate one. The density in (1.2)
is then given through

p(α, βj | σ, Mj) = f
kj+1
N ((α, βj) | m0j , σ

2V0j), (2.1)

which denotes the p.d.f. of a (kj + 1)-variate Normal distribution with mean m0j and covariance matrix
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σ2V0j , and through
p(σ−2 | Mj) = p(σ−2) = fG(σ−2 | c0, d0), (2.2)

which corresponds to a Gamma distribution with mean c0/d0 and variance c0/d2
0 for σ−2. Clearly m0j ∈

<kj+1, V0j a (kj+1)×(kj+1) positive definite symmetric matrix, c0 > 0 and d0 > 0 are prior hyperparameters
that still need to be elicited.

This natural conjugate framework greatly facilitates the computation of posterior distributions and Bayes
factors. In particular, the marginal likelihood of model Mj computed through (1.8) takes the form

ly(Mj) = fnS

(
y | 2c0, Xjm0j ,

c0

d0
(In −XjV∗jX

′
j)
)

, (2.3)

where
Xj = (ιn : Zj), (2.4)

V∗j = (X ′jXj + V −1
0j )−1, (2.5)

and fnS (y | ν, b, A) denotes the p.d.f. of an n-variate Student-t distribution with ν degrees of freedom,
location vector b (the mean if ν > 1) and precision matrix A (with covariance matrix A−1ν/(ν− 2) provided
ν > 2) evaluated at y. The Bayes factor for model Mj versus model Ms now takes the form

Bjs =
ly(Mj)
ly(Ms)

=
( |V∗j |
|V0j |

|V0s|
|V∗s|

)1/2
{

2d0 + (y −Xsm0s)′(In −XsV∗sX ′s)(y −Xsm0s)
2d0 + (y −Xjm0j)′(In −XjV∗jX ′j)(y −Xjm0j)

}c0+n
2

. (2.6)

Generally, the choice of the prior hyperparameters in (2.1)–(2.2) is not a trivial one. The user is plagued
by the pitfalls described in Richard (1973), arising if we wish to combine a fixed quantity of subjective
prior information on the regression coefficients with little prior information on σ. Richard and Steel (1988,
App. D) and Bauwens (1991) propose a subjective elicitation procedure for the precision parameter based
on the expected fit of the model. See Poirier (1996) for related ideas. In this paper we shall follow the
opposite strategy, and instead of trying to elicit more prior information in a situation of incomplete prior
specification, we focus on situations where we have (or wish to use) as little subjective prior knowledge as
possible.

2.2. Choosing prior hyperparameters for (α, βj)

Choosing m0j and V0j can be quite difficult in the absence of prior information. A predictive way of eliciting
m0j is through making a prior guess for the n-dimensional response y. Laud and Ibrahim (1996) propose
to make such a guess, call it η, taking the information on all the covariates into account and subsequently
choose m0j = (X ′jXj)−1X ′jη. Our approach is similar in spirit but much simpler: Given that we do not
possess a lot of prior information, we consider it very difficult to make a prior guess for n observations taking
the covariates for each of these n observations into account. Especially when n is large, this seems like an
extremely demanding task. Instead, one could hope to have an idea of the central values of y and make the
following prior prediction guess: η = m1ιn, which corresponds to

m0j = (m1, 0, . . . , 0)′. (2.7)

Eliciting prior correlations is even more difficult. We adopt the convenient g-prior (Zellner 1986), which
corresponds to taking

V −1
0j = g0jX

′
jXj , (2.8)

with g0j > 0. From (2.5) it is clear that V −1
0j is the prior counterpart of X ′jXj and, thus, (2.8) implies

that the prior precision is a fraction g0j of the precision arising from the sample. This choice is extremely
popular, and has been considered, among others by Poirier (1985) and Laud and Ibrahim (1995, 1996). See
also Smith and Spiegelhalter (1980) for a closely related idea.
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With these hyperparameter choices, the Bayes factor in (2.6) can be written in the following intuitively
interpretable way

Bjs =
(

g0j

g0j + 1

) kj+1
2
(

g0s + 1
g0s

) ks+1
2
(

2d0 + 1
g0s+1y′MXsy + g0s

g0s+1 (y −m1ιn)′(y −m1ιn)

2d0 + 1
g0j+1y′MXjy + g0j

g0j+1 (y −m1ιn)′(y −m1ιn)

)c0+n
2

, (2.9)

where
y′MXjy = y′y − y′Xj(X ′jXj)−1X ′jy (2.10)

is the usual Sum of Squared Residuals under model Mj .
Note that the last factor in (2.9) contains a convex combination between the model “lack of fit” (measured

through y′MXjy) and the “error of our prior prediction guess” [measured through (y −m1ιn)′(y −m1ιn)].
The coefficients of this convex combination are determined by the choice of g0j . The choice of g0j is crucial
for obtaining sensible results, as we shall see later. By not choosing g0j through fixing a marginal prior of
the regression coefficients, we avoid the natural conjugate pitfall alluded to at the end of Subsection 2.1.
In addition, the g-prior in (2.7)-(2.8) can also lead to a prior that is continuously induced across models,
as defined in Poirier (1985), in the sense that the priors for all 2k models can be derived as the relevant
conditionals from the prior of the full model (with kj = k). This will hold as long as g0j does not depend on
Mj and we modify the prior in (2.2) so that the shape parameter c0 becomes model-specific and is replaced
by c0 + (k − kj)/2.

2.3. A non-informative prior for σ

From (2.9) it is clear that the choice of d0, the precision parameter in the Gamma prior distribution for σ−2,
can crucially affect the Bayes factor. In particular, if the value of d0 is large in relation to the values of y′MXjy
and (y − m1ιn)′(y − m1ιn) the prior will dominate the sample information, which is a rather undesirable
property. The impact of d0 on the Bayes factor also clearly depends on the units of measurement for the data
y. In the absence of (or under little) prior information, it is very difficult to choose this hyperparameter value
without using the data if we do not want to risk choosing it too large. Even using prior ideas about fit does
not help; Poirier (1996) shows that the population analog of the coefficient of determination (R2) does not
have any prior dependence on c0 or d0. Use of the information in the response variable was proposed, e.g.,
by Raftery (1996) and Raftery et al. (1997) but, as we already mentioned, we prefer to avoid this situation.
Instead we propose the following:

Since the scale parameter σ appears in all the models entertained, we can use the improper prior distri-
bution with density

p(σ) ∝ σ−1, (2.11)

which is the widely accepted non-informative prior distribution for scale parameters. Note that we have
assumed a common prior distribution for σ across models. This practice is often followed in the literature
—see e.g., Mitchell and Beauchamp, 1988, and Raftery et al., 1997— and leads to procedures with good
operating characteristics. It is easy to check that the improper prior in (2.11) results in a proper posterior
(and thus allows for a Bayesian analysis) as long as y 6= m1ιn.

The distribution in (2.11) is the only one that is invariant under scale transformations (induced by, e.g., a
change in the units of measurement) and is the limiting distribution of the Gamma conjugate prior in (2.2)
when both d0 and c0 tend to zero. This leads to the Bayes factor

Bjs =
(

g0j

g0j + 1

) kj+1
2
(

g0s + 1
g0s

) ks+1
2
(

1
g0s+1y′MXsy + g0s

g0s+1 (y −m1ιn)′(y −m1ιn)
1

g0j+1y′MXjy + g0j
g0j+1 (y −m1ιn)′(y −m1ιn)

)n
2

, (2.12)

where we have avoided the influence of the hyperparameter values c0 and d0.
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2.4. A non-informative prior for the intercept

In (2.12) there are two subjective elements that still remain, namely the choices of g0j and of m1, where
m1ιn is our prior guess for y. It is clear from (2.12) that the choice of m1 can have a non-negligible impact
on the actual Bayes factor and, under absence of prior information, it is extremely difficult to successfully
elicit m1 without using the data. The idea that we propose here is in line with our solution for the prior
on σ: since all the models have an intercept, take the usual non-informative improper prior for a location
parameter with constant density. This avoids the difficult issue of choosing a value for m1.

This setup takes us outside the natural conjugate framework, since our prior for (α, βj) no longer corre-
sponds to (2.1). Without loss of generality, we assume that

ι′nZ = 0, (2.13)

so that the intercept is orthogonal to all the regressors. This is immediately achieved by subtracting the
corresponding mean from each of them. Such a transformation only affects the interpretation of the intercept
α, which is typically not of primary interest. In addition, the prior that we next propose for α is not affected
by this transformation. We now consider the following prior density for (α, βj):

p(α) ∝ 1, (2.14)

p(βj | σ, Mj) = f
kj
N (βj | 0, σ2(g0jZ

′
jZj)

−1). (2.15)

Through (2.14)–(2.15) we assume the same prior distribution for α in all of the models and a g-prior
distribution for βj under model Mj . We again use the non-informative prior described in (2.11) for σ.
Existence of a proper posterior distribution is now achieved as long as the sample contains at least two
different observations. The Bayes factor for Mj versus Ms now is

Bjs =
(

g0j

g0j + 1

)kj/2(g0s + 1
g0s

)ks/2( 1
g0s+1y′MXsy + g0s

g0s+1 (y − yιn)′(y − yιn)
1

g0j+1y′MXjy + g0j
g0j+1 (y − yιn)′(y − yιn)

)(n−1)/2

, (2.16)

if kj ≥ 1 and ks ≥ 1. If one of the latter two quantities, e.g., kj , is zero (which corresponds to the model
with just the intercept), the Bayes factor is simply obtained as the limit of Bjs in (2.16) letting g0j tend to
infinity.

