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Abstract

The method proposed in this chapter is making use of the bispectrum trans-
formation to estimate the level of integration of a fractionally integrated time
series. Bispectrum transformation transforms the series into a two dimen-
sional frequency space, and thus has higher information content compared to
the Geweke-Porter-Hudak method. The bispectrum method is an alternative
to the recently proposed wavelet method that transforms the original series
into time-frequency (or time-scale) space.
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1. Introduction

The first formal definition of a long memory process has been made by
the British hydrologist Hurst (1951) on continuous time domain. Manderbolt
et al. later defined the process in discrete time. Since then, long memory
processes have been attracting great interest for financial and economic mod-
eling (e.g., Baille, 1996). The long memory property in a time series could be
defined loosely as persistence in the observed autocorrelations. The autocor-
relations of a long memory process are more persistent than the autocorrela-
tions of a typical stationary ARMA process, which gained much popularity
among economists. The impulse response functions, or the coefficients of the
Wold decomposition of a typical stationary ARMA process, together with
their autocorrelations, display exponential decay. However, there is no rea-
son to limit the decay to exponential rates. Other options like hyperbolic
decay could also be considered. The integrated series concept partially filled
this area, leaving still a big gap between series integrated of order zero and of
order 1. The introduction of fractional integration aimed at filling this gap.
Long memory processes describe financial time series like inflation rates, in-
terest rate differentials, and volatility of asset prices quite well. The method
conjectured here is an alternative to the relatively new methods including
the estimation using wavelets. The wavelet transform could be defined in
two dimensions: scale (frequency) and time. The bispectrum method, like-
wise, could be defined in a two dimensional frequency domain. So these two
methods reveal information on the series in a two dimensional framework un-
like the Geweke and Porter-Hudak (GPH) (1983). Therefore the bispectrum
method proposed here is an alternative to the better known wavelet methods
of estimating the fractional integration parameter.

2. Definition

McLeod and Hipel (1978) describe long memory with the sum of absolute
autocorrelations (ρj) of a time series. According to their definition, a time
series possess long memory property if the sum

∑n
j=−n |ρj| is divergent as

n → ∞ . Equivalently, the spectral density f(ω) is divergent as ω → 0 . A
representation of long memory property that attracted particular interest is
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the fractionally integrated time series, which could be defined as

(1− L)dyt = ut, d ∈ R, (1)

where series {yt} is said to be integrated of order d, or is I(d). When {ut} is
white noise with variance σ2, {yt} is said to be fractional white noise. The
series above could be represented as an AR(∞) or MA(∞) process, where
the AR coefficients will be

πk =
Γ(k − d)

Γ(−d)Γ(k + 1)
, (2)

or

πk = πk−1
k − 1− d

k
, (3)

and πo = 1 where Γ(·) is the gamma function.
The MA representation is similar with a replacement of −d for d in the AR
representation. The autocorrelation functions take the form

ρk =
Γ(k + d)Γ(1− d)

Γ(k − d + 1)Γ(d)
, (4)

or

ρk =
k − 1 + d

k − d
ρk−1, (5)

and ρo = 1.

The power spectrum is

f(ω) =
σ2

2π
(2 sin(

ω

2
))−2d. (6)

Notice that f(ω) < ∞ as ω → 0 iff d ≤ 0, and since for small values of x,
sin x ≈ x, f(ω) ≈ σ2

2π
ω−2d for ω close to zero. Using Stirling’s formula for the
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gamma function for large k, we can derive the asymptotic functions for the
magnitudes discussed above. Stirling states that, for large k,

Γ(k + a)

Γ(k + b)
≈ ka−b. (7)

So, when k is large,

ρk ≈
Γ(1− d)

Γ(d)
k2d−1, (8)

and

πk ≈
k−d−1

Γ(−d)
, (9)

which satisfy the hyperbolic (or geometric) decay condition with −1 < d for
πk and with d < 1

2
for ρk.

