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1 Introduction

Following the success of the autoregressive conditional heteroscedasticity (ARCH) model

and the generalized ARCH (GARCH) model in describing the time-varying variances of

economic data in the univariate case many researchers have extended these models to

multivariate dimension. Applications of the multivariate GARCH (MGARCH) models

to financial data have been numerous. For example, Bollerslev (1990) studied the chang-

ing variance structure of the exchange rate regime in the European Monetary System

assuming the correlations to be time invariant. Kroner and Claessens (1991) applied

the models to calculate the optimal debt portfolio in multiple currencies. Lien and

Luo (1994) evaluated the multiperiod hedge ratios of currency futures in a MGARCH

framework. Karolyi (1995) examined the international transmission of stock returns

and volatility using different versions of MGARCH models. Baillie and Myers (1991)

estimated the optimal hedge ratios of commodity futures and argued that these ratios

are nonstationary. Gourieroux (1997, Chapter 6) presented a survey of several versions

of MGARCH models. See also Bollerslev, Chou and Kroner (1992) and Bera and Hig-

gins (1993) for surveys on the methodology and applications of GARCH and MGARCH

models.

Bollerslev, Engle andWooldridge (1988) provided the basic framework for a MGARCH

model. They extended the GARCH representation in the univariate case to the vector-

ized conditional-variance matrix. Their specification follows the traditional autoregres-

sive moving average time series analogue. While this vech representation is very general,

it involves a large number of parameters. Empirical applications require further restric-

tions and simplifications. A useful member of the vech-representation family is the

diagonal form. Under the diagonal form, each variance-covariance term is postulated

to follow a GARCH-type equation with the lagged variance-covariance term and the

product of the corresponding lagged residuals as the right-hand-side variables in the
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conditional-(co)variance equation.

It is often difficult to verify the condition that the conditional-variance matrix of an

estimated MGARCH model is positive definite.1 Furthermore, such conditions are often

very difficult to impose during the optimisation of the log-likelihood function. Boller-

slev (1990) suggested the constant-correlation MGARCH (CC-MGARCH) model that

can overcome these difficulties. He pointed out that under the assumption of constant

correlations, the maximum likelihood estimate (MLE) of the correlation matrix is equal

to the sample correlation matrix. As the sample correlation matrix is always positive

definite, the optimisation will not fail as long as the conditional variances are positive. In

addition, when the correlation matrix is concentrated out of the log-likelihood function

further simplification is achieved in the optimisation.

Due to its computational simplicity, the CC-MGARCH model is widely used in

empirical research. However, while the constant-correlation assumption provides a con-

venient MGARCH model for estimation, some studies find that this assumption is not

supported by some financial data.2 Thus, there is a need to extend the MGARCH

models to incorporate time-varying correlations and yet retain the appealing feature of

satisfying the positive-definite condition during the optimisation.

Engle and Kroner (1995) proposed a class of MGARCH model called the BEKK

(named after Baba, Engle, Kraft and Kroner) model. The motivation is to ensure the

condition of a positive definite conditional-variance matrix in the process of optimisation.

Engle and Kroner provided some theoretical analysis of the BEKK model and related it

to the vech-representation form. Another approach examines the conditional variance

as a factor model. The works by Diebold and Nerlove (1989), Engel and Rodrigues

(1989) and Engle, Ng and Rothschild (1990) are along this line. One disadvantage of

1Engle, Granger and Kraft (1984) presented the necessary conditions for the conditional-variance
matrix to be positive definite in a bivariate ARCH model. Extensions of these results to more general
models are, however, intractable.

2For example, Tse (2000) found that the stock returns across different national markets exhibit
time-varying correlations.
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the BEKK and factor models is that the parameters cannot be easily interpreted, and

their net effects on the future variances and covariances are not readily seen. Bera,

Garcia and Roh (1997) reported that the BEKK model does not perform well in the

estimation of the optimal hedge ratios. Lien, Tse and Tsui (1998) reported difficulties in

getting convergence when using the BEKK model to estimate the conditional-variance

structure of spot and futures prices.