Note the similarity between the expression in (2.16) and (2.12), where we had adopted a (limiting) natural
conjugate framework. When we are non-informative on the intercept —see (2.16)— we lose, as it were, one
observation (n becomes n − 1) and one regressor (kj + 1 becomes kj). But the most important difference
is that our subjective prior guess m1 is now replaced by y, which seems quite reasonable and avoids the
sensitivity problems alluded to before. Thus, we shall, henceforth, focus on the prior given by the product of
(2.11), (2.14) and (2.15), leading to the Bayes factor in (2.16). Note that only the scalar g0j remains to be
chosen. This choice will be inspired by properties of the posterior model probabilities and predictive ability.

3. THE SIMULATION EXPERIMENT

3.1. Introduction

In this section we describe a simulation experiment to assess the performance of different choices of g0j in
finite sampling. Among other things, we will compute posterior model probabilities and evaluate predictive
ability under several choices of g0j . Our results will be derived under a Uniform prior on the model space
M. Thus, the Bayesian model will be given through (1.1), together with the prior densities in (2.11), (2.14)
and (2.15), and

P (Mj) = pj = 2−k, j = 1, . . . , 2k. (3.1)

Adopting (3.1) (as in the examples of George and McCulloch, 1993, Smith and Kohn, 1996, and Raftery et
al., 1997) is another expression of lack of substantive prior information, but we stress that there might be
cases in which other choices are more appropriate. One possibility would be to downweigh models with many
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regressors. Chipman (1996) examines prior structures that can be used to accommodate general relations
between regressors.

In all, we will analyse three models that are chosen to reflect a wide variety of situations. Creating the
design matrix of the simulation experiment for the first two models follows Example 5.2.2 in Raftery et
al. (1997). We generate an n× k (k = 15) matrix R of regressors in the following way: the first ten columns
in R, denoted by (r(1), . . . , r(10)) are drawn from independent standard Normal distributions, and the next
five columns (r(11), . . . , r(15)) are constructed from

(r(11), . . . , r(15)) = (r(1), . . . , r(5))(.3 .5 .7 .9 1.1)′(1 1 1 1 1) + E (3.2)

where E is an n× 5 matrix of independent standard Normal deviates. Note that (3.2) induces a correlation
between the first five regressors and the last five regressors. The latter takes the form of small to moderate
correlations between r(i), i = 1, . . . , 5, and r(11), . . . , r(15) (the theoretical correlation coefficients increase from
0.153 to 0.561 with i) and somewhat larger correlations between the last five regressors (theoretical values
0.740).3 After generating R, we demean each of the regressors, thus leading to a matrix Z = (z(1), . . . , z(15))
that fulfills (2.13). A vector of n observations is then generated according to one of the models

Model 1 : y = 4ιn + 2z(1) − z(5) + 1.5z(7) + z(11) + 0.5z(13) + σε, (3.3)
Model 2 : y = ιn + σε, (3.4)

where the n elements of ε are i.i.d. standard Normal and σ = 2.5. In our simulations, n takes the values 50,
100, 500, 1000, 10,000 and 100,000. Whereas Model 1 is meant to capture a more or less realistic situation
where one third of the regressors intervene (the theoretical “R2” is 0.55 for this model), Model 2 is an
extreme case without any relationship between predictors and response. A “null model” similar to the latter
was analysed in Freedman (1983) using a classical approach and in Raftery et al. (1997) through Bayesian
model averaging.

The third model considers widely varying values for k, namely k = 4, 10, 20 and 40. For each choice of
k, a similar setup to Example 4.2 in George and McCulloch (1993) was followed. In particular, we generate
k regressors as r(i) = r∗(i) + e, i = 1, . . . , k where each r∗(i) and e are n-dimensional vectors of independent
standard Normal deviates. This induces a pairwise theoretical correlation of 0.5 between all regressors.
Again, Z will denote the n × k matrix of demeaned regressors. The n observations are then generated
through

Model 3 : y = ιn +
k/2∑
h=1

z( k2 +h) + σε, (3.5)

where the n elements of ε are again i.i.d. standard Normal and now σ = 2. Choices for n will be restricted
to 100 and 1000, values of particular practical interests for many applications. The theoretical “R2” varies
from 0.43 (for k = 4) to 0.98 (for k = 40) in this model, covering a reasonable range of values.

3.2. Choices for g0j

We consider the following nine choices:

Prior a: g0j = 1
n

This prior roughly corresponds to assigning the same amount of information to the conditional prior of β
as is contained in one observation. Thus, it is in the spirit of the “unit information priors” of Kass and
Wasserman (1995) and the g-prior (using a Cauchy prior on β given σ) used in Zellner and Siow (1980).
Kass and Wasserman (1995) state that the intrinsic Bayes factors of Berger and Pericchi (1996) and the
fractional Bayes factors of O’Hagan (1995) can in some cases yield similar results to those obtained under
unit information priors.

3 This correlation structure differs from the one reported in Raftery et al. (1997), which seems in conflict with (3.2).
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Prior b: g0j = kj
n

Here we assign more information to the prior as we have more regressors in the model, i.e., we induce more
shrinkage in βj (to the prior mean of zero) as the number of regressors grows.

Prior c: g0j = k1/kj

n

Now prior information decreases with the number of regressors in the model.

Prior d: g0j =
√

1
n

This is an intermediate case, where we choose a smaller asymptotic penalty term for large models than in
the Schwarz criterion (see (A.19) in the Appendix), which corresponds to priors a-c.

Prior e: g0j =
√

kj
n

As in Prior b, we induce more shrinkage as the number of regressors grows.

Prior f: g0j = 1
(lnn)3

Here we choose g0j so as to mimic the Hannan-Quinn criterion in (A.20) with CHQ = 3 as n becomes large.

Prior g: g0j = ln(kj+1)
lnn

Now g0j decreases even slower with sample size and we have asymptotic convergence of ln Bjs to the Hannan-
Quinn criterion with CHQ = 1.

Prior h: g0j = δγ1/kj

1−δγ1/kj

This choice was suggested by Laud and Ibrahim (1996), who use a natural conjugate prior structure, sub-
jectively elicited through predictive implications. In applications, they propose to choose γ < 1 (so that g0j

increases with kj) and δ such that g0j/(1 + g0j) ∈ [0.10, 0.15] (the weight of the “prior prediction error” in
our Bayes factors); for kj ranging from 1 to 15, we cover this interval with the values γ = 0.65, δ = 0.15.

Prior i: g0j = 1
k2

This prior is suggested by the Risk Inflation Criterion (RIC) of Foster and George (1994) (see comment
below).

From the results in the Appendix, priors a-g all lead to consistency, in the sense of asymptotically selecting
the correct model, whereas priors h-i do not in general. In addition, the log Bayes factors obtained under
priors a-c behave asymptotically like the Schwarz criterion, whereas those obtained under priors f and g
behave like the Hannan-Quinn criterion, with CHQ = 3 and CHQ = 1 respectively. Priors d and e provide
an intermediate case in terms of asymptotic penalty for large models.

George and Foster (1997) show that in a linear regression model with a g-prior on the regression coefficients
and known σ2 the selection of the model with highest posterior probability is equivalent (for any sample size)
to choosing the model with the highest value for the RIC provided we take g0j = 1/k2. Whereas our model is
different (no g-prior on the intercept and unknown σ2), we still think it is interesting to examine this choice
for g0j in our context and adopt it as prior i. In the same context, George and Foster (1997) show that AIC
corresponds to choosing g0j = 0.255 and BIC (Schwarz) to g0j = 1/n. Thus, we can roughly compare AIC
to prior h where g0j takes the largest values, and the relationship between the Schwarz criterion and prior
a goes beyond mere asymptotics.

3.3. Predictive criteria

Clearly, if we generate the data from some known model, we are interested in recovering that model with
the highest possible posterior probability for each given sample size n. However, in practical situations
with real data, we might be more interested in predicting the observable, rather than uncovering some
“true” underlying structure. This is more in line with the Bayesian way of thinking, where models are
mere “windows” through which to view the world (Poirier 1988), but have no inherent meaning in terms of
characteristics of the real world. See also Dawid (1984) and Geisser and Eddy (1979).

Forecasting is conducted conditionally upon the regressors, so we will generate q k-dimensional vectors
zf , f = 1, . . . , q, given which we will predict the observable y. In empirical applications, zf will typically
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be constructed from some original value rf from which we subtract the mean of the raw regressors R in
the sample on which inference is based. This ensures that the interpretation of the regression coefficients in
posterior and predictive inference is compatible.

In this subsection, it will prove useful to make the conditioning on the regressors in zf and Z explicit in
the notation. The out-of-sample predictive distribution for f = 1, . . . , q will be characterized by

p(yf | zf , y, Z) =
2k∑
j=1

f1
S(yf | n− 1, y +

1
g0j + 1

z′f,jβ
∗
j ,

n− 1
d∗j
{1 +

1
n

+
1

g0j + 1
z′f,j(Z

′
jZj)

−1zf,j}−1)P (Mj | y, Z),

(3.6)

where y is based on the inference sample y = (y1, . . . , yn)′, zf,j groups the j elements of zf corresponding to
the regressors in Mj , β∗j = (Z ′jZj)

−1Z ′jy and

d∗j =
1

g0j + 1
y′MXjy +

g0j

g0j + 1
(y − yιn)′(y − yιn) (3.7)

The term in (3.6) corresponding to the model with only the intercept is obtained by letting the corresponding
g0j tend to infinity.