Granger and Joyeux (1980) and Hosking (1981) show that the series {yt}
is also stationary for d < 1

2
. Odaki (1983) shows that {yt} is invertible if

−1 < d. Thus 0 < d < 1
2

guarantees a stationary series with hyperbolically
decaying autocorrelations, which satisfy the long memory condition.
In the literature, the focus is on the stationary side of I(d) processes with
0 < d < 1

2
. Over the region 1

2
≤ d < 1, there is still a decay in the impulse

response functions and the power spectrum as frequencies go low. However,
the autocorrelations get higher as k grows, which puts the process into the
nonstationary processes group 1 .

3. Estimation

The estimation procedure for the long memory series in this study is con-
centrated on the method proposed by GPH (1983). In their paper, they
exploit the spectral density functional form of a stationary long memory se-
ries to derive an estimate of the long memory parameter d.
The spectral density function for the series {X(t)} where (1 − L)dXt = ut

and {ut} is a stationary linear process with spectral density function fu(ω)
is

f(ω) =
σ2

2π
(4 sin2(

ω

2
))−dfu(ω). (10)

1For a better explanation of stationarity of I(d) processes, see Hamilton (1994).
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Manipulating the above equation and taking logarithms of both sides of the
equation, they obtain

ln I(ωj,T ) = ln
σ2

2π
fu(0)−d ln 4 sin2(

ωj,T

2
)+ ln

fu(ωj,T )

fu(0)
+ ln

I(ωj,T )

f(ωj,T )
,(11)

which is in the form of a linear regression model. GPH argue that if
frequencies close to zero are considered, the third term on the right hand side
of the equation will be negligible, the second term will be the independent
variable. The last term (less its mean) is the disturbance, and the first term
of the right hand side plus the mean of the last term constitutes the constant
of the regression. GPH prove in their Theorem 2 (Geweke and Porter-Hudak,
1980) that when d < 0 there exists a function of the sample size g(T ) < T ,
such that if the smaller n = g(T ) frequencies are used for the estimation of
the regression model above, the OLS estimator of the slope will consistently
estimate −d. They generalize this result empirically for 0 < d < 1

2
.

4. A proposed estimation process using bispectra

It is well known that (see e.g., Sakaguchi and Sakai, 1989) all polyspectra
of order higher than 2 of a Gaussian process are zero. Furthermore, if the
process is linear, then,

f 2
3 (ω1, ω2)

f(ω1) f(ω2) f(ω1 + ω2)
= constant, ∀ω1, ω2, (12)

where f3(ω1, ω2) is the bispectrum of the process. Hinich (1982) uses this
property to design a test to identify Gaussianity and linearity of a time
series from its bispectrum.
Consider the time series {X(t)} above, where {ut} is non-Gaussian. The
bispectrum of {X(t)} could be written as

f3(ω1, ω2) = h(ω1)h(ω2)h(−ω1 − ω2)Q(ω1, ω2), ∀ω1, ω2, (13)

where h(ω) is the transfer function for any linear filter, and Q is the bispec-
trum of process {ut}. Since the lag polynomial (1 − L)d of an I(d) series is
a linear filter with transfer function

h(ω) = |2 sin(ω/2)|−d, (14)
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the above property could be used to estimate d, in a similar fashion with
GPH. Manipulating the equation and taking logarithms of both sides, we
obtain

ln I3(ω1, ω2) = ln
I3(ω1, ω2)

f3(ω1, ω2)
+ ln

√
fu(ω1)fu(ω2)fu(−ω1 − ω2)

f 3
u(0)

(15)

+ ln f 3
u(0)− d ln |2 sin

ω1

2
| − d ln |2 sin

ω2

2
| − d ln |2 sin

ω1 + ω2

2
|,

where I3(ω1, ω2) is a consistent estimator of bispectrum of X(t).

