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Abstract : The standardised residuals from GARCH models 
fitted to three stock indices of the Athens Stock Exchange are 
examined for evidence of chaotic behaviour. In each case the 
correlation dimension is calculated for a range of embedding 
dimensions. The results do not support the hypothesis of 
chaotic behaviour; it appears that each set of residuals is iid. 
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INTRODUCTION 
 

A large body of literature has accumulated over the past three decades 

concerning the validity of the weak-form efficient markets hypothesis (EMH) in 

financial economics. The weak-form of the EMH postulates that successive one-

period stock returns are independent and identically distributed (iid), i.e. the price 

levels resemble a random walk.  At the same time it is well known that stock returns 

are characterised by volatility clustering. Additionally we usually observe large 

returns to be followed by large returns and small returns to be followed by small 

returns, leading to contiguous periods of volatility and stability.  Although most of 

the empirical tests of the efficient markets hypothesis are based on linear models, 

interest in nonlinear processes has experienced a tremendous rate of development 

over the last few years (for an excellent review see Barnett and Serletis 2000). In this 

paper, we will examine how the introduction of the single European currency has 

affected earlier claims in the literature that the Athens Stock Exchange (ASE) is 

characterised by deterministic chaos as the ASE is in the process of becoming a fully 

developed capital market1. 

A limited number of studies have appeared in the literature providing 

empirical results for the ASE (for a review see Panagiotidis 2003).  None has tested 

for the presence of nonlinear dynamics (other than GARCH) after the introduction of 

the common currency.  Siriopoulos (1996) used monthly observations of the ASE 

General Index from 1974:1 to 1994:6.  Using the BDS test statistic and the correlation 

dimension, it was concluded that a GARCH model could not explain the non-

linearities of the series that might be generated by “semi-chaotic behaviour”.  

Barkoulas and Travlos (1998) used daily observations of the ASE30, the 30 most 
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marketable stocks, from January 1981 to December 1990.  Models including an AR(p) 

and a GARCH (1,1) were employed and diagnostic tools such as BDS, correlation 

dimension and Kolmogorov entropy were estimated.  They concluded that “the BDS 

test detects remaining unspecified hidden structure in the Greek stock returns” but “ 

do not find evidence in support of a chaotic structure in the Athens Stock Exchange”.  

Niarchos and Alexakis (1998) followed a different methodology to test the EMH in 

the Athens Stock exchange. They used error correction models and compared the 

speed of adjustment.  Their evidence rejected the EMH.  More recently, Apergis and 

Eleptheriou (2001) examined market volatility using daily observations of the ASE 

General Index for the period January 1990 to July 1999.  They compared different 

GARCH models based on the log likelihood and concluded that “the presence of 

persistence in volatility clustering implies inefficiency of the ASE market”.  Lastly, 

Siourounis (2002) employs GARCH type models and tests for their validity using a 

data set of daily closings of the ASE General Index for the period of 4th January 1988 

until 30th October 1998.  The Ljung-Box test statistic is employed as a diagnostic tool 

and it was found that “the GARCH(1,1) and LGARCH(1,1) models can explain quite 

satisfactorily the dependencies of the first and second moments”. 

 

CORRELATION DIMENSION 

Grassberger and Procaccia (1983) suggested the correlation dimension as a tool 

for distinguishing random from chaotic time series. To briefly discuss this, let us start 

with the 1-dimensional series, { }xt t

n

=1 , and from this form the sequence of 

1+−= mnN  m-dimensional vectors 1
111 },....,,{ +−
=−++= mn

smssss xxxX .  The selected 

                                                                                                                                            
1 In July 2000 Morgan Stanley announced the change in the classification of the MSCI Greece Index 
from an emerging to a developed market index with effect from the 1st of June 2001 (see 
http://www.msci.com/pressreleases/archive/pr000731.html). 
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value of m is called the embedding dimension and each Xs is known as an m-history of 

the series { }xt t

n

=1 . This converts the original scalar series into a shorter series of N (m-

dimensional) vectors with overlapping entries. Assuming that the true, but 

unknown, system which generated { }xt t

n

=1  is       θ-dimensional and provided that m 

≥ 2θ +1, then the set of m-histories recreates the dynamics of the data generation 

process and can be used to analyse the dynamics of the system - see Takens (1981). 

The correlation dimension is based on the correlation function (or correlation 

integral), },1|),{(#
)1(

2),,( Ntsts
NN

mNC ≤≤
−

=ε , where # denotes the number of 

elements in the set. The correlation dimension is defined as ( )
)log(

,,(loglim
0 ε

ε
ε

mNCDm
C

→
= . 

In practice, one estimates Dc
m  for m = 1, 2, 3,….,k for k no larger than around  10.  If, 

as m increases, Dc
m  continues to rise then this is symptomatic of a stochastic system. 

If, however, the data are generated by a deterministic process (consistent with 

chaotic behaviour), then Dc
m  will reach a finite limit at some relatively small m. The 

correlation dimension can therefore be used to distinguish true stochastic processes 

from deterministic chaos (which may be low-dimensional or high-dimensional). 

Figure 1 illustrates the theoretical relationship between ( )ε,,(log mNC  and 

)log(ε (see Chappell & Eldridge, 1977). For ba ≤≤ )log(ε , ε is ‘too small’ and very 

few m-histories lie with a distance ε of each other. For c>)log(ε , ε is ‘too large’ and 

all m-histories will lie within a distance ε of each other. For cb << )log(ε , 

( )ε,,mNC  increases as m increases; ( )ε,,mNC  is the slope of the line for 

cb << )log(ε . This slope will increase initially as m is increased 
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    Figure 1: Theoretical relationship between ( )( )ε,,log mNC  and )log(ε  
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Figure 2 shows the theoretical relationship between m
CD  and m for a purely 

random series and a possibly chaotic series (Chappell & Eldridge, 1997). 