The log predictive score is a proper scoring rule introduced by Good (1952). Some of its properties are
discussed in Dawid (1986). For each value of zf we shall generate a number, say v, of responses from the
underlying true model ((3.3), (3.4) or (3.5)) and base our predictive measure on (3.6) evaluated in these
out-of-sample observations yf1, . . . , yfv, namely:

LPS(zf , y, Z) = −1
v

v∑
i=1

ln p(yfi | zf , y, Z), (3.8)

It is clear that a smaller value of LPS(zf , y, Z) makes a Bayes model (thus, in our context, a prior choice for
g0j) preferable. Madigan, Gavrin and Raftery (1995) give an interpretation for differences in log predictive
scores in terms of one toss with a biased coin.

More formally, the criterion in (3.8) can be interpreted as an approximation to the expected loss with
a logarithmic rule, which is linked to the well-known Kullback-Leibler criterion. The Kullback-Leibler
divergence between the actual sampling density p(yf | zf ) in (3.3), (3.4) or (3.5) and the out-of-sample
predictive density in (3.6) can be written as

KL{p(yf | zf ), p(yf | zf , y, Z)} =
∫
<
{ln p(yf | zf )}p(yf | zf )dyf−∫
<
{ln p(yf | zf , y, Z)}p(yf | zf )dyf ,

(3.9)

where the first integral is the negative entropy of the sampling density, and the second integral can be
seen as a theoretical counterpart of (3.8) for a given value of zf . This latter integral can easily be shown
to be finite in our particular context and is now approximated by averaging over v values for yfi given a
particular vector of regressors zf . For the Normal sampling model used here, the negative entropy is given
by − 1

2{ln(2πσ2) + 1} = −2.335 for our choice of σ in (3.3) and (3.4), and -2.112 for (3.5), regardless of zf .
By the nonnegativity of the Kullback-Leibler divergence, this constitutes a lower bound for LPS(zf , y, Z)
of 2.335 or 2.112.

We can also investigate the calibration of the predictive and compare the entire predictive density function
in (3.6) with the known sampling distribution of the response in (3.3),(3.4) or (3.5) given a particular (fixed)
set of regressor variables. The fact that such predictions are, by the very nature of our regression model,
conditional upon the regressors does complicate matters slightly. We cannot simply compare the sampling
density averaged over different values of zf with the averaged predictive density function. It is clearly crucial
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to identify predictives with the value of zf they condition on. Predicting correctly “on average” can mask
arbitrarily large errors in conditional predictions, as long as they compensate each other. For Model 1, we
shall graphically present comparisons of the sampling density and the predictive density for three key values
of zf within our sample of q predictors: the one leading to the smallest mean of the sampling model in
(3.3), the one leading to the median value and the one giving rise to the largest value. In addition, we
have computed quantiles of LPS and of predictive coverage over the different values of zf as well. These
latter measures of predictive performance naturally compare each predictive with the corresponding sampling
distribution (i.e., taking the value of zf into account), so that an overall measure can readily be computed.

4. SIMULATION RESULTS

4.1. Convergence and implementation

The implementation of the simulation study described in the previous section will be conducted through the
MC3 methodology mentioned in Section 1. This Metropolis algorithm generates a new candidate model, say
Mj , from a Uniform distribution over the subset of M consisting of the current state of the chain, say Ms,
and all models containing either one regressor more or one regressors less than Ms. The chain moves to Mj

with probability min(1, Bjs), where Bjs is the Bayes factor in (2.16).
In order to evaluate the posterior model probabilities we can simply count the relative frequencies of

model visits in the induced Markov chain. A somewhat more interesting alternative to this strategy is to
use the actual Bayes factors, already computed in running the chain to compare all visited models. Since
the number of visited models is typically a small subset of the total number of possible models, this method
is feasible. This idea is called “window estimation” in Clyde, Desimone and Parmigiani (1996) and Lee
(1996) mentions it as “Bayesian Random Search” (BARS). The generated chain is then effectively only used
to indicate which models should be considered in computing Bayes factors. All other (non-visited) models
will implicitly be assumed to have zero posterior probability. This has two advantages: firstly, it is clearly
more precise than relative frequencies, since the Bayes factors in (2.16) are exact and don’t require any
ergodic properties. Clyde et al. (1996) provide some empirical support for this claim. Secondly, comparing
empirical relative frequencies with exact Bayes factors will give a good indication of the convergence of the
chain. We shall report results based on Bayes factors, but we ran the chain for long enough to get virtually
the same answers with empirical model frequencies. This was obtained with 50,000 recorded draws after a
burn-in of 20,000 draws. A useful diagnostic to assess convergence of the Markov chain is the correlation
coefficient of the model probabilities based on the exact Bayes factors computed through (2.16) and the
relative frequencies of model visits. In our simulation experiment, this correlation coefficient was typically
above 0.99. If we are interested in estimating how much of the total probability mass we have captured in
the visited models, we can compare exact Bayes factors and relative frequencies of a prespecified subset of
models in the way indicated in George and McCulloch (1997, Subsection 4.5).

In order to avoid results depending on the particular sample analyzed, we have generated 100 independent
samples (y, Z) according to the setup described in Section 3. Frequently, results will be presented in the
form of either means and standard deviations or quantiles computed over these 100 samples. Sample sizes
(i.e., values of n) used in the simulation are as indicated in Subsection 3.1. Furthermore, we generate q = 19
different vectors of regressors zf for the forecasts of Models 1 and 3, whereas q = 5 for Model 2. For each of
these values of the vector zf , v = 100 out-of-sample observations will be generated.4

Due to space limitations, we will only present the most relevant findings in detail, and will briefly sum-
marize the remaining results.

4 As such a simulation study is quite CPU demanding, we put a good deal of emphasis on efficient coding and speed of
execution. We coded in standard Fortran 77, and we used stacks to store information pertaining to evaluated models in order
to reduce the number of calculations. On a PowerMacintosh 7600, each 20,000–50,000 chain for Model 1 would take an average
(over priors) time in seconds of: 209, 58, 15, 5, 18, and 117; for n = 50, 100, 500, 1000, 10,000 and 100,000. Since the number
of visited models (and thus, the number of marginal likelihood calculations) will typically decrease with n, CPU requirements
are not monotone in sample size.
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4.2. Posterior model inference

4.2.1. Results under Model 1
One of the indicators of the performance of the Bayesian methodology is the posterior probability assigned
to the model that has generated the data. Ideally, one would want this probability to be very high for
small or moderate values of n that are likely to occur in practice. Table 1 presents the means and standard
deviations across the 100 samples of (y, Z) for the posterior probability of the true model (Model 1). Columns
correspond to the six sample sizes used and rows order the different priors introduced in Subsection 3.2. In
order to put these results in a better perspective, note that the prior model probability of each of the
215 possible models is equal and amounts to 3.052 · 10−5. We know from the theoretical results in the
Appendix (Subsection A.1) that priors a-g are consistent. From Subsection A.2, we remain inconclusive
about consistency under prior h, and we know prior i will asymptotically allocate mass to models that nest
the true model. Our simulation results suggest that consistency holds for prior h (but, indeed, not for prior
i) in our particular example. It is clear from Table 1 that the posterior probability of Model 1 varies greatly
in finite samples. Whereas prior e already performs very well for n = 1000, getting average probabilities
of the correct model upwards of 0.97, prior d only obtains a probability of 0.36 with a sample as large as
100,000. This result is all the more striking, since the asymptotic behaviour with both priors is the same,
and they are clearly very related. This underlines the inherent sensitivity of Bayes factors to the particular
choice of g0j . In view of this poor performance in a critical issue, we will often not give explicit results for
prior d in the sequel. Prior i does very well for small sample sizes, but then seems to taper off for values of
n ≥ 1000 at a moderate probability for the true model around 0.3. Apart from the absolute probability of
the correct model, it is also important to examine how much posterior weight is assigned to Model 1 relative
to other models. Therefore, Table 2 presents quartiles of the ratio between the posterior probability of the
correct model and the highest posterior probability of any other model. It is clear that in most cases this
ratio tends to be far above unity, which is reassuring as it tells us that the most favoured model will still
be the correct one, even though it may not have a lot of posterior mass attached to it. For example, with
n = 50 prior g only leads to a mean posterior probability of Model 1 of 0.002 but still favours the correct
model to the next best. In fact, the correct model is always favoured in at least 75 of the 100 samples, even
for small sample sizes. Note that this compares favourably to results in George and McCulloch (1993).

