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Abstract

The influence of peer behavior on an individual’s choices has received renewed interest
in recent years. However, accurate measures of this influence are difficult to obtain.
Standard reduced-form methods lead to upwardly biased estimates due to simultaneity,
common shocks, and nonrandom peer group selection. This paper describes a structural
econometric model of peer effects in binary choice, as well as a simulated maximum
likelihood estimator for its parameters. The model is nonparametrically identified under
plausible restrictions, and can place informative bounds on parameter values under much
weaker restrictions. Monte Carlo results indicate that this estimator performs better
than a reduced form approach in a wide variety of settings. A brief application to
youth smoking demonstrates the method and suggests that previous studies dramatically
overstate peer influence.

1 Introduction

Conventional wisdom holds that the behavior of individuals, especially young people, is

strongly influenced by the behavior of those around them. In recent years, economists

have shown renewed interest in the study of peer effects, neighborhood effects, and

other non-market social influences that have taken on the general name of “social in-

teraction effects.” Theoretical treatments by researchers including Akerlof and Kranton

∗I have received helpful commentary from Kim-Sau Chung, Bernard Salanié and Adriaan Soetevent, as
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(2000), Becker and Murphy (2001), and Brock and Durlauf (2001a) have made substantial

progress in identifying the implications of social interaction effects for aggregate behavior.

In comparison, the state of empirical knowledge on social interaction effects has ad-

vanced much more slowly. While there is a long history of empirical work on social inter-

actions, an influential article by Manski (1993) identifies serious methodological problems

in the bulk of the literature. He notes that the simple reduced-form relationship between

an individual’s choices and those in his or her social group is a result of three distinct

effects. A person’s choices can be directly influenced by either the choices (what Manski

calls “endogenous social effects” or simply “endogenous effects”) or characteristics (what

Manski calls “contextual effects”) of those in his or her social group. In addition, there

may be what Manski calls “correlated effects”, in which individuals in a social group ex-

hibit similar behavior because of common unobserved factors. Correlated effects can arise

through simultaneity, nonrandom group selection, or common shocks. While endogenous

effects, contextual effects, and correlated effects have very different policy implications,

Manski demonstrates that standard methods are unable to distinguish between them.

In response to this critique, several more recent studies have developed new methods of

addressing at least some of these problems using experimental data, instrumental vari-

ables, and other identification strategies. While these newer methods are a significant

improvement over a reduced form analysis, each has significant limitations as well.

This paper proposes a structural approach to the estimation of endogenous social ef-

fects that does not require experimental data or an instrumental variable, can be applied

to commonly available survey data, and is nonparametrically identified under reasonable

and transparent identifying restrictions. In addition, the estimation method provides

several avenues for placing informative bounds on parameter values under weaker re-

strictions than those needed for point identification. The econometric model is based on

Brock and Durlauf’s (2001a) treatment of binary choice with endogenous social effects,

but adds several features to account for correlated effects as well. Selection and common

shocks are addressed by allowing both observable and unobservable characteristics to be
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correlated across peer group members. Simultaneity is addressed by treating peer choice

as an endogenous variable. This equilibrium-based structural approach produces a log

likelihood function which involves a series of high-dimensional integrals, so the model is

estimated by simulated maximum likelihood.

Nonparametric identification in the model is achieved through a restriction on the cor-

related effects. In the baseline version of the model it is assumed is that the within-group

correlation in unobservable variables is equal to the correlation in observable variables.

This “equal correlation” restriction, analogous to one introduced by Altonji, Elder, and

Taber (2000) to model selection issues in their analysis of Catholic school effects, will

hold on average if the observable variables represent a random subset of the relevant

variables. In addition to providing point estimates under the equal correlation restric-

tion, techniques developed in this paper can also be used to find informative bounds on

parameter values under much weaker restrictions on the correlated effect.

The model can be estimated from either individual-based random samples or group-

based samples. Monte Carlo results indicate that the estimator performs well in moder-

ately sized samples of either type, and is not highly sensitive to several potential forms

of misspecification. As a result, the estimator developed here can have wide empirical

applicability in the estimation of social interaction effects. A brief empirical example,

on close friend influences in youth smoking, demonstrates one of these applications. Al-

though a full analysis of social interaction effects in youth smoking is beyond the scope

of this paper, the results suggest that friends are substantially less influential than would

be implied by a reduced form analysis and that the application of structural estimation

to the question of peer influence in youth smoking merits further investigation.

1.1 Related literature

The contemporary empirical literature dealing with social influences on individual choice

starts from Manski’s (1993) critique of what had until that point been the dominant
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mode of empirical analysis in that literature. In these early studies, social influences

were measured using simple reduced form methods and standard survey data. A typi-

cal regression would include the respondent’s choice as the dependent variable, and the

respondent’s characteristics as well as the average choice within the respondent’s social

group as explanatory variables. The coefficient on the reference group average choice

would then be interpreted as measuring the endogenous social effect. Alternatively, the

reference group average of one or more background characteristics would be used as the

explanatory variable rather than the group average choice, in which case the coefficient

would be interpreted as a contextual effect. Manski’s critique of this approach is that

the actual parameters of interest are not identified: the reduced form coefficient can be

interpreted as an endogenous, contextual, or correlated effect, or some combination.

Moffitt (2001) explains the importance of distinguishing between these three effects.

First, both endogenous and contextual effects imply that groups matter, i.e., an individ-

ual’s social group memberships influence his or her choices. Second, endogenous effects

imply a “social multiplier,” i.e., the aggregate effect of a policy intervention will be larger

than the individual-level direct effect. If strong enough, endogenous effects may also

imply multiple group-level equilibria. If groups matter or if there are large social multi-

pliers, then evaluation of various social policies should consider their indirect effects via

the social network in addition to their direct effects. In addition, policies such as housing

mobility programs (Katz, Kling and Liebman 2001) depend on the existence of strong

endogenous or contextual effects to be effective. Contextual effects do not imply a social

multiplier, and correlated effects imply neither that social groups matter nor that there is

a social multiplier. Manski’s critique thus implies that results from reduced form studies

of social interaction effects have no useful policy implications.

In response to these issues, empirical researchers have pursued a number of iden-

tification strategies. One stream of the literature (Kremer and Levy 2001, Sacerdote

2001, Katz et al. 2001) focuses on special cases where individuals are randomly assigned

to reference groups, so any correlated effects due to selection are avoided. Lagged peer
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variables are used to avoid correlated effects due to common shocks, and the coefficient

on one or more peer characteristics is interpreted as a contextual effect. Another stream

(Evans, Oates and Schwab 1992, Gaviria and Raphael 2001, Hoxby 2000, Ioannides and

Zabel 2002) looks for credibly exogenous sources of variation in peer characteristics, and

uses this exogenous variation as an instrumental variable for peer choices. If the variation

in group characteristics is truly exogenous, and there is no contextual effect, this method

consistently estimates the endogenous effect. A third stream (Glaeser, Sacerdote and

Scheinkman 1996, Glaeser, Sacerdote and Scheinkman 2002, Topa 2001) uses structural

models to infer the magnitude of endogenous effects from aggregate statistics such as

social multipliers or the variance in behavior across aggregates.

Each of these approaches has both advantages and limitations. Identification strate-

gies based on random assignment avoid correlated effects due to selection, but are only

applicable to a few special cases, including first-year college roommates and government-

assisted housing, where a central authority conducts the group assignment. Identification

using instrumental variables requires that the IV be both credibly exogenous and relevant

to the outcome. These standard requirements are particularly difficult to meet in this

case because they imply the IV must be a group-level variable which affects everyone

in the group except the respondent. As Brock and Durlauf (2001b) note, this means

that the IV must be the group average of some individual-level variable that does not

produce contextual effects. Even in cases where such a restriction is plausible, it is likely

to be sufficiently controversial that it would be desirable to corroborate the results under

alternative identification schemes. Identification using aggregate/structural approaches

often suffers from the problem that it is difficult to evaluate how sensitive the results are

to the strong functional form assumptions made. All three approaches are in most cases1

able to distinguish between endogenous and contextual effects only by assuming that one

or the other is absent.