In this paper we propose a new MGARCH model with time-varying correlations.

Basically we adopt the vech representation. The variables of interest are, however, the

conditional variances and conditional correlations. We assume a vech-diagonal struc-

ture in which each conditional-variance term follows a univariate GARCH formulation.

The remaining task is to specify the conditional-correlation structure. We apply an

autoregressive moving average type of analogue to the conditional-correlation matrix.

By imposing some suitable restrictions on the conditional-correlation-matrix equation,

we construct a MGARCH model in which the conditional-correlation matrix is guar-

anteed to be positive definite during the optimisation. Thus, our new model retains

the intuition and interpretation of the univariate GARCH model and yet satisfies the

positive-definite condition as found in the constant-correlation and BEKK models.

The plan of the rest of the paper is as follows. In Section 2 we describe the construc-

tion of the varying-correlation MGARCH model. As in other MGARCH models, the

new model can be estimated using the maximum likelihood estimation (MLE) method.

Some Monte Carlo results on the finite-sample distributions of the MLE of the varying-

correlation MGARCH model are reported in Section 3. Section 4 describes some illus-

trative examples of the new model using some real data sets. These are the exchange

rate data, national stock market price data and sectoral stock price data. The new

model is compared against the CC-MGARCH model. It is found that extending the

constant-correlation model to allow for time-varying correlations provides some interest-

ing empirical results. The estimated conditional-correlation path provides a time history
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that would be lost in a constant-correlation model. Finally, we give some concluding

remarks in Section 5.

2 A Varying-Correlation MGARCH Model

Consider a multivariate time series of observations {yt}, t = 1, ..., T , with K elements

each, so that yt = (y1t, ..., yKt)
0. We assume that the observations are of zero (or known)

mean. This assumption simplifies the discussions without straining the notations.3

The conditional variance of yt is assumed to follow the time-varying structure given

by

Var(yt|Φt−1) = Ωt, (1)

where Φt is the information set at time t. We denote the variance elements of Ωt by

σ2it, for i = 1, ...,K, and the covariance elements by σijt, where 1 ≤ i < j ≤ K.

Denoting Dt as the K × K diagonal matrix with the ith diagonal element being σit,

we let ²t = D
−1
t yt. Thus, ²t is the standardised residual and is assumed to be serially

independently distributed with mean zero and variance matrix Γt = {ρijt}. Of course,
Γt is also the correlation matrix of yt. Furthermore, Ωt = Dt ΓtDt.

To specify the conditional variance of yt, we adopt the vech-diagonal formulation

initiated by Bollerslev, Engle and Wooldridge (1988). Thus, each conditional-variance

term follows a univariate GARCH(p, q) model given by the following equation

σ2it = ωi +
pX
h=1

αih σ
2
i,t−h +

qX
h=1

βih y
2
i,t−h, i = 1, · · · , K, (2)

where ωi,αih and βih are nonnegative, and
Pp
h=1 αih+

Pq
h=1 βih < 1, for i = 1, ..., K. Note

that we may allow (p, q) to vary with i so that (p, q) should be regarded as the generic

3Additional parameters would be required to represent the conditional-mean equation in the complete
model if the mean is unknown. Under certain conditions, the MLE of the parameters in the conditional-
mean equation is asymptotically uncorrelated with the MLE of the parameters of the conditional-
variance equation. Under such circumstances, we may treat yt as pre-filtered observations (see Bera
and Higgins (1993) for further discussions). Otherwise, the parameter vector has to be augmented to
take account of the parameters in the unknown mean.

4



order of the univariate GARCH process. Researchers adopting the vech-diagonal form

typically assume that the above equation also applies to the conditional-covariance terms

in which σ2it is replaced by σijt and y
2
it is replaced by yit yjt for 1 ≤ i < j ≤ K. We shall,

however, deviate from this approach. Specifically, we shall focus on the conditional-

correlation matrix and adopt an autoregressive moving average analogue on this matrix.