Table 1. Model 1: Means and Stds of the posterior probability of the true model.
n 50 100 500 1000 10,000 100,000

Prior Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

a 0.0128 0.0197 0.0575 0.0618 0.4013 0.1521 0.5293 0.1401 0.8111 0.0928 0.9254 0.0760

b 0.0066 0.0091 0.0332 0.0338 0.3083 0.1337 0.4407 0.1373 0.7601 0.1064 0.9048 0.0841

c 0.0110 0.0159 0.0519 0.0533 0.3603 0.1441 0.4860 0.1374 0.7853 0.0999 0.9145 0.0804

d 0.0028 0.0029 0.0093 0.0082 0.0541 0.0351 0.0786 0.0425 0.2051 0.0874 0.3625 0.1204

e 0.0029 0.0026 0.0205 0.0188 0.7487 0.1745 0.9730 0.0196 1.0000 0.0000 1.0000 0.0000

f 0.0141 0.0223 0.0586 0.0616 0.2948 0.1307 0.3610 0.1251 0.5139 0.1327 0.5981 0.1327

g 0.0020 0.0014 0.0128 0.0107 0.4805 0.3793 0.7762 0.3421 1.0000 0.0000 1.0000 0.0000

h 0.0026 0.0026 0.0069 0.0056 0.0728 0.0376 0.2773 0.0864 1.0000 0.0000 1.0000 0.0000

i 0.0295 0.0446 0.0961 0.1014 0.2857 0.1284 0.3061 0.1103 0.3094 0.1115 0.3067 0.1161

Table 2. Model 1: Quartiles of ratio of posterior probabilities; True Model vs Best among the rest.
n 50 100 500 1000 10,000

Prior Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

a 1.5 3.2 6.3 3.0 5.8 8.6 3.5 13.5 20.0 9.1 19.0 29.8 27.6 67.8 90.5

b 1.1 2.6 4.2 2.2 4.1 6.2 5.5 10.8 15.3 9.6 16.6 22.1 16.6 36.3 66.3

c 1.2 3.4 5.8 2.0 5.1 8.3 7.6 13.7 18.5 7.0 13.8 22.9 26.3 55.9 73.6

e 1.6 2.7 3.5 1.9 3.8 5.8 18.8 53.6 73.6 226.5 416.4 629.4 ∞ ∞ ∞
f 1.7 4.0 7.0 2.0 4.4 8.7 5.1 10.9 14.1 4.7 9.2 16.5 9.7 19.7 24.9

g 1.4 2.3 3.3 1.4 3.9 5.1 6.3 53.9 250.2 11.4 238.7 3625.8 ∞ ∞ ∞
h 1.2 2.3 2.8 1.9 2.8 3.9 2.9 4.9 5.7 5.9 10.6 12.9 ∞ ∞ ∞
i 1.1 4.3 9.8 2.1 6.5 12.5 4.3 8.8 12.8 4.8 8.4 13.0 6.0 10.9 14.6
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Table 3. Model 1: Means and Stds of Number of Models Visited.
n 50 100 1000 10,000 100,000

Prior Mean Std Mean Std Mean Std Mean Std Mean Std

a 2230 637 1123 290 134 29 49 11 20 5

b 4478 1347 1994 615 206 46 66 16 25 7

c 2475 711 1252 317 148 32 53 11 21 5

e 7159 1549 2810 838 15 4 1 0 1 0

f 2056 596 1158 301 237 47 151 37 110 24

g 8677 1608 3555 1204 3 1 1 0 1 0

h 5480 1353 3322 809 654 89 1 0 1 0

i 1176 451 758 222 288 51 288 55 287 53

Table 3 records means and standard deviations of the number of visited models in the 50,000 recorded
draws of the chain in model space (i.e., after the burn-in). Given that the model that generated the data is
one of the 215 = 32, 768 possible models examined, we would want this to be as small as possible. For n = 50
it is clear that the sample information is rather weak, allowing the chain to wander around and visit many
models: as much as around a quarter of the total amount of models for prior g, and never less than 3.5% on
average (prior i). The sampler visits fewer models as n increases, and for n = 1000 we already have very few
visited models for prior g in particular and also for e. Of course, depending on the field of application, 1000
observations may well be considered quite a large sample. When 10,000 observations are available, that is
enough to make the sampler stick to one model (the correct one) for priors e, g and h. Surprisingly, whereas
prior h still leads to very erratic behaviour of the sampler with n = 1000, it never fails to put all the mass
on the correct model for the larger sample sizes. Even with 100,000 observations, priors d and f (though
consistent) still make the sampler visit 240 and 110 models on average. For prior i this is as high as 287
models.

Table 4 indicates in what sense the different Bayesian models tend to err if they assign posterior probability
to alternative sampling models. In particular, Table 4 presents the means and standard deviations of the
posterior probabilities of including each of the regressors. As we know from (3.3), Model 1 contains regressors
1,5,7,11 and 13 (indicated with arrows in Table 4). To save space, we shall only report these results for n = 50
and n = 1000, and we will not include prior c (for which results were virtually identical to prior a) and prior
d. When n = 50, regressors z(1) and z(7) are almost always included. Since they are (almost) orthogonal to
the other regressors, and their regression coefficients are rather large in absolute value, this is not surprising.
Regressor z(11) is only correlated with z(13) and is still often included. The most difficult are regressors 5 and
13, which are positively correlated, and have relatively small regression coefficients of opposite signs. The
posterior probabilities of including regressors not contained in the correct model are all relatively small. Note
that this is exactly where prior i excels, as the posterior probabilities of including incorrect regressors are
much smaller than for the other priors. What is not clearly exemplified by Table 4 is that most priors tend
to choose alternatives that are nested by Model 1 for small sample sizes, with the exception of priors d and
h, which put considerable posterior mass on models that nest the correct sampling model. Table 4 informs
us that for n = 1000 the correct regressors are virtually always included. Only prior g has a tendency to
choose models that are nested by Model 1. For the other priors there remain small probabilities of incorrectly
including extra regressors (the smallest for prior e and the largest for priors d and h). Alternative models
tend to nest the correct model for all priors, except prior g, with this and larger sample sizes.

4.2.2. Results under Model 2
Let us now briefly present the results when the data are generated according to Model 2 in (3.4), the null
model. Table 5 presents means and standard deviations of the posterior probability of the null model. It is
clear that this is not an easy task (see also the discussion in Freedman, 1983 and Raftery et al., 1997) and
most priors lead to small probabilities of selecting the correct model. Overall, prior i does best for small
sample sizes (followed by priors a and f), whereas larger sample sizes are most favourable to priors a and b.
The behaviour of prior i is quite striking: it appears that sample size has very little influence of the posterior
probability of the correct model, making it a clear winner for values of n ≤ 100. Note that the other prior
where g0j does not depend on sample size, prior h, also has a posterior probability of the null model that
is roughly constant in n (but now at a very low level). Despite the rather small posterior probabilities of
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Table 4. Model 1: Means and Stds of Posterior Probabilities of Including each regressor.
n = 50

Prior a b e f g h i

Reg. Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

→1 0.98 0.07 0.98 0.07 0.97 0.09 0.98 0.07 0.96 0.09 0.98 0.06 0.98 0.10

2 0.22 0.17 0.29 0.14 0.33 0.10 0.21 0.17 0.35 0.09 0.36 0.13 0.13 0.13

3 0.25 0.18 0.31 0.14 0.35 0.11 0.24 0.18 0.37 0.10 0.38 0.13 0.15 0.12

4 0.27 0.19 0.33 0.15 0.37 0.11 0.25 0.19 0.39 0.10 0.40 0.13 0.21 0.21

→ 5 0.42 0.27 0.44 0.22 0.43 0.15 0.40 0.27 0.43 0.13 0.50 0.19 0.41 0.30

6 0.22 0.16 0.28 0.13 0.32 0.09 0.21 0.15 0.34 0.08 0.35 0.13 0.10 0.10

→7 0.94 0.14 0.94 0.13 0.90 0.15 0.94 0.15 0.87 0.15 0.94 0.12 0.86 0.22

8 0.22 0.16 0.29 0.14 0.32 0.10 0.21 0.15 0.34 0.08 0.36 0.13 0.13 0.14

9 0.21 0.14 0.28 0.12 0.32 0.08 0.20 0.14 0.34 0.07 0.35 0.11 0.12 0.11

10 0.21 0.14 0.28 0.12 0.32 0.08 0.20 0.13 0.34 0.07 0.35 0.11 0.11 0.08

→11 0.82 0.25 0.81 0.22 0.76 0.19 0.81 0.25 0.74 0.18 0.82 0.20 0.73 0.30

12 0.24 0.19 0.30 0.15 0.34 0.11 0.23 0.19 0.36 0.09 0.37 0.14 0.15 0.15

→13 0.39 0.27 0.43 0.23 0.44 0.18 0.38 0.27 0.45 0.15 0.49 0.20 0.33 0.28

14 0.27 0.22 0.32 0.19 0.36 0.13 0.25 0.22 0.37 0.11 0.39 0.16 0.15 0.16

15 0.22 0.15 0.28 0.12 0.33 0.08 0.21 0.15 0.35 0.07 0.36 0.11 0.15 0.16

n = 1000

Prior a b e f g h i

Reg. Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

→1 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

2 0.07 0.11 0.09 0.12 0.00 0.01 0.11 0.13 0.00 0.00 0.16 0.10 0.11 0.07

3 0.06 0.08 0.08 0.08 0.00 0.01 0.09 0.09 0.00 0.00 0.15 0.07 0.11 0.08

4 0.05 0.06 0.07 0.07 0.00 0.01 0.08 0.08 0.00 0.00 0.14 0.06 0.10 0.07

→ 5 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.88 0.26 1.00 0.00 1.00 0.00

6 0.07 0.08 0.09 0.09 0.00 0.00 0.10 0.10 0.00 0.00 0.16 0.08 0.11 0.11

→7 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

8 0.06 0.07 0.08 0.08 0.00 0.00 0.10 0.10 0.00 0.00 0.15 0.08 0.10 0.06

9 0.06 0.06 0.08 0.08 0.00 0.00 0.10 0.09 0.00 0.00 0.15 0.07 0.11 0.09

10 0.06 0.07 0.08 0.08 0.00 0.00 0.10 0.09 0.00 0.00 0.15 0.07 0.12 0.13

→11 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

12 0.06 0.10 0.08 0.10 0.00 0.01 0.09 0.10 0.00 0.00 0.15 0.09 0.11 0.13

→13 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.78 0.34 1.00 0.00 1.00 0.00