The key advantage of the approach presented here is wider applicability than alter-

1One exception is Ioannides and Zabel (2002); see Section 2.2.
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native methods due to significantly less demanding data requirements. Neither random

assignment nor exogenous variation in characteristics are required, and the model can

be estimated from standard survey data with either an individual-based or group-based

sample design. A related advantage is that these lower data requirements greatly fa-

cilitate the estimation of endogenous effects within small and informal groups such as

close friends. All of the studies referenced above consider formally defined groups such

as classrooms, schools, census tracts, college dorm rooms, etc., in part because their

identification strategies are difficult to apply to informal groups. Close friends may be

the most influential peers, so a full empirical understanding of social influences in behav-

ior requires the development of tools which can be used with both formal and informal

groups. This advantage comes with some associated limitations. First, as with most of

the literature, endogenous effects are identified only under the assumption that there are

no contextual effects. In addition, the approach described here faces two issues common

to structural models: some assumptions are strong and not necessarily testable, and the

computational cost and complexity of the estimator is far greater than for OLS or IV

methods. Unlike most structural approaches in the literature, however, the approach

developed here provides a number of techniques for analyzing the sensitivity of results to

critical assumptions.

2 The model

The econometric model is based on the standard model of binary choice with social

interactions formalized by Brock and Durlauf (2001a), with two substantive differences:

the size of the peer group is finite and there may be correlated effects. Both of these

features are necessary for many empirical applications.
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2.1 Preferences and choices

Individuals in the model are organized into a number of non-overlapping peer groups.

Groups are indexed by g and individuals are indexed within each group by i, so that

the pair (g, i) identifies an individual. The size of group g is exogenous and given by ng.

Each individual makes a binary choice ygi ∈ {0, 1}, and has a utility function ugi(ygi;yg)

such that:

ugi(1;yg)− ugi(0;yg) = βxgi + γȳgi + εgi (1)

where xgi ≡
(
1, x1

gi, x
2
gi, . . . , x

k
gi

)′
is vector of exogenous characteristics which are observ-

able in the data, yg ≡
(
yg1, . . . , ygng

)′ is the vector of choices made by the members of the

group, ȳgi is the average choice made by the other group members (ȳgi ≡ 1
ng−1

∑
j 6=i ygj),

and εgi is an exogenous term which is not observed in the data. The parameter γ ≥ 0

is the endogenous social effect; if γ > 0 an individual’s incentive to choose ygi = 1 is in-

creasing in the fraction of his or her peers that do so. As with much of the literature, this

model assumes that there is no contextual effect. Section 5.2 discusses the implications

of relaxing this assumption.

2.2 Correlated effects

The three primary sources of correlated effects are simultaneity, nonrandom group selec-

tion, and common shocks. The model accounts for correlated effects due to simultaneity

by treating peer behavior as an endogenous variable. Correlated effects due to nonran-

dom group selection and common shocks are introduced into the model2 by allowing for

2An alternative approach for accounting for selection into groups in a structural model would be to formally
model the selection process itself. This approach has proved useful in a number of applications such as the
selection of workers to firms (Heckman and Sedlacek 1985) and families to neighborhoods (Epple and Sieg 1999),
and has been used in the social interactions literature by Ioannides and Zabel (2002). These authors, following
a suggestion by Brock and Durlauf (2001b), estimate both endogenous and contextual neighborhood effects in
housing demand by estimating neighborhood selection equations and constructing exogenous instruments for
neighbors’ housing demand using the neighbors selection correction term. While this approach has promise in a
number of applications, especially in estimating social interaction effects at the neighborhood or school level, the
data requirements for estimating the selection equation are substantial. Identification of the selection equation
is facilitated by the presence of fixed and measurable neighborhood/school characteristics, a condition that is
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εgi to be correlated across members of a given peer group. In particular, (using the case

ng = 3 as an example) the joint distribution of characteristics across group members is

assumed to take the form:



βxg1

βxg2

βxg3

εg1

εg2

εg3


∼ N





µ

µ

µ

0

0

0


,



σ2 ρxσ
2 ρxσ

2 0 0 0

ρxσ
2 σ2 ρxσ

2 0 0 0

ρxσ
2 ρxσ

2 σ2 0 0 0

0 0 0 1 ρε ρε

0 0 0 ρε 1 ρε

0 0 0 ρε ρε 1




(2)

with the distribution being defined similarly for other values of ng, and where ρx ∈(
− 1

ng−1 , 1
)

and ρε ∈
(
− 1

ng−1 , 1
)

to ensure that the covariance matrix is positive definite.

In addition to the functional form restriction of joint normality, equation (2) places

several substantive restrictions on the model. Two of these restrictions are innocuous:

that the distribution is symmetric (since the ordering of group members is arbitrary),

and that the utility function has been normalized so that εgi has mean zero and unit

variance. A more substantive restriction is that, as in the standard probit model, the

observable and unobservable terms are uncorrelated, i.e., cov(εgi, βxgi) = 0. Potentially

more controversially but in the same spirit, it is also assumed that there is no correla-

tion between one group member’s observables and the unobservables of the other group

members, i.e., cov(εgi, βxgj) = 0 for i 6= j. Section 5.2 briefly discusses the implications

of nonzero correlation between observables and unobservables.

2.3 Equilibrium

Given the preferences of each agent, let Yg be the set of pure strategy Nash equilibria

of the normal form game defined by players i ∈ {1, . . . , ng}, strategy space {0, 1}ng and

not always met in a given application. The approach developed in this paper is complementary to approaches
built on more formal models of group selection, and has less demanding data requirements.
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payoff functions that satisfy equation (1):

Yg ≡ {y ∈ {0, 1}ng : yi = 1 ⇔ ugi(1;y)− ugi(0;y) > 0 ∀i ∈ {1, 2, . . . , ng}} (3)

The properties of Nash equilibria for this model follow closely from Milgrom and Roberts’

(1990) results on supermodular games. In particular, for any preference profile, the set

of pure strategy Nash equilibria has a minimal and maximal value, and all rationalizable

strategy profiles, all (pure or mixed) Nash equilibria, and all correlated equilibria lie in

the interval [min(Yg),max(Yg)]. Equilibrium is unique for almost all preference profiles

if there is no endogenous effect (γ = 0), and is nonunique for a positive (probability)

measure of preference profiles if there is an endogenous effect (γ > 0) (Krauth 2001).

Multiplicity of equilibria complicates estimation, as uniqueness of the likelihood function

for equilibrium behavior requires the imposition of an equilibrium selection rule.

A selection rule is simply a function sel(y, Y ) which assigns a probability to each pure

strategy Nash equilibrium:

sel(y, Y ) ≡ Pr(yg = y|Yg = Y ) (4)

In order to describe a well defined probability distribution, s must obey the constraints

sel(y, Y ) ≥ 0 and
∑

y sel(y, Y ) = 1. In addition, the requirement that only pure strategy

Nash equilibria are selected implies the constraint (y /∈ Y ) ⇒ (sel(y, Y ) = 0). Imposing a

selection rule pins down a unique likelihood function and, if correctly specified, produces

consistent point estimates of parameters. This paper will consider three specific selection

rules:

Low-activity equilibrium: sel(min(Y ), Y ) = 1 (5)

High-activity equilibrium: sel(max(Y ), Y ) = 1 (6)
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Random equilibrium: sel(y, Y ) =


1

#Y if y ∈ Y

0 if y /∈ Y
(7)

More complex rules are also possible, and may be appropriate to a particular application.

Although a selection rule must be imposed to achieve point identification, selection

rule free estimation methods are also available which identify bounds on the model pa-

rameters. Under some conditions, these bounds are informative. Section 4.2 describes

selection rule free estimation of the model.

2.4 Identifying restrictions on the correlated effects

Although the model as specified is formally identified, there is no obvious nonparametric

means of distinguishing between correlated effects (ρε) and endogenous effects (γ). This

section outlines some plausible restrictions which facilitate nonparametric identification.

Section 3.3 provides a heuristic argument for nonparametric identification under such

restrictions.

2.4.1 Baseline restriction: Equal correlation

One plausible approach, which is used as the baseline identifying assumption in this

paper, is to use information in the data on ρx to provide a reasonable guess for ρε. In a

sense, this is already done informally: the reason why applied researchers are particularly

concerned about positive between-peer correlation in unobservables (which, after all, is

just another species of omitted variables bias) is that there is often ample evidence of

positive correlation in observable characteristics among peers. In general, a restriction

using information on ρx to restrict ρε would take the form ρε = f(ρx) for some known

function f .