Figure 2: Theoretical relationship between   m
CD and  m   

for a purely random series and a possibly chaotic series. 
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While the correlation dimension measure is therefore potentially very useful in 

testing for chaos, the sampling properties of the correlation dimension are, 

unfortunately, unknown. As Barnett et al (1997, pp. 306) put it “if the only source of 

stochasticity is observational noise in the data, and if that noise is slight, then it is 

possible to filter the noise out of the data and use the correlation dimension test 

deterministically. However, if the economic structure that generated the data 

contains a stochastic disturbance within equations, the correlation dimension is 

stochastic and its derived distribution is important in producing reliable inference”. 

Moreover, if the correlation dimension is very large as in the case of high-

dimensional chaos, it will be very difficult to estimate it without an enormous 

amount of data. In this regard, Ruelle (1990) argues that a chaotic series can only be 

distinguished if it has a correlation dimension well below 2log10 N, where N is the 

size of the data set, suggesting that with economic time series the correlation 

dimension can only distinguish low-dimensional chaos from high-dimensional 

stochastic processes - see also Grassberger and Procaccia (1983) for more details.  

  This paper will investigate the following conflicting claims.   Panagiotidis 

(2003) used a battery of tests which signalled that the standardised residuals of the 

preferred GARCH models are iid processes.  However, this does not exclude the case 

of deterministic chaos (looks random, but isn’t).  On the other hand, there are claims 

in the literature (see Barkoulas and Travlos 1998, and Siriopoulos 1996)) that the ASE 

is being determined by chaotic dynamics.  To proceed, the standardised residuals 

from the estimated GARCH models2 in Panagiotidis (2003) are examined and the 

correlation dimension is calculated for a range of embedding dimensions.  

As mentioned above, if the data under consideration contain a detectable 

non-linear deterministic component, the correlation dimension should increase with 
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increasing values of the embedding dimension.  However, this should level off at 

some point and remain constant for all further values of the embedding dimension 

(see figure 2).  On the other hand, if the true data generating process is purely 

random, then we would expect the correlation dimension always to increase with the 

embedding dimension. 

The outcome is presented in Figures 3, 4 and 5.  In each of these, the embedding 

dimension is on the horizontal axis and the correlation dimension is on the vertical 

axis and the calculations were carried out using a program by Sprott (1998). It is clear 

in each of these figures that the correlation dimension keeps on increasing as a 

function of the embedding dimension and there is no sign that this levels off at some 

point in any of the series.  Consequently, we could argue that there is no evidence to 

suggest that any form of chaotic non-linear deterministic process is present in the 

standardised residuals of the preferred GARCH models for the three indices.  This 

finding further reinforces our argument that the series under investigation are iid.  

 

CONCLUSIONS 

In this paper, we have examined the claim that there is chaotic behaviour in 

the ASE .  We feel that this was an interesting exercise since this stock market has 

recently joined the Euro zone.   

To sum up, we argued against the chaos hypothesis in the case of the ASE.  

Firstly, there are theoretical reasons, which are explained in Lalley (1999).  Lalley 

discusses the restricted number of cases where it is impossible to recover the original 

time series when there is an added noise component.  Secondly, on an empirical 

level, the correlation dimension failed to provide any evidence in favour of chaotic 

dynamics. 

                                                                                                                                            
2 The three estimated equations are reproduced in the appendix. 
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Figure 3: Correlation Dimension for the standardised residuals of the preferred 
GARCH model of the ASE ─ FTSE 
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Figure 4: Correlation Dimension for the standardised residuals of the preferred 
GARCH model of the ASE ─ FTSE Mid 40  
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Figure 5: Correlation Dimension for the standardised residuals of the preferred 
GARCH model of the ASE ─ FTSE Small Cap Index 
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APPENDIX 
 
The three estimated equations from Panagiotidis (2003) are given below. Data are 

daily returns for the three stock indices, calculated from daily closing prices, and the 

sample period is from 1st June 2000 to 31st December 2002. Rt is the daily return, 2
tσ  

the conditional variance and 2
1−tε the lagged squared residual. Numbers in 

parentheses are the corresponding t statistics. It is the standardised residuals from 

each of these equations for which correlation dimensions are calculated, and 

illustrated in Figures 3 – 5 in the main text3. 

 
 
1. The ASE FTSE 20 Index 
 

20

(2.32) (1.67 )

2 2 2
1 1(3.54) (5.73) (12.88)

0.0006355 0.314054

0.000339 0.16374 0.7033

ASEFTSE
t

t t t

R σ

σ ε σ− −

= − +

= + +  

 
2. The ASE FTSE Mid 40 Index 
 

40 40
1(2.54) (2.92) (1.79)

2 2 2
1 1(2.33) (6.84) (46.01)

0.004866 0.1226 0.21473

0.0000714 0.122 0.862

ASEFTSEMID ASEFTSEMID
t t

t t t

R R σ

σ ε σ

−

− −

= − + +

= + +  

 
 
3. The ASE FTSE Small Cap Index 
 

1(2.2) (2.34)

2 2 2
1 1(2.11) (5.82) (18.78)

0.0001725 0.1387

0.0000183 0.1521 0.7983

ASEFTSESMALLCAP ASEFTSESMALLCAP
t t

t t t

R R

σ ε σ

−

− −

=− +

= + +  

 

 

                                                 
3 For more information on the indices and their composition http://www.ase.gr and 
http://www.ftse.com . The data are available free from http://www.enet.gr/finance/finance.jsp . 