14 0.05 0.04 0.07 0.05 0.00 0.00 0.08 0.06 0.00 0.00 0.14 0.05 0.13 0.14

15 0.06 0.07 0.07 0.08 0.00 0.00 0.09 0.09 0.00 0.00 0.14 0.07 0.11 0.07

the null model, the latter is still typically favoured over the second best model. This is evidenced by Table
6, where the three quartiles of the ratio of the posterior probabilities of Model 2 and the best other model
are presented. Only prior g for n ≤ 1000 leads to a first quartile below unity. Clearly, prior i does best for
n ≤ 100 and prior a does best for larger n. The difficulty of pinning down the correct (null) model can also
be inferred from the number of visited models (not presented in detail). Some priors (like d, e, g and h)
make the chain wander a lot for small sample sizes. Priors g and h retain this problematic behaviour even
for sample sizes as large as 100,000. Interestingly, whereas prior g leads to (very slow) improvements as n
increases, the bad behaviour with prior h seems entirely unaffected by sample size, as remarked above. Of
course, we know from the theory in the Appendix that priors h and i do not lead to consistent Bayes factors
in this case. Whereas prior h visits on average about 12,500 models for any sample size, prior i visits around
one tenth of that. The number of models visited is relatively small for priors i and a, which seem to emerge
as the clear winners from the posterior results under Model 2, respectively for small and large values of n.
4.2.3. Results under Model 3
Now the setup of the experiment is slightly different, as we contrast various model sizes (in terms of k) and
only two sample sizes. We would expect that the task of identifying the true model becomes harder as k
increases, since the total number of models in M increases dramatically from 16 (for k = 4) to 1.1 × 1012
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Table 5. Model 2: Means and Stds of the posterior probability of the true model.
n 50 100 500 1000 10,000 100,000

Prior Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

a 0.0320 0.0269 0.0722 0.0494 0.2707 0.1338 0.3812 0.1543 0.7199 0.1346 0.8995 0.0529

b 0.0021 0.0028 0.0114 0.0124 0.1394 0.1055 0.2606 0.1506 0.6910 0.1441 0.8960 0.0568

c 0.0099 0.0081 0.0238 0.0157 0.0994 0.0505 0.1494 0.0715 0.4148 0.1201 0.7080 0.1009

e 0.0003 0.0003 0.0006 0.0006 0.0034 0.0036 0.0066 0.0066 0.0427 0.0300 0.1570 0.0938

f 0.0407 0.0322 0.0764 0.0492 0.1787 0.0959 0.2216 0.1050 0.3569 0.1220 0.4733 0.1235

g 0.0001 0.0002 0.0002 0.0002 0.0005 0.0005 0.0005 0.0006 0.0009 0.0008 0.0014 0.0015

h 0.0010 0.0012 0.0011 0.0012 0.0016 0.0015 0.0014 0.0014 0.0013 0.0011 0.0014 0.0014

i 0.1599 0.0862 0.1658 0.0842 0.1833 0.0870 0.1790 0.0891 0.1780 0.0886 0.1862 0.0815

Table 6. Model 2: Quartiles of ratio of posterior probabilities; True Model vs Best among the rest.
n 50 100 1000 10,000 100,000

Prior Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

a 2.4 4.4 7.0 3.1 6.2 9.2 6.0 16.1 24.8 30.0 60.0 86.2 78.7 202.4 272.1

b 2.1 5.2 7.0 3.7 6.7 9.7 7.4 22.1 28.9 18.4 45.7 79.6 64.1 153.8 253.2

c 1.3 1.8 2.1 1.2 2.2 2.7 2.0 4.1 7.1 6.3 15.2 21.8 16.1 40.3 70.2

e 1.1 2.1 2.8 1.2 2.5 3.2 2.2 3.9 5.2 3.1 6.6 9.4 6.1 11.2 16.7

f 2.4 5.3 7.5 3.5 6.8 9.3 4.9 11.4 17.5 8.1 15.7 25.3 12.9 26.9 36.2

g 0.5 1.5 2.6 0.6 1.6 2.6 0.9 2.3 3.2 1.3 2.6 3.5 1.8 3.4 4.2

h 1.2 2.3 3.2 1.3 2.5 3.2 1.3 2.7 3.2 1.7 2.7 3.5 1.6 2.5 3.1

i 4.2 8.2 13.4 5.5 10.7 13.7 4.6 9.8 14.3 6.3 10.6 14.1 4.3 9.2 14.4

(for k = 40). Of course, this may be partly offset by the fact that σ remains the same, so that the theoretical
coefficient of determination grows with k. Table 7 and 8 present the posterior probability of Model 3 in (3.5)
with n = 100 and n = 1000 observations, respectively. The first thing to notice from Table 7 is that priors
where g0j increases with kj (priors b, e, g and h) suffer a large drop in performance as the true model (and
k) become large (k ≥ 20 and even k = 10 for prior g). Interestingly, prior i, which is decreasing in k does
not suffer from this, and performs quite well for n = 100. In fact, priors a, f and i all do remarkably well
in identifying the true model from a very large model space on the basis of a mere 100 observations. The
results for k = 40 appear less convincing, but we have to bear in mind that the posterior probability of the
correct model multiplies the corresponding prior probability by more than 1 · 1010 with these priors.

Table 7. Model 3: Means and Stds of the posterior probability of the true model, n = 100.
k 4 10 20 40

Prior Mean Std Mean Std Mean Std Mean Std

a 0.6993 0.1616 0.4016 0.1263 0.1745 0.0772 0.0111 0.0113

b 0.6562 0.1570 0.5970 0.1908 0.0007 0.0020 0.0000 0.0000

c 0.6408 0.1648 0.3034 0.1042 0.1116 0.0516 0.0097 0.0086

d 0.4599 0.1301 0.1589 0.0430 0.0115 0.0048 0.0000 0.0000

e 0.7269 0.1210 0.1947 0.1103 0.0000 0.0001 0.0000 0.0000

f 0.6971 0.1618 0.3986 0.1256 0.1722 0.0761 0.0107 0.0107

g 0.8036 0.1059 0.0604 0.0439 0.0000 0.0000 0.0000 0.0000

h 0.5503 0.1274 0.1676 0.0421 0.0035 0.0015 0.0000 0.0000

i 0.5084 0.1442 0.4015 0.1262 0.3145 0.1352 0.0949 0.1074

When we consider Table 8, corresponding to n = 1000, we note that most priors benefit from the larger
sample size. Only prior i leads to virtually the same posterior probabilities as with the smaller sample
(except for large k). In line with the larger sample size n, the drop in posterior probability for the priors
with g0j increasing in kj now tends to occur at a higher value of k than in Table 7.
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Table 8. Model 3: Means and Stds of the posterior probability of the true model, n = 1000.
k 4 10 20 40

Prior Mean Std Mean Std Mean Std Mean Std

a 0.8794 0.0857 0.7029 0.1483 0.5349 0.1272 0.2366 0.1699

b 0.8560 0.0991 0.9515 0.0690 1.0000 0.0000 0.6499 0.4769

c 0.8452 0.1013 0.6081 0.1509 0.3950 0.1188 0.1853 0.0788

d 0.5896 0.1451 0.2780 0.0918 0.1208 0.0325 0.0459 0.0054

e 0.9979 0.0023 1.0000 0.0000 0.9395 0.2374 0.0000 0.0000

f 0.8110 0.1161 0.5744 0.1495 0.3755 0.1127 0.1972 0.0685

g 1.0000 0.0000 1.0000 0.0001 0.0015 0.0036 0.0000 0.0000

h 0.9958 0.0035 0.9357 0.0164 0.1731 0.1957 0.0222 0.0070

i 0.5150 0.1349 0.4174 0.1305 0.4030 0.1172 0.3170 0.1856

4.3. Predictive inference

4.3.1. Results under Model 1

As discussed in Subsection 3.3 we shall condition our predictions on values of the regressors zf . In all, we
choose q = 19 different vectors for these regressors, and we shall focus especially on those vectors that lead
to the minimum, median and maximum value for the mean of the sampling model. We shall denote these
regressors as zmin, zmed and zmax, respectively. In our particular case, zmin will be more extreme than zmax
for Model 1. For Model 3, both are roughly equally extreme.

Table 9. Model 1: Conditional Medians of LPS(zf , y, Z).
n 50 100 1000 10,000 100,000

zmin zmed zmax zmin zmed zmax zmin zmed zmax zmin zmed zmax zmin zmed zmax
a 2.471 2.425 2.428 2.391 2.389 2.391 2.334 2.355 2.348 2.330 2.352 2.347 2.331 2.350 2.345

b 2.480 2.422 2.431 2.409 2.390 2.385 2.334 2.355 2.347 2.330 2.352 2.347 2.331 2.350 2.345

c 2.471 2.424 2.433 2.397 2.389 2.389 2.334 2.355 2.347 2.330 2.352 2.347 2.331 2.350 2.345

e 2.691 2.448 2.475 2.507 2.406 2.410 2.358 2.356 2.354 2.332 2.351 2.347 2.332 2.351 2.345

f 2.474 2.428 2.428 2.393 2.389 2.391 2.333 2.355 2.347 2.329 2.352 2.346 2.331 2.350 2.345

g 2.836 2.470 2.530 2.636 2.423 2.463 2.475 2.378 2.412 2.444 2.371 2.391 2.417 2.362 2.379

h 2.492 2.430 2.440 2.450 2.392 2.395 2.418 2.362 2.381 2.423 2.367 2.382 2.422 2.364 2.382

i 2.488 2.421 2.428 2.392 2.389 2.392 2.333 2.355 2.347 2.329 2.352 2.346 2.332 2.350 2.345

Firstly, Table 9 presents the median of LPS(zf , y, Z) in (3.8), computed across the 100 samples (y, Z),
conditionally upon the three vectors of regressors mentioned above. In interpreting these numbers, it is
useful to recall that the theoretical minimum of the integral corresponding to LPS is 2.335, as explained
in Subsection 3.3. Of course, LPS in (3.8) is only a Monte Carlo approximation to this integral (based on
a mere 100 draws), so this lower bound is not always strictly adhered to. The Monte Carlo (numerical)
standard error corresponding to the numbers in Table 9 is roughly equal to 0.02 for n = 50, decreases to
about 0.01 for n = 100 and then quickly settles down at about 0.007 as n becomes larger. Under priors a,
b, c, f and i we are predicting the sampling density virtually exactly with samples of size n = 1000 or more.
These same priors also lead to the best results for smaller n. Prior e performs worse for small samples, while
priors g and h tend to be even further from the actual sampling density and do not lead to perfect prediction
even with 100,000 observations.