In particular, the baseline restriction for this paper is that the two correlation coeffi-

cients are equal:

ρε = ρx ≡ ρ (8)
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The equal correlation assumption and its justification are in the spirit of Altonji, El-

der, and Taber’s (2000, AET) work on the effects of Catholic schools. The literature

on Catholic school effects faces similar issues to the social interaction effects literature:

although students in Catholic schools experience better outcomes on average than ob-

servationally similar students in public schools, it is difficult to distinguish the effect of

Catholic school from the effect of unobserved characteristics which lead to both better

outcomes and increased probability of selecting a Catholic school. Their partial solution

to this identification problem is to estimate a selection equation and outcome equation,

then use the correlation between the fitted values in the two equations as a proxy for the

correlation between the unobserved terms.

The current setting is somewhat different from that faced by AET, but much of their

intuition and argument can be adapted. Suppose that the incremental utility previously

defined in equation (1) can alternatively be written as a linear function of a large set of

relevant variables:

ugi(1;yg)− ugi(0;yg) = ΓZgi + γȳgi (9)

where Zgi is the complete vector of individual i’s relevant characteristics and Γ is a vector

of coefficients. Now suppose that we randomly divide this large set of relevant variables

into an “observed” subset Zx
gi and an “unobserved” subset Zε

gi. Let Γx and Γε be the

corresponding subvectors of Γ. Now suppose that we calculate the within-peer-group

correlations ρx ≡ corr(ΓxZx
gi,Γ

xZx
gj) and ρε ≡ corr(ΓεZε

gi,Γ
εZε

gj). Since the partition is

random

E(ρx) = E(ρε) (10)

where the expectations are taken across the distribution of possible random partitions.

The use of this argument to justify assuming ρx = ρε depends on two key elements.

First, the observed variables must be a random subset of the relevant variables, in the

sense that all relevant variables are observed with equal probability. Alternatively, one

might guess that characteristics more likely to be observed by an econometrician are also
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more likely to be observed by those forming peer groups, in which case ρx is actually an

upper bound for ρε. In that case, a lower bound can be placed on γ using the methodology

described in Section 4.1. Second, equation (10) only implies that the expected correlation

is the same for the observable and unobservable components, when expectations are taken

over the set of random subsets of variables. Equation (8) asserts equality in the realized

correlation for the particular set of variables observed in a given data set. All else being

equal, the appropriateness of this assumption will be greater in cases where the number

of explanatory variables is greater.

2.4.2 Alternative point restrictions

Alternatively, the model parameters are nonparametrically identified under any other

point restriction on either ρε or γ, including:

ρε = ρ∗ for some known ρ∗ (11)

γ = γ∗ for some known γ (12)

ρε = f(ρx) for some known function f(.) (13)

For example, in settings where the peer group is assigned through a random mechanism

(Sacerdote 2001) it may be reasonable to assume that ρε = 0. Alternatively, a researcher

may estimate ρε under the restriction γ = 0. The result will indicate how large the

correlated effect must be to explain the data in the absence of an endogenous effect; if

the implied correlation in unobservables is implausibly large (particularly in light of the

estimated correlation in observables ρx), this result could be interpreted as evidence in

favor of an endogenous effect.

2.4.3 Interval restrictions

In most applications, the values of ρε and γ are not known in advance. However, one

may have reasonable confidence in a particular upper or lower bound on ρε. For example,
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one may be confident that peer group members are at least as similar as would occur

under random group assignment (which implies ρε ≥ 0) or one may be confident that the

correlation in observable characteristics provides an upper bound on the correlation in

unobservables (which implies ρε ≤ ρx). Section 4.1 describes a method for constructing

consistent bounds on γ given bounds imposed on ρε. In some cases the resulting bounds

on γ can be informative even for very conservative restrictions on ρε.

3 Estimation

The econometric model is defined by the utility function (1), the joint probability distri-

bution of the exogenous variables (2), the definition of equilibrium (3), and an equilibrium

selection rule, of which (5)-(7) are examples. In practice, the additional restriction (8),

or some alternative restriction on ρε, will also be imposed.

The model can be estimated using data with either an individual-based or group-based

sampling design, though many details of the estimation method vary with the type of

data. An individual-based sample (Bertrand, Luttmer and Mullainathan 2000, Evans et

al. 1992, Katz et al. 2001) is just a standard random sample of individuals, with data on

peer behavior either reported directly by the respondents or derived from some separate

aggregate3 data source such as Census tract data. Group-based samples have been used

frequently in the social interactions literature (Gaviria and Raphael 2001, Hoxby 2000,

Kremer and Levy 2001, Sacerdote 2001), and are constructed by sampling a number of

individuals within each of a set of randomly sampled groups. Data on peer behavior

is derived from the peers’ own self-reports, provided that the group identification of

3One practical constraint on the estimator developed in this section is the size of peer groups. In principle,
the estimator described here can be used with peer groups of any size, and that size can vary across the groups
within a data set. In practice, the computational cost of the estimator increases with the size of the peer group,
which may make simulation-based estimation of this model impractical for extremely large peer groups (Census
tracts, cities, etc.). Fortunately, the model can still be estimated, and the estimation method is actually much
simpler. Krauth (2004) shows that as the group size increases, a close approximation of the likelihood function
can be calculated directly without use of simulation. Standard maximum likelihood methods can then be
applied.
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each individual is provided in the data. In addition to providing information on the

binary choice of each respondent and the average choice in each peer group, the data

set must include at least some of each respondent’s relevant background characteristics.

In addition to these two main cases, the model and estimation methods described here

could also be adapted in a conceptually straightforward manner to handle richer data

with detailed social network information or multiple levels of reference groups, subject to

a few application-driven modeling decisions on the covariance structure of the exogenous

variables.

3.1 ML and SML estimation

Consider a data set of N individuals (if an individual-based sample) or N groups (if a

group-based sample), and index observations by g = 1, . . . , N . In a group-based sample,

both xgi and ygi are observed for all group members. In an individual-based sample, xgi

and ygi are observed for the respondent only, as well as the proportion or number of other

group members for whom ygi = 1.

Let yg be defined as in Section 2. Note that the index of an individual within the

group is arbitrary. For ease of notation, let the respondent4 in an individual-based sample

be indexed as group member #1. Let Xg indicate the vector or matrix of observed

explanatory variables:

Xg ≡


xg1 if an individual-based sample(

xg1,xg2, . . . ,xgng

)′ if a group-based sample

The data set is thus {(Xg,yg)}N
g=1.

Let θ0 = (β, γ, ρx, ρε, µ, σ) be the true parameter vector, let Θ ⊂ Rk+6 be the feasible

4With a true random sample and peer groups of fixed size, the probability that two randomly sampled
individuals will be in the same peer group goes to zero as the population size goes to infinity. In practice, there
may be applications where deviations from true random sampling leads to multiple observations within a given
group. This case can be treated as just a special case of the group-based sample with exogenously censored
elements of xg.
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parameter space5 for θ0, and let θ be an arbitrary element of Θ. The model defined in

Section 2 implies that, for any θ, it is possible to calculate the conditional probability of

observing a particular outcome. The maximum likelihood estimator of θ0 is then given

by:

θML ≡ arg max
θ∈Θ

N∑
g=1

ln Pr(yg,Xg; θ)

= arg max
θ∈Θ

N∑
g=1

(lnPr(yg|Xg; θ) + lnPr(Xg; θ))

While Pr(Xg; θ) can be calculated analytically from the multivariate normal PDF, direct

calculation of Pr(yg,Xg; θ) is infeasible as it requires the evaluation of a complex mul-

tidimensional integral. As a result, simulation must be used to estimate the likelihood

function.