The argument of GPH holds here: the first term on the right hand side of
the equality is the disturbance, the second term is negligible, the third term
is constant, and the last three terms represent independent variables of the
regression equation:

yij = φo + φ1hi0 + φ2h0j + φ3hij + vij, (16)

where 1 ≤ i ≤ j ≤ T , and hij = ln |2 sin( i+j
T

π)| . The disturbance is
represented by the term vij.
One advantage of the bispectrum representation over the power spectrum
representation is that now the conclusion of the estimation process is testable.
If the null hypothesis

Ho : φ1 = φ2 = φ3 (17)

is rejected, then the estimation procedure is inconclusive. (Note that φ1 =
φ2 = φ3 = −d). A model with a smaller number of parameters could be

yij = βo + β1(hi0 + h0j) + β2hij + wij. (18)

Again, the test for conclusiveness would be to test the null

Ho : β1 = β2. (19)

4.1. Asymptotic consistency

Brillinger and Rosenblatt (1967) show that estimates of any kth order
spectra are asymptotically normal. However, since all the variables in the
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model are in logarithms, and other inferences from the independent variables
are uncertain, it is hard to say that the disturbance terms are asymptotically
normal. However, as explained in Greene (2000, Chapter 11) maximum
likelihood estimation of the coefficients will yield consistent estimators once
Gaussian disturbances are assumed. (Hence the estimation method is quasi-
maximum likelihood.) The consistent covariance matrix for the parameters
could be estimated through the “sandwich” estimator (White, 1982). The
result of any test under consistency will thus be reliable for a large number
of observations. For the test of conclusiveness, the maximum likelihood ratio
test could be used to compare the likelihood function values of one of the
regression equations above with that of

yk = ao + a1(hi0 + h0j + hij) + ξij. (20)

If the estimation procedure is found to be conclusive, the quasi-maximum
likelihood estimator −aQML

1 could be taken as a consistent estimator of d.

5. Estimation with wavelets

Wavelets shed new light on many problems in time series analysis, includ-
ing estimation of fractional differencing parameters. Wavelet transformations
have the unique property of transferring a series from time domain to a two
dimensional time-scale (or time-frequency) domain. It is this property that
combines the estimation in time domain and frequency domain on common
grounds. The estimation of the fractional integration parameter is accom-
plished through a plot of the wavelet variances (Percival and Walden, 2000,
section 9.5) versus the scale of estimation. The procedure is then to find the
part of the plot that visually appears to be linear, and estimation of the slope
of that line. The problem of which observations to include prevails here in
terms of wavelet variances in different scales.

6. Conclusion

Almost for half a century, the fractional integration representation of long
memory processes has attracted attention from a wide variety of disciplines
and researchers. The convenience of the fractionally integrated model rep-
resentation is the one and only parameter to be estimated. Still the task is
far from being trivial. Many estimation procedures were later shown to be
systematically over- or underestimating the model parameter. One advan-
tage of the bispectrum method of estimation is that the conclusiveness of the
procedure can be tested. If the test result implies a convenient estimator,
then one further step is taken to identify the estimator. If the test fails,
however, another method of estimation in the literature could be employed.
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The method conjectured here is an alternative to the relatively new methods
including the estimation using wavelets. The wavelet transform could be de-
fined in two dimensions: scale (frequency) and time (see e,g., Gençay, Selçuk,
and Whitcher, 2002). The bispectrum method, likewise, could be defined in
a two dimensional frequency domain. So the two methods reveal information
on the series in a two dimensional framework unlike most other estimation
methods. There are a few remaining issues to be considered while working
with the procedure:

• The disturbance of the underlying process should be non-Gaussian. If it
is Gaussian, the procedure will not work since the bispectrum collapses
to zero for all frequencies in this case.

• The model used for estimation is not a classical regression model. The
deviation of the estimators from consistency should be found using
Monte Carlo simulation techniques. Likewise, the estimated “sand-
wich” covariance matrix may not be reliable, especially in the case
where the disturbances are fat-tailed.

• The question “How close should the frequencies to be used be close to
zero?” from the procedure of GPH prevails in this method of estima-
tion. A bispectrum version of their function g(T ) should be derived, or
the efficiency of various filters should be tested on simulated data.

• The effectiveness of the procedure for the nonstationary case, (when
d is greater than 1

2
) is crucial since most methods in literature leave

nonstationary series out of their scope.
Further work is warranted to address these issues.
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