In order to find out more about the differences between the predictive density in (3.6) and the sampling
density in (3.3), we can overplot both densities for the three values of zmin, zmed and zmax. Figure 1 displays
this comparison for different values of n and the predictives for 25 of the 100 generated samples (to avoid
cluttering the graphs). The drawn line corresponds to the actual sampling density. Since the predictives
from priors a-c, f and i are very close for all sample sizes, we shall only present the graphs for priors a,
e, g and h. It is clear that for n = 50 substantial uncertainty remains about the predictive distribution:
different samples can lead to rather different predictives. They are, however fairly well calibrated in that
they tend to lie on both sides of the actual sampling density for priors a, b, c, f and i and there is no clear
tendency towards a different degree of concentration. These are exactly the priors for which g0j takes on
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Fig. 1. Model 1: Predictive densities, n = 50, 100, 1000, and 10,000.

fairly small values (for prior i g0j = 0.0044 and for the others it is in between 0.02 and 0.08). Priors e, g and
h lead to much larger values for g0j (in the range 0.16 to 0.41) and show a clear tendency for the predictive
densities to be somewhat biased towards the median when conditioning on zmin and zmax. In addition, these
priors induce predictives that are, on average, less concentrated than the sampling density, even for very
large sample sizes. This behaviour can easily be understood once we realize that the location of (3.6) (the
posterior mean of α + z′f,jβj) is clearly shrunk more towards the sample mean ȳ as g0j becomes larger. This
is, of course, in accordance with the zero prior mean for βj and the g-prior structure in (2.15). In addition,
predictive precision decreases with g0j , which explains the systematic excess spread of the predictives with
respect to the sampling density for priors e, g and h. As sample size increases, the predictive distributions
get closer and closer to the actual sampling distribution, and for n = 1000 or larger the effect of shrinkage
due to g0j has become negligible for prior e (g0j is then equal to 0.07 for kj = 5) whereas it persists for
priors g and h even with 100,000 observations (where g0j takes the value 0.14 and 0.16, respectively). The
graph for the latter case is not presented in Figure 1, but it is very close to that with n = 10, 000.

We can also compare overall predictive performance, through considering LPS(zf , y, Z) for the 19 different
values of zf and the 100 samples of (y, Z). This leads to the results presented in Table 10, where the medians
(computed across the 1900 sample-zf combinations) are recorded for the different priors and sample sizes.
Monte Carlo standard errors corresponding to the entries in Table 10 are approximately 0.005 for n = 50,
about 0.0025 for n = 100 and decrease to around 0.0015 for larger n. Clearly, whereas all priors except for
priors e and g lead to comparable predictive behaviour for very small n, the fact that g0j is large and constant
in n makes prior h lose ground with respect to the other priors as n increases. Prior g always performs worse
than priors a through f and prior i. Note that the latter priors lead to median LPS values that are roughly
equal to the theoretical minimum of 2.335, implying perfectly accurate prediction, for n ≥ 10, 000 (which
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Table 10. Model 1: Medians of LPS(zf , y, Z).

n 50 100 1000 10,000 100,000

a 2.427 2.382 2.339 2.334 2.333

b 2.427 2.383 2.339 2.334 2.333

c 2.424 2.381 2.339 2.334 2.333

e 2.473 2.416 2.347 2.336 2.334

f 2.428 2.382 2.339 2.334 2.333

g 2.502 2.452 2.393 2.374 2.363

h 2.433 2.452 2.369 2.367 2.366

i 2.428 2.382 2.339 2.334 2.334

may, of course, be quite a large sample size for some applications). Priors a-c, f and i perform best overall,
and are already quite close to perfect prediction for n = 1000.

In addition, we can compare the percentiles of the sampling distribution and the predictive in (3.6).
We have computed the predictive percentiles corresponding to the 1st, 5th, 25th, 50th, 75th, 95th, and 99th

sampling percentile. The quartiles of these numbers, calculated over all 1900 sample-zf combinations, confirm
that priors a-c, f and i lead to better predictions for small sample sizes, where the predictives from e, g and h
are too spread out. Starting at n = 1000, prior e predicts well, whereas the inaccurate predictions with priors
g and h persist even for very large sample sizes. For space considerations, these results are not presented
here, but are obtainable upon request from the authors. In addition, Figure 1 shows that most of the spread
in the percentiles for priors g and h with n ≥ 10, 000 is due to the bias towards the median (shrinkage).

4.3.2. Results under Model 2
As mentioned in Subsection 4.2.2, it is hard to correctly identify the null model when we generate the data
from such a model. On the other hand, prediction seems much easier than model choice. This can imme-
diately be deduced from predictive percentiles (not reported, but obtainable upon request). The incorrectly
chosen models are such that they do not lead our predictions (averaged over all the chosen models as in (3.6))
far astray. Even with just 50 observations median predictions are virtually exact, and the spread around
these values is relatively small. Moreover, this behaviour is encountered for all priors. When sample size is
up to 1000, prediction is near perfect for all priors. For this model the issue of shrinkage is, of course, less
problematic.

4.3.3. Results under Model 3
Table 11 presents the medians of the conditional LPS(zf , y, Z) as in (3.8), computed with v = 100 out-
of-sample observations. The theoretical minimum corresponding to perfect prediction is 2.112, and Monte
Carlo standard errors for the numbers in Table 11 are of the order 0.008 for k = 4 and vary from 0.01 to
0.04 for k = 40. The most obvious finding from Table 11 is the poor performance of priors e, g and h, which
correspond to the largest values of g0j . These priors, as well as prior b, do progressively worse as k increases
since g0j is an increasing function of kj . The best forecasting performance is observed for priors a, c, f and
i, which all do a very good job, even in the context of a very large model set.

Table 11. Model 3: Conditional Medians of LPS(zf , y, Z), n = 100
k 4 10 20 40

zmin zmed zmax zmin zmed zmax zmin zmed zmax zmin zmed zmax
a 2.151 2.110 2.138 2.154 2.139 2.168 2.220 2.218 2.224 2.555 2.453 2.490

b 2.153 2.111 2.133 2.200 2.164 2.202 2.646 2.529 2.588 3.365 3.161 3.226

c 2.153 2.111 2.136 2.160 2.142 2.168 2.227 2.223 2.230 2.574 2.467 2.492

d 2.173 2.113 2.151 2.244 2.195 2.287 2.592 2.502 2.562 3.215 3.076 3.120

e 2.192 2.120 2.171 2.449 2.293 2.584 3.089 2.802 3.003 3.802 3.422 3.764

f 2.151 2.110 2.138 2.154 2.140 2.168 2.221 2.218 2.224 2.557 2.461 2.497

g 2.240 2.129 2.221 2.615 2.395 2.883 3.328 2.916 3.237 4.034 3.552 4.024

h 2.193 2.119 2.169 2.341 2.248 2.434 2.832 2.648 2.769 3.434 3.251 3.409

i 2.155 2.113 2.133 2.154 2.139 2.168 2.212 2.219 2.232 2.472 2.401 2.471
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4.4. Recommendations

On the basis of the posterior and predictive results mentioned above, we can offer the following advice to
practitioners, although we stress that it is probably impossible to recommend a choice for g0j that performs
optimally in all situations. Nevertheless, it appears that a strategy using prior i for the smallest values of n,
in particular where n ≤ k2, and prior a for those cases where n > k2 would do very well in most situations.
It would actually lead to the best or close to the best results in all comparisons made above. The only
substantial improvement to that strategy would be to choose prior e instead of prior a for Model 1. Whereas
prediction would be slightly less good, posterior probabilities of the true model would be quite a bit higher.
A similar, but less clear-cut, trade-off can be observed for Model 3. However, this strategy appears more
risky, as it would lead to a dramatic fall in performance for Model 2 on the same criterion (see Table 5). Of
course, Model 2 might be considered a very unusual situation, so that some practitioners may well adopt
this more risky strategy, especially if they are more interested in posterior results, rather than in predicting.
As a general recommendation, however, we would propose the “safe” strategy.

Note that the latter implies choosing the prior rule with the smallest value of g0j , i.e., it amounts to:

g0j =
1

max{n, k2} , (4.1)

and is quite unlikely to lead us far astray, since g0j will never take large values in situations of practical
relevance. This prior will combine the consistency properties of prior a with the impressive small sample
performance of prior i.

5. AN EMPIRICAL EXAMPLE: CRIME DATA

The literature on the economics of crime has been critically influenced by the seminal work of Becker (1968)
and the empirical analysis of Ehrlich (1973, 1975). The underlying idea is that criminal activities are the
outcome of some rational economic decision process, and, as a result, the probability of punishment should
act as a deterrent. Raftery et al. (1997) have used the Ehrlich data set corrected by Vandaele (1978). These
are aggregate data for 47 U.S. states in 1960, which will be used here as well.

The single-equation cross-section model used here is not meant to be a serious attempt at an empirical
study of these phenomena. For example, the model does not address the important issues of simultaneity and
unobserved heterogeneity, as stressed in Cornwell and Trumbull (1991), and the data are at state level, rather
than individual level, but we shall use it mainly for comparison with the results in Raftery et al. (1997), who
also treat it as merely an illustrative example.