Let {P s
g (θ)}S

s=1 be an unbiased simulator for Pr(yg|Xg; θ), i.e., a sequence of S inde-

pendent random variables such that E(P s
g (θ)) = Pr(yg|Xg; θ). The simulated maximum

likelihood (SML) estimator of θ0 is then defined as:

θSML ≡ arg max
θ∈Θ

N∑
g=1

(
ln

(
1
S

S∑
s=1

P s
g (θ)

)
+ lnPr(Xg; θ)

)

Proposition 1 (Consistency of SML estimator) If θ0 is identified, then θSML is a

consistent estimator of θ0

Proof: If θ0 is identified then θML is a consistent estimator of θ0. By the weak law of large

numbers, 1
S

∑S
s=1 P

s
g (θ)

p→ E(P s
g (θ)) = Pr(yg|Xg; θ). By Proposition 3.1 in Gouriéroux

and Monfort (1996), this implies that θSML is a consistent estimator of θ0. 2

5Note that µ and σ are not free parameters, as µ = E(βx) and σ2 = V ar(βx). As a result, the implemen-
tation of this estimator saves significant computational time by using a two step (LIML) estimator in which µ
is replaced by βx̄ and σ is replaced by βΣxβ

′ where Σx is just the standard variance/covariance matrix of the
x’s.
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3.2 Simulation methodology

This section outlines two methods for generating P s
g (θ), both of which are based on the

Geweke, Hajivassiliou, and Keane (GHK) algorithm. The GHK simulator is described

by Hajivassiliou, McFadden, and Ruud (1996), and was found to be the most robust and

accurate among numerous techniques compared by those researchers.

Let c ∼ N(M,Σ) be a random vector of length n, let χ be any subset of Rn

which can be expressed as the union of a finite collection of disjoint rectangles6, and

let ξ be a vector of n independent U(0, 1) random variables. The GHK simulator is a

function GHK such that E(GHK(M,Σ, χ, ξ)) = Pr(c ∈ χ). The typical application

uses a computer to generate an independent pseudorandom sequence {ξs}S
s=1, then uses

1
S

∑S
s=1GHK(M,Σ, χ, ξs). to estimate Pr(c ∈ χ). In the course of calculating GHK(.),

the GHK algorithm also calculates a random vector ghk(M,Σ, χ, ξ) ∼ c|c ∈ χ. Proposi-

tion 2 below derives two methods for using these two functions to estimate Pr(yg|Xg; θ).

Proposition 2 (Simulators for Pr(yg)) Let cg ≡
(
cg1, cg2, . . . , cgng

)′ where:

cgi ≡


−βxgi+εgi

γ if γ > 0

βxgi + εgi if γ = 0

Let Y (c) be the set of pure strategy Nash equilibria when cg = c. Then:

1. The set c(y) ≡ {c : y ∈ Y (c)} is a rectangle.

2. The set C(Y ) ≡ {c : Y = Y (c)} can be expressed as the union of a finite collection

of disjoint rectangles.

3. The conditional distribution cg|Xg is multivariate normal with mean Mg and co-

6A rectangle is a set which can be defined as χ = {X ∈ Rn : aχ ≤ X ≤ bχ} for some pair of vectors
aχ, bχ ∈ (R ∪ {−∞,∞})n
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variance matrix Σg, where:

Mg ≡ −


βxg1

γ

µ+ρx(βxg1−µ)
γ

µ+ρx(βxg1−µ)
γ

,

 Σg ≡


1
γ2

ρε

γ2
ρε

γ2

ρε

γ2
1+(1−ρ2

x)σ2

γ2
ρε+(ρx−ρ2

x)σ2

γ2

ρε

γ2
ρε+(ρx−ρ2

x)σ2

γ2
1+(1−ρ2

x)σ2

γ2

 (14)

for an individual based sample, and:

Mg ≡ −


βxg1

γ

βxg2

γ

βxg3

γ

 , Σg ≡


1
γ2

ρε

γ2
ρε

γ2

ρε

γ2
1
γ2

ρε

γ2

ρε

γ2
ρε

γ2
1
γ2

 (15)

for a group-based sample.

4. Let ξs be a vector of ng independent random variables from the standard uniform

distribution. Finally, let the “Full GHK simulator” for observation g be given by:

P s
g (θ) ≡

∑
Y

sel(yg, Y )GHK(Mg,Σg, C(Y ), ξs) (16)

or let the “GHK-frequency hybrid simulator” be given by:

P s
g (θ) ≡ sel(yg, Y (ghk(Mg,Σg, c(yg), ξs))GHK(Mg,Σg, c(yg), ξs) (17)

Both of these simulators are consistent, i.e., 1
S

∑S
s=1 P

s
g (θ)

p→ Pr(yg|Xg; θ).

Proof: A constructive proof for each part of the proposition is provided in the appendix.

Proposition 2 defines two alternative methods for estimating Pr(yg|Xg; θ). The full

GHK simulator calculates the set C(Y ) in terms of a finite union of disjoint rectangles,

uses the GHK simulator to estimate the probability of each rectangle, and then adds

up (with weights given by sel(yg, Y )) across all Y . It inherits the GHK simulator’s

useful properties of low variance, as well as continuity and differentiability. Its primary

drawback is that the number of rectangles in C(Y ), and thus the computational cost,
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grows rapidly in ng. The GHK-frequency hybrid uses the GHK simulator on the single

rectangle c(yg) to accurately estimate the probability that yg is a Nash equilibrium. As a

side effect, the GHK simulator generates a random cg such that yg is a Nash equilibrium;

that random cg is used for a simple frequency simulator to estimate the probability that

yg will actually be observed given that it is a Nash equilibrium. The GHK-frequency

hybrid simulator has the advantage over the full GHK simulator that its computational

cost does not grow rapidly in ng, because only one rectangle probability is calculated

per observation. Its primary disadvantages are that it has a somewhat higher variance

than the full GHK simulator and is discontinuous in θ. This discontinuity complicates

maximization of the resulting likelihood function, as standard methods do not work well

with a discontinuous function (Gouriéroux and Monfort 1996, p. 96). Based on these

characteristics, it is recommended that the full GHK simulator be used if peer groups

are relatively small (ng ≤ 8), with the GHK-frequency hybrid used for data sets with

larger groups. For purposes of demonstrating both methods, the Monte Carlo results in

Section 5.2 are calculated using the full GHK simulator for individual-based samples and

the GHK-frequency hybrid for group-based samples.

The computer code implementing the estimation method is available from the au-

thor. The implementation of the GHK simulator is adapted from Vassilis Hajivassiliou’s

GAUSS code, and optimization is done by either a BFGS-Brent optimization routine writ-

ten by Bo Honoré and Ekaterini Kyriazidou (for the full GHK simulator) or a simulated

annealing routine written by William Goffe (for the GHK-frequency hybrid simulator).

As is generally the case in simulation-based estimation, the matrix of pseudorandom

numbers used in the simulator is kept constant through the entire estimation procedure.

In order to minimize simulation error, the pseudorandom numbers are derived from ran-

domized Halton sequences (Train 2002, Bhat 2003).
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3.3 Identification

This section provides a heuristic argument that the model is nonparametrically identified.

Nonparametric identification is a key issue in applications of structural models such as

the one presented here. If the structural parameters are identified strictly as a result of

arbitrary functional form assumptions rather than through economically substantive and

justifiable restrictions, the model has little empirical usefulness.

The fundamental source of identification in this case is the treatment of both the

respondent’s choice (ygi) and that of his or her peers (ȳgi) as endogenous. Consider

two conditional expectation functions, E(ygi|xgi, ȳgi) and E(ȳgi|xgi, ygi), which can in

principle be estimated from the data. First, the relationship between an individual’s

characteristics and his or her choice, i.e., ∂E(ygi|xgi,ȳgi)
∂xgi

is increasing in β, thus identify-

ing that vector of parameters. The relationship between an individual’s choice and the

average choice of his or her peers, i.e., ∂E(ygi|xgi,ȳgi)
∂ȳgi

, is increasing in both ρε and γ. This

is exactly the identification problem described by Manski (1993), and is the reason why

one or another of the restrictions discussed in Section 2.4 is needed to provide nonpara-

metric identification. Once such a restriction is made, γ is identified. With group-based

data, the correlation in observables ρx is identified directly by the corresponding sample

moment.

With individual-based data, the identification of ρx is more complex. It is identified

from the relationship between an individual’s characteristics and the average choice of

his or her friends β ∂E(ȳgi|xgi,ygi)
∂xgi

, which is increasing in ρx. To gain intuition for this,

consider the following numerical example and estimation by a simple indirect inference

scheme. The example features a simulated data set of 100,000 with the same parameter

settings as in the baseline model of Section 5. To facilitate comparison across different

simulations, the matrix of pseudorandom variables used to generate the simulations is

fixed across trials. Based on a given Monte Carlo sample, define two reduced form

coefficients: let ψ̂ be the coefficient on ȳ in a naive probit regression of y on x and ȳ,
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and let ω̂ be the coefficient on yβx from an OLS regression of ȳ on (y, yβx, (1 − y)βx).