Thus, we assume that the time-varying conditional-correlation matrix Γt is generated

from the following recursion

Γt = (1− θ1 − θ2)Γ+ θ1 Γt−1 + θ2Ψt−1, (3)

where Γ = {ρij} is a (time-invariant) K × K positive definite parameter matrix with

unit diagonal elements and Ψt−1 is a K × K matrix whose elements are functions of

the lagged observations of yt.
4 The functional form of Ψt−1 will be specified below. The

parameters θ1 and θ2 are assumed to be nonnegative with the additional constraint that

θ1 + θ2 ≤ 1. Thus, Γt is a weighted average of Γ, Γt−1 and Ψt−1. Hence, if Ψt−1 is a

well-defined correlation matrix (i.e., positive definite with unit diagonal elements), Γt

will also be a well-defined correlation matrix.5

It can be observed that Ψt−1 is analogous to y2i,t−1 in the univariate GARCH(1, 1)

model. However, as Γt is a standardised measure, we also require Ψt−1 to depend on

the (lagged) standardised residuals ²t. Denoting Ψt = {ψijt}, we propose to consider the
following specification for Ψt−1

ψij,t−1 =
PM
h=1 ²i,t−h ²j,t−hq

(
PM
h=1 ²

2
i,t−h)(

PM
h=1 ²

2
j,t−h)

, 1 ≤ i < j ≤ K. (4)

Thus, Ψt−1 is the sample correlation matrix of {²t−1, ..., ²t−M}. We define Et−1 as the
K ×M matrix given by Et−1 = (²t−1, ..., ²t−M). If Bt−1 is the K ×K diagonal matrix

4For the sake of simplicity and at the risk of being not thorough, we shall describe a correlation
matrix as being positive definite. It is not difficult to see that for some statements made in this section,
the term “positive definite” should, strictly speaking, be replaced by the term “positive semi-definite”.

5This statement is subject to the condition that the recursion starts with a well-defined correlation
matrix Γ0. Under such conditions, the diagonal elements of Γt are unity and Γt remains positive definite.
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with the ith diagonal element being (
PM
h=1 ²

2
i,t−h)

1/2 for i = 1, ...,K, then we have

Ψt−1 = B−1t−1Et−1E
0
t−1B

−1
t−1. (5)

Note that when M = 1, Ψt−1 is identically equal to the matrix of unity. Updating

the conditional-correlation matrix with respect to the matrix of unity is of course not

meaningful. Thus, taking first-order lag for the formulation of Ψt−1 is not sufficient.

Indeed, M ≥ K is a necessary condition for Ψt−1 to be positive definite. When positive-

definiteness is satisfied, Ψt−1 is a well-defined correlation matrix. Thus, the condition

M ≥ K will be imposed subsequently.

Equation (3) is analogous to the univariate GARCH equation, with the additional

restriction that the sum of the coefficients is equal to 1. Indeed, Γt involves updating the

conditional-correlation matrix with respect to the latest conditional-correlation matrix

Γt−1 and a sample estimate of the conditional-correlation matrix based on the recent

M standardised residuals. We shall call the model specified by (2), (3) and (5) the

varying-correlation MGARCH (VC-MGARCH) model.

Assuming normality, yt|Φt−1 ∼ N(0, Dt ΓtDt), so that (ignoring the constant term)
the conditional log-likelihood `t of the observation yt is given by

`t = −1
2
ln |DtΓtDt|− 1

2
y
0
tD

−1
t Γ−1t D

−1
t yt (6)

= −1
2
ln |Γt|− 1

2

KX
i=1

lnσ2it −
1

2
y
0
tD

−1
t Γ−1t D

−1
t yt, (7)

from which we can obtain the log-likelihood function of the sample as ` =
PT
t=1 `t.