We shall, thus, consider a linear regression model as in (1.1), where the dependent variable, y, groups
observations on the crime rate, and the 15 regressors in Z are given by: percentage of males aged 14-24,
dummy for southern state, mean years of schooling, police expenditure in 1960, police expenditure in 1959,
labour force participation rate, number of males per 1000 females, state population, number of nonwhites
per 1000 people, unemployment rate of urban males aged 14-24, unemployment rate of urban males aged
25-39, wealth, income inequality, probability of imprisonment, and average time served in state prisons. All
variables except for the southern dummy are transformed to logarithms.

In line with the recommendations from Section 4, we shall use prior i for this very small sample (n = 47).
We run the MC3 chain to produce 100,000 draws after a burn-in of 25,000. This is more than enough to
achieve convergence, as is evidenced by the near perfect correlation (0.9930) between the model probabilities
based on the actual Bayes factors computed as in (2.16) and the relative frequencies of model visits. All
results will be based on the actual Bayes factors of the models visited (as explained in Subsection 4.1). In
all, 2465 different models were visited, and the best 10% of those models account for 80.1% of the posterior
model probability. Thus, posterior mass is not highly concentrated on just a few models. As proposed in
George and McCulloch (1997, Subsection 4.5), we can consistently estimate the total posterior probability
of all visited models by contrasting the sum of the marginal likelihoods and the relative frequencies of visits
for a fixed subset of models. Taking for that subset the ten best models of Raftery et al. (1997, Table 3),
we estimate the total model probability covered by the chain to be 99.3%, thus corroborating our earlier
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Table 12. Crime data: Models with more than 2% posterior probability.

Prob. Included Regressors

1 3.61% 1 3 4 11 13 14

2 3.48% 1 3 4 9 11 13 14

3 2.33% 1 3 5 11 13 14

4 2.31% 1 3 4 11 13

5 2.29% 1 3 4 13 14

6 2.20% 1 3 5 9 11 13 14

7 2.05% 3 4 8 9 13 14

8 2.02% 1 3 4 9 13 14

conclusion of convergence. Note that this run takes a mere 34 seconds on a 200MHz PPC603ev-based
Macintosh 3400c laptop computer.

Table 12 presents the 8 models that receive over 2% posterior probability. Seven of these models are
among the ten best models of Raftery et al. (1997). In general, model probabilities are roughly similar, even
though our prior is quite different from the one proposed in Raftery et al. (1997). In particular, we only
require the user to choose the function g0j , and choosing it in accordance with our findings in Section 4 leads
to results that are reasonably close to those with the rather laboriously elicited prior of Raftery et al. (1997).
The second best model in Table 12 is the one that is chosen by the Efroymson stepwise regression method, as
explained in Raftery et al. (1997), and is the model with highest posterior probability in the latter paper. If
we use prior a in our framework, we also get this as the model with highest posterior probability. Generally,
prior a leads to a more diffuse posterior model probability and larger models.

Table 13. Crime data: Posterior Probabilities of Including each Regressor.

Regressor Prob.

1 Percentage of males age 14–24 75.8 %

2 Indicator variable for southern state 14.1 %

3 Mean years of schooling 95.5 %

4 Police expenditure in 1960 65.8 %

5 Police expenditure in 1959 38.1 %

6 Labor force participation rate 7.5 %

7 Number of males per 1,000 females 8.5 %

8 State population 22.2 %

9 Number of nonwhites per 1,000 people 50.7 %

10 Unemployment rate for urban males, age 14–24 10.6 %

11 Unemployment rate for urban males, age 25–39 45.1 %

12 Wealth 17.5 %

13 Income inequality 99.8 %

14 Probability of imprisonment 78.9 %

15 Average time served in prisons 18.0 %

Posterior probabilities of including each of the regressors are given in Table 13, which clearly indicates
that schooling and income inequality are virtually always included, while the percentage of males aged 14–24
and the probability of imprisonment are also typically part of the relevant models. Overall, Table 13 roughly
agrees with Table 4 in Raftery et al. (1997). The deterrence variables are probability of imprisonment and
average time served in prisons. These variables are of particular interest for the economic theory of crime,
and their marginal posterior density functions (averaging over models with posterior probabilities) are given
in Figure 2. The coefficients of these regressors can be interpreted as elasticities. The gauge on top indicates
(in black) the posterior probability of inclusion. Thus, the full posterior distribution of these coefficients
contains a point mass (“spike”) at zero with a probability proportional to the grey part of the gauge (since
the scaling of this spike can not be related to the continuous part, we have opted for the current presentation).
The probability of imprisonment seems to have a moderately negative influence, as expected. The average
time served in prisons, however, only has a posterior probability of inclusion of under 20% (see also Table
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Fig. 2. Posterior density functions: Regressors 14 and 15.

13). 5

As two Referees pointed out to us, police expenditure in 1959 and that in 1960 constitute two highly
collinear regressors. Note from Table 12 that the models with high posterior probability include either one
or the other, but never both (this holds true for the 69 best models with posterior probability over 0.27%).
Interestingly, Raftery et al. (1997, Table 3) report a model with both variables as one of their ten best
models. Clearly, this level of detail is not obvious from the posterior probabilities of inclusion presented in
Table 13, which mainly tells us that regressors 3 and 13 are virtually always included, whereas perhaps only
regressors 6 and 7 could be ignored without appreciable empirical consequences.
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Fig. 3. Q-Q plots with 75%–25% sample split.

If we split the data randomly into observations used for estimation (with probability 0.75) and observations
to be predicted, we can construct the predictive Q-Q plots in Figure 3. These are what Raftery et al. (1997)
call “calibration plots”. For a given prediction sample we record in which percentile of the predictive
distribution (using the corresponding values of the regressors) the actual observations fall. Plotting predictive
quantiles against empirical ones thus obtained leads to this Q-Q plot. The closer the plot is to the 45 degree
line, the better the model (estimated on the basis of the inference sample) does in predicting the data in
the prediction sample. Figure 3 contains Q-Q plots for 10 different random partitions of the data, and
two different models in each case: the single model with the highest posterior probability (which generally

5 Figure 2 again illustrates the fact that we allow for the formal exclusion of a regressor through a point mass at zero, and
we do not follow the strategy of identifying the mass around zero in a continuous distribution for a regression coefficient with
the exclusion probability of the corresponding regressor. Instead, we conduct inference on the exclusion probabilities through
formal posterior odds. Given the fact that Bayes factors tend to favour parsimony —see e.g., Smith and Spiegelhalter (1980)—,
it is not surprising that, while many models exclude variable 15, the ones that do include it assign a continuous distribution to
β15 that has little mass around zero.
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changes in each partition) and the averaged model through BMA. We note that the best single model (dotted
lines) tends to predict worse than the predictive in (3.6) resulting from BMA (drawn lines). We tried a total
of 50 different data partititions and found that BMA outperformed the best single model 14 times and was
beaten 8 times. In the other 28 cases performance was about the same. This is suggestive, although not
conclusive, evidence of the predictive superiority of BMA. Of course, in a model selection strategy, inference
could simply be based on the best model (as identified in Table 12).

6. CONCLUSIONS

We consider the Normal linear regression model with uncertainty regarding the choice of regressors. The
prior structure we have proposed in Section 2 leads to a valid interpretation of the posterior distribution as
a conditional and only requires the choice of one scalar hyperparameter, called g0j . We make g0j a possible
function of the sample size, n, the number of regressors in the model under consideration, kj , and the total
number of available regressors, k. Theoretical results on consistency (in the sense of correctly identifying the
model that generated the data if that model is contained in model space) suggest making g0j a decreasing
function of sample size n. In addition, empirical results on posterior model choice and predictive performance
in the context of an extensive simulation study indicate that the following strategy is a reasonable choice:

• prior i, where g0j = 1/k2, for n ≤ k2

• prior a, where g0j = 1/n, for n > k2

which leads to consistent Bayes factors and corresponds to choosing g0j as in (4.1).
Thus, we would recommend the prior structure introduced here, together with these choices of g0j when

faced with uncertain variable selection in linear regression models, whenever substantial prior information is
lacking or a default analysis is the aim.
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APPENDIX: ASYMPTOTIC PROPERTIES AND THE CHOICE OF g0j

We focus on the prior given through (2.11), (2.14) and (2.15), which leads to the expression in (2.16) for
the Bayes factor. Although the importance of asymptotic results for statistics is certainly a contentious issue
(see Lindsey, 1999, for a stimulating discussion), we feel they have some role to play in assessing the general
properties of statistical procedures. This Appendix is included for the benefit of the interested reader.

Throughout this Appendix we assume that the sample y is generated by model Ms ∈M with parameter
values α, βs and σ, i.e.,

y = αιn + Zsβs + σε. (A.1)

First we examine consistency in the sense that

plim
n→∞

P (Ms | y) = 1 and plim
n→∞

P (Mj | y) = 0 for all Mj 6= Ms, (A.2)

where the probability limit is taken with respect to the true sampling distribution described in (A.1). By
(1.7), as long as the prior (1.5) on the model space does not depend on sample size, we simply need to check
that the Bayes factor for model Mj versus model Ms, Bjs, converges in probability to zero for any model
Mj other than Ms. The reference posterior odds proposed in Bernardo (1980) and Pericchi (1984) rely on
making prior model probabilities depend on the expected gain in information from the sample. As explained
in these papers, such procedures will generally not lead to consistency in the sense of (A.2).

Although we shall focus on the case of improper priors on α and σ, thus leading to the expression for Bjs

in (2.16), it is immediate to see that the same results apply to the Bayes factor in (2.9) (which corresponds
to proper priors on both α and σ) and to the Bayes factor in (2.12) (where we are still proper on α).