Since these are random variables it is also convenient to define ψ(ρ, γ) ≡ E(ψ̂; ρ, γ)

and ω(ρ, γ) ≡ E(ω̂; ρ, γ). Now, suppose that we were to attempt to recover ρ and γ

from the reduced-form coefficients ψ̂ and ω̂. Based on the simulation described above, I

estimate that ψ(0.25, 0.5) ≈ 1.511 and ω(0.25, 0.5) ≈ 0.0132. Also using the simulated

data, but with different parameter values, Figure 1 shows the set of all (ρ, γ) pairs such

that ψ(ρ, γ) ≈ 1.511 (the downward-sloping curve) and the set of all pairs such that

ω(ρ, γ) ≈ 0.0132 (the upward-sloping curve). These two curves intersect at only one

point: (0.25,0.5). Not only does this explanation provide some insight into the usefulness

of the common-correlation assumption, it suggests an explanation for another apparent

feature of the estimator. The Monte Carlo experiments suggest that the accuracy of γ̂

is closely related to the explanatory power of the exogenous variables, var(βx). In the

context of Figure 1, this can be explained by high variance in ω̂ when var(βx) is low.

4 Extensions

4.1 Estimation with alternative restrictions on ρε

Although the baseline model’s assumption of equal correlation in observables and unob-

servables is reasonable in some applications, an empirical researcher may wish to estimate

under alternative restrictions. For point restrictions of the form (11), (12), or (13), es-

timation is simply a matter of optimizing the simulated log-likelihood function with the

appropriate constraint substituted for the equal-correlation restriction (8).

It is also possible, as suggested in Section 2 to place bounds on γ under interval

restrictions on ρε. The method for doing this is straightforward. Let the function γ̂(ρ∗)

be defined as the ML estimate of γ under the restriction that ρε = ρ∗. Two things

should be noted about γ̂(.). First, γ̂(ρε)
p→ γ, where ρε and γ are the true parameter

values. Second, because the log-likelihood function is continuous in θ, the Maximum

20



Theorem implies that γ̂(.) is also continuous. This continuity suggests that a researcher

can calculate γ̂(.) at a finite number of points and interpolate between these points.

Now, suppose that one is willing to place an interval restriction on ρ and would like

to find corresponding bounds on γ. The bounds can be defined as follows:

ρε ∈ [ρL, ρH ] ⇒ γ̂ ∈
[

min
ρ∈[ρL,ρH ]

γ̂(ρ), max
ρ∈[ρL,ρH ]

γ̂(ρ)

]
(18)

In practice, it is simpler to report or graph γ̂(.) and allow the reader to choose a reasonable

interval restriction and construct the bounds. The application in Section 6 includes an

example.

4.2 Estimation without an equilibrium selection rule

It is also possible in some cases to learn something about parameter values without

imposing an equilibrium selection rule. There is a small literature (Jovanovic 1989, Tamer

2002b, Tamer 2002a) that explores identification in models with multiple equilibria. The

key insight in the literature is that models with multiple equilibria imply interval rather

than point restrictions on conditional probabilities. Specifically, for an arbitrary choice

vector y, any selection rule must obey the condition:

Pr({y} = Yg) ≤ Pr(yg = y) ≤ Pr(y ∈ Yg) (19)

In other words, the probability of observing a particular outcome y will be at least as

large as the probability that it is the unique Nash equilibrium and no larger than the

probability that it is a Nash equilibrium. As Jovanovic notes, equation (19) defines a

family of likelihood functions, which includes the likelihood functions defined by (5)-(7).

The set of parameter vectors which maximizes one or more of these likelihood functions

will by construction contain the ML estimate based on the unknown correct likelihood

function. In other words, although an equilibrium selection rule must usually be imposed
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to achieve point identification7 of parameters, consistent bounds on parameters may be

constructed without imposing a selection rule.

The approach pursued in this paper is the “likelihood bounds” approach discussed

by Tamer (2002a). Let Hs
g(θ) be a random variable with the property that E(Hs

g(θ) =

Pr(yg ∈ Yg|xg; θ), and let Ls
g(θ) be a random variable with the property that E(Ls

g(θ)) =

Pr({yg} = Yg|xg; θ). The simulators used here are:

Hs
g(θ) ≡ GHK(Mg,Σg, c(yg), ξs) (20)

and either (full GHK simulator):

Ls
g(θ) ≡ GHK(Mg,Σg, C({yg}), ξs) (21)

or (GHK-frequency hybrid):

Ls
g(θ) ≡ I [Y (ghk(Mg,Σg, c(yg), ξs)) = {yg}]GHK(Mg,Σg, c(yg), ξs) (22)

where I[.] is the indicator function, and Mg,Σg,ξs, c(.), and C(.) are defined as in Propo-

sition 2.

These estimated probabilities provide bounds on the set of likelihood functions that

are consistent with some equilibrium selection rule. Let `∗ be the maximum of all the

lower bounds:

`∗ ≡ max
θ∈Θ

N∑
g=1

(
ln

(
1
S

S∑
s=1

Ls
g(θ)

)
+ lnPr(Xg; θ)

)
(23)

Regardless of the selection rule, the maximum of the true likelihood function must be

at least as great as `∗. This implies that the true maximum likelihood estimate θML is

7Tamer (2002b) shows that one can sometimes redefine outcomes in such a way as to get point restrictions
on probabilities in this model without imposing a selection rule. However, his solution only works for the two
player case.
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contained in the set V defined as:

V ≡

θ ∈ Θ :
N∑

g=1

(
ln

(
1
S

S∑
s=1

Hs
g(θ)

)
+ lnPr(Xg; θ)

)
≥ `∗

 (24)

As the Monte Carlo results in Section 5.2 will show, V is sometimes but not always small

enough to provide informative bounds on parameter values. As Tamer (2002a) notes, V

does not provide sharp bounds on the parameter values because there are many functions

between the upper and lower bounds that are not valid log-likelihood functions.

Figure 2 shows this method graphically for three simulated data sets with different

parameter values. The shaded area is the area of allowable likelihood functions con-

structed using Hs
g(θ) and Ls

g(θ). The horizontal dotted line marks the maximum of the

lower bounds `∗. The range of γ values in the set V is defined by the dark line. As the

figure shows, the upper and lower bounds are identical for γ = 0 (because equilibrium is

almost always unique), and diverge as γ increases. As a result, V provides much narrower

bounds on γ̂ when the true value of γ is lower.

4.3 Estimation with inconsistent reporting

In individual-based samples where the behavior of peers is reported by the respondent,

one issue that may appear is inconsistent reporting. For example, in the application

described in Section 6, the percentage of young people who self-report that they smoke

cigarettes is substantially lower than the average percentage of their four best friends that

they report as smokers. Because both the respondents and their friends are drawn from

the same population, this implies that they are either underreporting their own smoking,

overreporting their friends’ smoking, or both. This can be handled by extending the

model to incorporate inaccurate reporting. This section describes a simple example of

such an extension; richer models of reporting could be defined as needed for applications.

The model of inconsistent reporting is based on three assumptions: individuals truth-

fully report the behavior of their peers ȳgi, truthfully report their own behavior when
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ygi = 0, and truthfully report their own behavior with some exogenous probability pr

when ygi = 1 . Let rgi be a binary variable indicating the behavior a person would

self-report in a survey. We suppose that

Pr(rgi = 1) =


0 if ygi = 0

pr if ygi = 1 and i = 1

1 if ygi = 1 and i 6= 1

(25)

Given this, we simply redefine the observed outcome variable as rg =
(
rg1, rg2, . . . , rgng

)′
and find the parameter values which maximize a log-likelihood based on Pr(rg,Xg; θ, pr)

rather than Pr(yg,Xg; θ). Although pr can be estimated as part of the likelihood function,

it can also be estimated directly. Since pr = E(rg1)/E(r̄g1), a natural estimator for pr is

just the ratio of the corresponding sample averages.

4.4 Estimation with aggregate variables

There are also many applications where some of the explanatory variables are aggregate

and apply to all group members, for example, prices, state or year fixed effects, school

characteristics, etc. These can be incorporated into the model by modifying the utility

function to include a vector of aggregate variables zg:

ugi(1;yg)− ugi(0;yg) = λzg + βxgi + γȳgi + εgi (26)

and proceeding as usual.

5 Monte Carlo experiments

This section applies the estimator developed in Section 3 to a series of simulated data

sets. The results provide an insight into the statistical performance of the estimator.

24



5.1 Overview of the experiments

Table 1 reports a selection of the Monte Carlo results. The baseline experiment has ob-

servations on 1,000 individuals, organized into 5-member peer groups. There is a single

x variable with a N(0, 1) marginal distribution. The coefficient on x is β1 = 1 and the

intercept is β0 = 0. Both the actual selection rule and the selection rule assumed in

estimating the model correspond to equation (5), the “low-activity” equilibrium. The

correlated and endogenous effects take on one of three combinations: an endogenous

effect with no correlated effect (γ = 1, ρ = 0), a correlated effect with no endogenous

effect (γ = 0, ρ = 0.25), and both effects (γ = 0.5, ρ = 0.25). Simulations are generated

with 1,000 observations, and both individual-based and group-based samples are gener-

ated. Once generated, the simulated data sets are used to estimate (1) a “naive” probit

model, in which peer behavior is treated as an exogenous explanatory variable, from the

individual-based sample, (2) the structural (SML) model estimated from the individual-

based sample, and (3) the structural (SML) model from the group-based sample. Table 1

reports the sample mean of key parameter estimates over 100 Monte Carlo samples, and

in some cases the sample standard deviation.

5.2 Results

Baseline: Rows 1-3 in Table 1 report the results from the baseline experiment. The

naive probit dramatically overestimates the true peer effect in all three cases. Even when

ρ = 0.00, simultaneity produces an upwards bias of approximately 50%. In contrast, the

structural estimator eliminates both types of correlated effect and comes very close to

the true parameter values on average. The only sign of nontrivial bias in the structural

estimates is for the case of γ = 0. Because γ = 0 is on the boundary of the allowed

parameter space, estimates of γ will have some upwards bias in any finite sample. This

issue also complicates hypothesis testing on the null of no peer effect. In all cases, the

SML estimator clearly dominates the naive estimator.
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Alternative assumptions on x: Rows 4-6 provide information on how the prop-

erties of the explanatory variables matter. Row 4 shows results from a variation on the

baseline experiment in which the explanatory variables have low explanatory power for

the outcome, i.e., β1 = 0.1 instead of β1 = 1. As the table shows, this has minimal effect

on the estimates from the group-based sample, but produces a substantial increase in

bias and variance for the individual-based sample. This is because ρx (and thus γ) is

identified in the individual-based sample from the effect of xgi on ȳgi relative to its effect

on ygi, as discussed in Section 3.3. When xgi has little effect on ygi, the effect is similar to

that of a weak instrument in IV estimation. Row 5 shows results from a variation on the

baseline experiment in which there are four explanatory variables (independent from one

another with a N(0, 1) distribution) rather than just one. Because the previous experi-

ment revealed that explanatory power matters, the coefficients on the x vector are set to

β1 = β2 = β3 = β4 = 0.5 so that var(βx) of the model is unchanged from the baseline

experiment. As the table shows, this has little effect on the estimates of ρ and γ. Row 6

shows the results froom a variation in which there are four binary explanatory variables.

Because the structural model assumes normally distributed explanatory variables, it is

slightly misspecified here in a way that is likely in applied work. As the results show,

this form of misspecification has little effect on the estimators.

Correlation between x and ε: Rows 7-10 report the results from simulations in

which there is correlation between observables and unobservables. As the results here

show, such a correlation will introduce a bias in the SML estimates. Whether the esti-

mated peer effect is biased up or down appears to depend on two factors: whether the

sample is individual-based or group-based, and how large the within-group correlation is

relative to the individual-level correlation. At least in the cases presented here, the SML

estimator still does well relative to the naive estimator, though it obviously would be infe-

rior to some other estimator which is consistent under a correlation between observables

and unobservables.
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Wrong equilibrium selection rule: Rows 11-14 report the results from simula-

tions in which the equilibrium selection rule is misspecified by the researcher. In all four

cases, the estimates are calculated assuming that the low-activity equilibrium is already

selected. This type of misspecification has minimal effect on the resulting parameter

estimates, at least when the true selection rule falls within these three categories.

Selection rule free estimation: Rows 15-17 show results from selection rule free

estimation of the model as described in Section 4.2. In each of these three experiments,

the actual selection rule is the low-activity rule. The quantities reported are the median

(across 100 simulations) of the lower bound and upper bound estimates of γ. The median

is reported here because the distribution of estimated upper bounds has a strong positive

skew. As these results show, selection rule free estimation is able to provide informative

bounds on the endogenous effect for the group-based sample (especially when the true

endogenous effect is zero), but is less informative for the individual-based sample.

Contextual effects: Rows 18-19 show the results when there is a contextual effect

rather than an endogenous effect. While both estimators mistakenly interpret at least

some of the contextual effect as an endogenous effect, the estimated peer effect from an

individual-based sample has much lower bias. This appears to be in part because the

correlation in observables is being identified from the correlation between a respondent’s

characteristics and the average choice of his or her peers, so the contextual effect produces

an upwardly biased estimate of ρ which then reduces the effect on the estimated γ. In

estimating the model from a group-based sample, the contextual effect has little impact

on the estimated ρ (note that the estimates are approximately correct), and so will not

reduce the bias in γ.

Inconsistent reporting: Rows 20-21 show the results for a case in which there

is inconsistent reporting of one’s own behavior and that of one’s peers, as modeled in

Section 4.3. In row 20, this inconsistent reporting is incorporated into the estimator,

and pr is estimated. In row 21, the inconsistent reporting is not incorporated into the

estimator (i.e., it is implicitly and incorrectly assumed that pr = 1). As the table shows,
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the parameter estimates are quite inaccurate when inconsistent reporting is not accounted

for, but accurate when it is.

6 Application: Youth smoking

This section provides a brief illustrative application to the estimation of close friend in-

fluence on youth smoking. The decision of young people to smoke cigarettes is a natural

place to look for social interaction effects. Smoking is a social activity, and one in which

many believe that peer influence is very strong, particularly among young people. In

addition, the decision to start smoking as a teenager has profound and life-long conse-

quences, and is thus a major concern for public health policy.

6.1 Background

The current consensus in the public health literature is that peers are critical influences

in the decision to start smoking. For example, Wang et al. (2000, p. 1241) state that the

“[s]moking literature has indicated that the influence of peers has been the single most

important factor related to smoking acquisition,” while Tyas and Pederson (1998, p.

416) report that “one of the most consistent findings in the literature is that of the social

influence of peers and others on adolescent smoking.” Unfortunately, this consensus is

built on exactly the type of methodologically flawed research which has been criticized

by Manski (1993) and others.

Several recent papers (Norton, Lindrooth and Ennett 1998, Gaviria and Raphael 2001,

Powell, Tauras and Ross 2003) have used a simple IV method to estimate endogenous

social effects in youth smoking at the classroom and/or neighborhood level. Although

their estimates of the endogenous effect vary substantially, all three papers find that the

bias in the naive estimator is actually negligible, i.e., there is no correlated effect. This

finding is somewhat disconcerting, given that longitudinal data (Engels, Knibbe, Drop

and de Haan 1997, Wang, Eddy and Fitzhugh 2000) indicates that young smokers in
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low-smoking peer groups are likely to switch into higher-smoking peer groups over time.

Such behavior will tend to produce substantial correlated effects, but the IV estimates

find no evidence of them.

In addition to the methodological differences, the application presented here differs

from the previous IV studies by investigating the influence of close friends rather than

larger and more formal groups. Estimates of close friend effects appear frequently in the

public health literature on youth smoking (1995, 2002, 2003), but have been absent from

the economics literature.