Before examining consistency of the Bayes factors, we need to establish some preliminary results. Some
of these results are not new, whereas others are easy to derive.

Lemma 1. Under the sampling model Ms in (A.1),
(i) If Ms is nested within or is equal to model Mj ,

plim
n→∞

y′MXjy

n
= σ2. (A.3)

(ii) Under the assumption that for any model Mj that does not nest Ms,

limn→∞
(α, β′s)X

′
sMXjXs(α, β′s)

′

n
= bj ∈ (0,∞), (A.4)

we obtain

plim
n→∞

y′MXjy

n
= σ2 + bj . (A.5)

In the sequel, we shall assume (A.4) to hold. We now examine two different functional choices for g0j . We
first consider dependence on the sample size n and, possibly, on the number of regressors kj , and afterwards
we suppress the dependence on n. Some of our choices for g0j will also depend on k, the total number of
regressors in the information set, but our notation will not reflect this, since k is assumed fixed throughout
the Appendix.

A.1. Results under g0j = w1(kj)
w2(n) with limn→∞ w2(n) =∞

Through (2.15), the prior precision is a fraction g0j of the sample precision. It seems logical to assume
that the relative precision of the prior vanishes as n goes to infinity. In addition, we let g0j depend on a
function w1 of kj .

Theorem A.1. Consider the Bayesian model given by (1.1), together with the prior densities in (2.11),
(2.14), (2.15) and any prior on the model space M in (1.5). We assume that g0j in (2.15) takes the form

g0j =
w1(kj)
w2(n)

with lim
n→∞

w2(n) =∞. (A.6)
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Then, under the assumption that there is a true model Ms in M that generates the data, the condition

lim
n→∞

w′2(n)
w2(n)

= 0, (A.7)

together with either

lim
n→∞

n

w2(n)
∈ [0,∞) (A.8)

or
w1(·) is a nondecreasing function, (A.9)

ensures that the posterior distribution of the models is consistent in the sense defined in (A.2).

Proof: denoting by Cjs the product of the first two factors in (2.16), we have that

Cjs =
(

w1(kj)
g0j + 1

)kj/2(g0s + 1
w1(ks)

)ks/2
w2(n)(ks−kj)/2, (A.10)

and thus

lim
n→∞

Cjs =


0 if kj > ks
1 if kj = ks
∞ if kj < ks.

(A.11)

On the other hand, the limiting behaviour of the last factor in (2.16) depends on whether Ms is nested
within Mj . We therefore consider the three following situations:

A.1.1. Ms is not nested within Mj and kj ≥ ks.

Denoting by Djs the last factor in (2.16) and applying (A.5) we obtain

plim
n→∞

Djs = lim
n→∞

(
σ2

σ2 + bj

)(n−1)/2

= 0. (A.12)

Combining the latter result with (A.11) directly leads to a zero limit for Bjs.

A.1.2. Ms is not nested within Mj and kj < ks.

In this case, combining (A.11) with (A.12) no longer leads directly to the limit of Bjs. A natural sufficient
condition leading to a zero limit for Bjs is

lim
n→∞

w′2(n)
w2(n)

= 0, (A.13)

which ensures that w2(n)(ks−kj)/(n−1) converges to unity.

A.1.3 Ms is nested within Mj .

Since in this case kj > ks, we know from (A.11) that Cjs converges to zero. However, the limit of Djs is
now difficult to assess. Here we shall present sufficient conditions for a zero limit of Bjs.
Rewriting Djs as

Djs =
(

y′MXsy

y′MXjy

)(n−1)/2

(
1 +

w2(n){w1(ks)(As − 1)− w1(kj)(Aj − 1)}+ w1(ks)w1(kj)(As −Aj)
{w2(n) + w1(ks)}{w2(n) + w1(kj)Aj}

)(n−1)/2

,

where As =
(y − yιn)′(y − yιn)

y′MXsy
and Aj =

(y − yιn)′(y − yιn)
y′MXjy

,

(A.14)
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it is immediate that the first factor converges in distribution to exp(S/2), where S has a χ2 distribution with
kj − ks degrees of freedom. On the other hand, the condition

lim
n→∞

n

w2(n)
∈ [0,∞) (A.15)

ensures a finite limit for the second factor. Alternatively, if

w1(·) is a nondecreasing function, (A.16)

the second factor is (A.14) is smaller than one. Thus, using the fact that Cjs converges to zero, (A.15) and
(A.16) each provide a sufficient condition for a zero limit of Bjs.

On the basis of prior ideas about fit, Poirier (1996) suggests taking w2(n) = n, which satisfies (A.7) and
(A.8) and thus leads to consistent Bayes factors. This and other choices are discussed in the main text.

The proof of Theorem A.1 never makes use of the Normality assumption for the error distribution of
the ‘true’ model in (A.1), and, thus, our findings immediately generalize to the case where the components
of ε in (A.1) are i.i.d. following any regular distribution (i.e., leading to asymptotic Normality) with finite
variance. Therefore, even if the true model does not possess a Normally distributed error term, the posterior
distribution derived on the basis of the models with Normality assumed [leading to the Bayes factor in (2.16)]
is still consistent, in the sense of asymptotically selecting the true subset of regressors, under the sufficient
conditions for g0j stated in Theorem A.1. This implies that we can always make the convenient assumption
of Normality to asymptotically select the correct set of regressors. In some sense, this offers a counterpart
to the classical result for testing nested models, where the Likelihood Ratio, Wald and Rao (or Lagrange
multiplier) statistics derived under the assumption of Normality keep the same asymptotic distribution (a
χ2) even if the error term is non-Normal —see, e.g., Amemiya (1985, p. 144).

A.2. Results with g0j = w(kj)
We now examine the situation where g0j is no longer a function of the sample size n. Therefore, consistency

is entirely driven by the last factor of Bjs in (2.16), which we denote by Djs.
It is immediately clear that in this situation we do not have consistency: When the data generating model,

Ms, is the model with just the intercept, Djs ≥ 1 regardless of the data [since the numerator in the last
factor of (2.16) is then (y − yιn)′(y − yιn), which is always bigger than or equal to the denominator]. Thus,
P (Ms | y) can not converge to one as n tends to infinity, precluding consistency.

Even though we do not have consistency, let us examine the asymptotic behaviour of Djs for the case
where Ms contains some regressors other than the intercept (i.e., ks ≥ 1).

When Ms is nested within Mj , we have that y′MXsy ≥ y′MXjy. As a consequence, having a zero limit
for the Bayes factor requires that w(·) be an increasing function, since otherwise Djs ≥ 1. Provided that
w(·) has this property, we obtain

plim
n→∞

Djs = lim
n→∞

(
σ2 + g0s

g0s+1b

σ2 + g0j
g0j+1b

)(n−1)/2

= 0, (A.17)

where b denotes the value bj in (A.4) corresponding to Xj = ιn. This immediately leads to:

plim
n→∞

Djs = 0 if and only if w(·) is an increasing function. (A.18)

The situation becomes less clear-cut when Ms is not nested within Mj . Some results can be obtained
upon request from the authors.

A.3. Relationship to information criteria
A number of information criteria have traditionally been used for classical model selection purposes,

especially in the area of time series analysis. In this subsection, we shall establish asymptotic links between
the Bayes factors corresponding to Subsection A.1 and two consistent information criteria: the Schwarz (or
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Bayes information) criterion as derived in Schwarz (1978) and the criterion of Hannan and Quinn (1979). If
we wish to compare two models as in (1.1), say Mj versus Ms, these criteria take the form:

Sjs =
n

2
ln
(

y′MXsy

y′MXjy

)
+

ks − kj
2

ln(n), (A.19)

HQjs =
n

2
ln
(

y′MXsy

y′MXjy

)
+

ks − kj
2

CHQ ln ln(n). (A.20)

Hannan and Quinn (1979) prove strong consistency for both criteria provided CHQ > 2.
The asymptotic behaviour of the Bayes factor in (2.16), made consistent by choosing g0j as in Theorem

A.1 can be characterized by the following result:

Theorem A.2. Consider the Bayesian model described in Theorem A.1, with g0j satisfying (A.7) together
with either (A.8) or (A.9). Then the Bayes factor in (2.16) satisfies:

plim
lnBjs

n
2 ln

(
y′MXsy
y′MXj

y

)
+ ks−kj

2 lnw2(n)
= 1, (A.21)

where the probability limit is taken with respect to the model Ms as described in (A.1).

Thus, different choices of the function w2(n) will influence the asymptotic behaviour of the logarithm of
the Bayes factor. In particular, let us consider the choices of w2(n) that induce a relationship with the two
information criteria mentioned above.

Corollary A.1. If in Theorem A.2 we choose w2(n) = n, we obtain

plim
lnBjs

Sjs
= 1, (A.22)

whereas choosing w2(n) = {ln(n)}CHQ and w1(·) nondecreasing, leads to

plim
lnBjs

HQjs
= 1. (A.23)

From these results we see that ln Bjs behaves like these consistent criteria if we choose w2(n) appropriately.
Note that the second choice of w2(n) in Corollary A.1 does not satisfy (A.8), which is why we impose that
w1(·) fulfills (A.9). Kass and Wasserman (1995) study the relationship between the Schwarz criterion and
Bayes factors using “unit information priors” for testing nested hypotheses, and provide the order of the
approximation under certain regularity conditions. See also George and Foster (1997) for Bayesian calibration
of information criteria.

As a final note, it is again worth mentioning that Theorem A.2 also holds if the error terms in (A.1) follow
a non-Normal distribution.
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