6.2 Data

The data source is the 1993 Teenage Attitudes and Practices Survey (TAPS), an individual-

based survey conducted by the Centers for Disease Control (CDC) to learn more about

the determinants of smoking and other risky behavior among U.S. teens. The outcome

variable is an indicator of whether the respondent is what the CDC defines as a “cur-

rent smoker” – someone who has smoked a cigarette in the past 30 days. The social

group is the respondent’s four best same-sex friends, and the measure of peer behavior

is the number of those friends that smoke, as reported by the respondent. In addition,

the TAPS provides standard background variables including race, age, parental smoking,

exposure to information about the risks of smoking, and participation in sports and reli-

gious services. Wang et al., (1995) also use this data to estimate (by the naive method)

close friend effects on smoking. After dropping observations without information on the

endogenous variables, the sample has 8,192 respondents, all high-school age. The model

is estimated with the correction for inconsistent reporting described in Section 4.3. The

fraction of teens that admit to smoking is about 20%, while the average fraction of their

friends who smoke is about 27%. The estimated rate of truthful reporting by smokers is

thus p̂r = 0.20
0.27 = 0.74.
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6.3 Results

Table 2 reports basic results. The first column in the table displays coefficient estimates

from a naive probit, while the second column shows SML parameter estimates for the

structural model. The naive probit results suggest a large endogenous social effect (γ̂ =

1.891). The structural model estimates imply a large correlated effect (ρ̂ = 0.621) and

thus a much smaller endogenous effect (γ̂ = 0.225).

Because the structural model includes the underreporting correction, the magnitudes

of the coefficient estimates are not directly comparable in the two columns, nor are

they directly comparable with coefficient estimates from other studies which use different

functional forms. To characterize the results in a way that is comparable, consider a

representative individual, i.e one with observed characteristics such that his or her prob-

ability of being a self-reported smoker is equal to the average (0.20), and who has no

close friends who smoke. According to each model, by how many percentage points will

this representative individual’s probability of being a self-reported smoker increase if one

close friend becomes a smoker?

I calculate this quantity for both the naive model and the structural model, as well as

for other models estimated in the literature. In this paper, the naive model predicts an

increase in smoking probability by 16 percentage points (from 20% to 36%) as a result

of one friend becoming a smoker. The structural model structural model predicts an

increase in both actual and self-reported smoking of 1 to 2 percentage points. Previous

articles in the literature on close friend peer effects, all of which use naive estimators,

find even larger responses than the naive estimator here. Wang et al. (1995), also using

the TAPS data, find that the probability of being a smoker increases by 37-53 percentage

points, depending on age. Lloyd-Richardson et al. (2002) find that the probability of

being a smoker increases by 34 percentage points, and Norton et al. (2003) find that it

increases by 18 percentage points. Clearly the basic estimates from the structural model

imply that close friends are less influential than previously thought.
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The starkness of this result is reduced but not eliminated when the equal correlation

assumption is relaxed. Figure 3 shows the results of relaxing this assumption, using the

methodology described in Section 4.1. The figure shows a number of results. First, even

if one imposes only the very weak restriction that peer groups exhibit at least as much

similarity as would be the case if they were constructed by random assignment (ρε ≥ 0),

the data indicate the peer effect is lower than implied by the naive model. If one is willing

to impose the slightly stronger restriction that ρε ∈ [0.311, 0.621] (i.e., the correlation in

unobservables is no more than the estimated correlation in observables, and no less than

half the estimated correlation in observables), then this restriction produces bounds of

approximately [0.000, 0.909].

These results should be viewed as suggesting that close friend effects on youth smoking

are weaker than implied by previous studies, rather than proving that close friend effects

are near zero. There are some limitations in the TAPS data, particularly a lack of state

identifiers so that cigarette prices can be incorporated into the model. In addition, space

and scope limitations preclude a detailed analysis of the data here. Ongoing research

applies the methodology developed here to richer data sets on youth smoking. and with

more detailed analysis. The results here clearly merit further investigation.

7 Conclusion

Many economists are skeptical of the empirical importance of social interaction effects

and suspect that their magnitude has been overstated by researchers who fail to account

for correlated effects. Researchers have made some progress on this issue recently, but

each of the main approaches in the literature has significant limitations. The approach

developed here does not require centralized manipulation of the economic environment to

generate experimental data, nor does it require the existence of a suitable instrumental

variable. Instead, it merely requires standard survey data with some information on

peer behavior. Although the estimation method itself is somewhat complex, a complex
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research design is not required. The available computer code can simply be applied to

the data as a direct substitute for the naive estimator. This feature is important in a

world where policy-oriented researchers, needing a point estimate for the peer effect in

a given situation, will use the naive estimator if all of the alternatives require complex

research designs.

Several avenues for further research remain, in addition to empirical applications. An

ongoing research project investigates social interaction effects in youth smoking in more

detail. While much remains to be done, the results here indicate that simulation-based

structural estimation can be a valuable tool in the empirical analysis of social interactions.
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SML Estimator

Actual Naive Sample of Sample of

Values Probit Individuals Groups

Description γ ρ γ̂ γ̂ ρ̂ γ̂ ρ̂

Baseline 1.0 0.00 1.525 0.996 0.001 1.032 -0.003

(0.176) (0.181) (0.044) (0.145) (0.020)

0.5 0.25 1.489 0.514 0.243 0.495 0.248

(0.154) (0.160) (0.050) (0.163) (0.034)

0.0 0.25 0.834 0.067 0.233 0.065 0.238

(0.155) (0.087) (0.032) (0.091) (0.028)

Alternative assumptions on X:

Low explanatory power 0.5 0.25 1.818 0.795 0.139 0.497 0.247

(β1 = 0.1) (0.134) (0.573) (0.230) (0.157) (0.032)

Multiple X’s (k = 4) 0.5 0.25 1.489 0.485 0.255 0.467 0.254

(0.159) (0.156) (0.051) (0.143) (0.034)

Binary X’s. (k = 4) 0.5 0.25 1.467 0.443 0.268 0.448 0.258

(0.152) (0.172) (0.053) (0.153) (0.030)

Correlation between X and ε:

ρ(βxgi, εgi) = 0.2, ρ(βxgi, εgj) = 0.0 0.5 0.25 1.390 0.588 0.200 0.442 0.260

ρ(βxgi, εgi) = 0.2, ρ(βxgi, εgj) = 0.05 0.5 0.25 1.572 0.686 0.239 0.633 0.253

ρ(βxgi, εgi) = 0.2, ρ(βxgi, εgj) = 0.1 0.5 0.25 1.804 0.809 0.275 0.845 0.246

Wrong equilibrium selection rule:

Actual = High-activity 1.0 0.00 1.453 0.891 0.011 0.955 -0.006

0.5 0.25 1.477 0.513 0.242 0.444 0.257

Actual = Random 1.0 0.00 1.517 0.974 0.001 0.976 -0.001

0.5 0.25 1.482 0.485 0.253 0.475 0.250

Selection rule free estimation:

Median[Lower bound,Upper bound] 1.0 0.00 [0.145, > 4.0] [0.388, 2.706]

0.5 0.25 [0.082, > 4.0] [0.177, 1.537]

0.0 0.25 [0.037, 3.566] [0.001, 0.073]

Contextual effects:

u(1) − u(0) = 1.0xgi + 0.5x̄gi + εgi 0.0 0.25 1.222 0.108 0.367 0.379 0.221

0.0 0.00 0.489 0.111 0.088 0.368 -0.016

Inconsistent reporting:

pr = 0.5, correction made 0.5 0.25 0.678 0.499 0.252

pr = 0.5, no correction 0.5 0.25 0.678 -0.003 0.308

Table 1: Monte Carlo results. Calculated using 100 trials; see text for details.

35



Variable Naive SML
Description Probit Estimator
Peer correlation (ρ) – 0.621

– (0.087)
Peer effect (γ) 1.891 0.225

(0.050) (0.235)
Intercept -2.495 -2.354

(0.290) (0.563)
Black -0.478 -0.721

(0.064) (0.106)
Age (years) 0.073 0.134

(0.017) (0.032)
Parental smoking 0.102 0.273

(0.037) (0.040)
Taught risks in class -0.043 -0.176

(0.044) (0.040)
Plays sports -0.152 -0.301

(0.037) (0.043)
Attends religious services -0.203 -0.458

(0.037) (0.052)

Table 2: Regression results for teen smoking data. Estimated standard errors in parentheses.
Standard errors for SML estimates are estimated from 50 bootstrap replications.
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Figure 1: The upward-sloping curve is the set of (ρ, γ) pairs such that ω̂ = 0.0132. The
downward-sloping curve is the set of (ρ, γ) pairs such that ψ̂ = 1.511. Because these two
curves intersect at only one point, these two relationships provide identification.

Figure 2: Mechanics of selection rule free estimation via likelihood bounds. All likelihood
functions consistent with Nash equilibria lie within shaded area; dotted lines provide lower and
upper bounds on peer effect γ. Graphs depict cases (ρ, γ) = (0, 1), (0.25, 0.5), and (0.25, 0.0),
respectively.
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Figure 3: Results for teen smoking data which can be used to place bounds on social interaction
effects. The individual points represent the point estimates from both the naive probit model
and the structural SML model with the equal correlation restriction. The ellipse around the
structural model estimate is an approximate 95% confidence region. The solid line represents
the γ̂(ρ) function described in the text, and the shaded region is a pointwise asymptotic 95%
confidence band for that function.

38



A Additional not-for-publication notes

A.1 Proof for Proposition 2

Proof: (1) We can simply construct the rectangle. Let:

cgi =

{
−∞ if ygi = 1

1
ng−1

∑
j 6=i ygj if ygi = 0 c̄gi =

{
1

ng−1

∑
j 6=i ygj if ygi = 1

∞ if ygi = 0

and let cg =
(
cg1, cg2, . . . , cgng

)′
and c̄g =

(
c̄g1, c̄g2, . . . , c̄gng

)′ Then c(y) = [cg, c̄g] ≡ {c ∈
Rng : cg ≤ c ≤ c̄g}, which is a rectangle. (2) First, note that

C(Y ) =
⋂

y∈{0,1}n
g

(
[c(y), c̄(y)] if y ∈ Y
[c(y), c̄(y)]c if y /∈ Y

)

Next, note that if A = [aL, aH ] and B = [bL, bH ] are both rectangles in Rn, then A∩B =
[aL ∨ bL, aH ∧ bH ] is also a rectangle. In addition, if A is a rectangle, then Ac can be
written as the union of a finite collection of (2*n) disjoint rectangles:

[aL, aH ]c = [(−∞, . . . ,−∞), (aL
1 ,∞, . . . ,∞)]

∪ [(aH
1 ,−∞, . . . ,−∞), (∞, . . . ,∞)]

∪ [(aL
1 ,−∞, . . . ,−∞), (aH

1 , a
L
2 ,∞, . . . ,∞)]

∪ [(aL
1 , a

H
2 ,−∞, . . . ,−∞), (aH

1 ,∞, . . . ,∞)]

∪
...

∪ [(aL
1 , a

L
2 , . . . , a

L
n−1, a

H
n ), (aH

1 , a
H
2 , . . . , a

H
n−1,∞)] (27)

It follows that if A and B are rectangles then Ac∩B and Ac∩Bc can be expressed as the
union of a finite collection of disjoint rectangles. Therefore, C(Y ) can be expressed as
the union of a finite collection of disjoint rectangles. (3) follows from standard theorems
on the conditional and marginal distribution of a linear function of a multivariate normal
random vector. (4) We can write Pr(yg|Xg; θ) as (supressing the conditioning):

Pr(yg|Xg; θ) =
∑
Y

Pr(yg is selected|Yg = Y,Xg; θ) Pr(Yg = Y |Xg; θ)

=
∑
Y

sel(yg, Y ) Pr(cg ∈ C(Y )|Xg; θ)

Since by the definition of the GHK simulator 1
S

∑S
s=1GHK(Mg,Σg, C(Y ))

p→ Pr(cg ∈
C(Y )|Xg; θ), the full GHK simulator (16) is consistent. The probability can also be
written as:

Pr(yg|Xg; θ) = Pr(yg|yg ∈ Yg,Xg; θ) Pr(yg ∈ Yg|Xg; θ)

Since by the definition of the GHK simulator, 1
S

∑S
i=1 sel(yg, Y (ghk(Mg,Σg, c(yg), ξs))

p→
Pr(yg|yg ∈ Yg,Xg; θ) and 1

S

∑S
i=1GHK(Mg,Σg, c(yg), ξs)

p→ Pr(yg ∈ Yg|Xg; θ), the
GHK-frequency hybrid simulator (17) is also consistent. 2
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A.2 Details on the “binary characteristics” Monte Carlo
experiment

The “Binary Characteristics” experiment is complicated by there being many ways to
generate a vector of binary variables with a particular mean vector and covariance matrix.
The particular method used is as follows. For each explanatory variable v and each group
g, there is a group-specific probability pv

g drawn from a two-point distribution:

pv
g =

{
p+

√
ρ

2 with probability 1/2
p−

√
ρ

2 with probability 1/2
(28)

Conditional on pv
g, each group member’s characteristic xv

gi is an independent draw from
the Bernoulli(pv

g) distribution. Given these assumptions, E(xv
gi) = p and corr(xv

gi, x
v
gj) =

ρ. In order to keep the explanatory power of x the same as the baseline experiment, the
coefficients are set so that E(βxg1) = 0 and var(βxg1) = 1. Specifically, p = 0.5, β1 =
β2 = β3 = β4 = 1, and β0 = −2. As usual, the vector of unobservables is multivariate
normal with zero mean, unit variance, and correlation ρ across group members.

A.3 Details on comparison of previous studies

Because of differences in estimation methods across studies, and differences in standard
reporting methods between researchers in health and in economics, some degree of sub-
jective interpretation is involved. This section describes how each paper was interpreted
to generate the estimates reported in Section 6.

Wang et al. (1995)

1. Data: Youth age 14-18 in the U.S. Teenage Attitudes and Practices Survey.

2. Peer group measure: Smoking rate of four same-sex best friends (0 smokers vs. 1-2
smokers vs. 3-4 smokers).

3. Method: Logistic regression, separately for each age, odds ratios reported.

4. Estimates: Odds ratio of 1-2 smokers vs 0 smokers among peers varies from 5.3
(Table 1, column 3) to 10.7 (Table 1, column 2). Therefore logit coefficient (on
dummy variable “1-2 smokers among friends”) varies from 1.67 to 2.37. Effect of
an increase in best-friend smoking from zero to one is:

∆ Pr(y = 1) = Λ(Λ−1(0.2) + 1.67)− 0.2
= 0.37

∆ Pr(y = 1) = Λ(Λ−1(0.2) + 2.37)− 0.2
= 0.53

Lloyd-Richardson et al. (2002)

1. Data: Grade 7-12 students in the U.S. National Longitudinal Survey of Adolescent
Health.

2. Peer group measure: Smoking rate among 3 best friends.
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3. Method: Logistic regression, odds ratios reported.

4. Estimates: Odds ratio for 1 peer who smokes vs. 0 peers who smoke was 4.68 (Table
2, column 2), implying logit coefficient of ln(4.68) = 1.543. Effect of a one person
increase in best friend smoking is:

∆ Pr(y = 1) = Λ(Λ−1(0.2) + 1.543)− 0.2
= 0.34

Norton, et al. (2003)

1. Data: Grade 9 students in a North Carolina study.

2. Peer group measure: Smoking rate of 3 best friends.

3. Method: Linear probability model. The researchers also included perceived smoking
of peers (as distinct from their actual smoking) as an explanatory variable.

4. Estimates: LPM coefficient is 0.526 (Table 1, column 1). Effect of a one-person
increase in peer smoking is :

∆ Pr(y = 1) = 0.526 ∗ 0.33
= .18

Krauth (current article)

1. Data: Youth age 14-18 in the U.S. Teenage Attitudes and Practices Survey.

2. Peer group measure: Smoking rate of four same-sex best friends.

3. Method: Naive probit, structural estimator.

4. Estimates: Naive probit coefficient 1.891; structural coefficient estimates γ̂ = 0.225,
p̂r = 0.74. Effect of a one-person increase in close-friend smoking predicted by naive
model is:

∆ Pr(y = 1) = Φ(Φ−1(0.2) + 1.891 ∗ 0.25)− 0.2
= 0.16

(29)

The structural model predicts an increase in smoking probability of:

∆ Pr(y = 1) = Φ(Φ−1(0.2) + 0.225 ∗ 0.25)− 0.2
= 0.016

and an increase in self-reported smoking probability of:

∆ Pr(y = 1) = 0.74 ∗ Φ(Φ−1(0.27) + 0.225 ∗ 0.25)− 0.2
= 0.014
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