Here the log-likelihood function is conditional on Γ0, Ψ0 and y0 being fixed. These

assumptions have no effects on the asymptotic distribution of the MLE. Denoting θ =

(ω1,α11,..,α1p,β11, .., β1q,ω2, .., βKq, ρ12, .., ρK−1,K, θ1, θ2) as the parameter vector of the

model, the MLE of θ is obtained by maximising ` with respect to θ. We shall denote

this value by θ̂.

For parameter parsimony, (p, q) is usually taken to be of low order. For p = q = 1,
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the total number of parameters in the VC-MGARCH model is 3K+K (K+1)/2+2. In

comparison, an unrestricted BEKK model with order 1 for both the lagged conditional-

covariance matrix term and the outer product of the lagged residuals term has K (K +

1)/2 + 2K2 parameters. For example, for K = 2, 3 and 4, the number of parameters in

the VC-MGARCH model is 9, 14 and 20, respectively, while that for the BEKK model

is 11, 24 and 42, respectively. The number of parameters in the VC-MGARCH model

always exceeds that of the constant-correlation model by 2, due to the parameters θ1 and

θ2. Indeed the CC-MGARCH model is nested within the VC-MGARCH model under

the restrictions θ1 = θ2 = 0.

The conditions 0 ≤ θ1, θ2 ≤ 1 and θ1 + θ2 ≤ 1 pose some problems in the optimisa-
tion. One way to get around this difficulty is through transformation. For example, we

may define θi = λ2i / (1+ λ21+λ22) for i = 1, 2, where λ1 and λ2 are unrestricted parame-

ters. The log-likelihood function may be initially optimised with respect to λ1, λ2 and

other parameters of interest. The optimisation is then shifted to the original vector θ

when convergence with respect to λ1, λ2 and other parameters has been achieved. This

technique is used in the computations reported in this paper.

3 Some Monte Carlo Results

Research on the asymptotic theory of conditional heteroscedasticity models has been

lagging behind their empirical applications. Weiss (1986), Pantula (1989), Bollerslev and

Wooldridge (1992), Lee and Hansen (1994), Lumsdaine (1996) and Ling and Li (1997b)

investigated the asymptotic distribution of the quasi MLE (QMLE) of the univariate

ARCH/GARCH models. Sufficient conditions for consistency and asymptotic normality

have been established. Recently, Ling and McAleer (2000) examined the asymptotic

distribution of a class of vector ARMA-GARCH models. They established conditions for

strict stationarity and ergodicity, and proved the consistency and asymptotic normality
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of the QMLE under some mild moment conditions. While the models considered by Ling

and McAleer are quite general, the CC-GARCH framework is adopted and time-varying

conditional correlation is not allowed. An extension of the results by Ling and McAleer

to the VC-MGARCH model will be interesting. This, however, is beyond the scope of

this paper.

An interesting issue for empirical applications concerns the properties of the MLE

of the conditional heteroscedasticity models in small and moderate samples. In the

univariate case, Engle, Hendry and Trumble (1985) and Lumsdaine (1995) examined

the small-sample properties of the MLE of the ARCH and GARCH models. In this

section we report some results on the small-sample properties of the MLE of the VC-

MGARCH model based on a small-scale Monte Carlo experiment. It is not our intention

to provide a comprehensive Monte Carlo study of the MLE. We shall focus our interest

on the small-sample bias and mean squared error only. The reliability of the inference

concerning the model parameters will not be examined. Our results, however, will

provide some preliminary evidence with respect to the small-sample properties of the

MLE of the VC-MGARCH model.

We consider bivariate VC-MGARCH models in which the conditional-variance equa-

tions are given by

σ2it = ωi + αi σ
2
i,t−1 + βi y

2
i,t−1, i = 1, 2, (8)

with

ρt = (1− θ1 − θ2) ρ+ θ1 ρt−1 + θ2 ψt−1, (9)

where ψt−1 is specified as

ψt−1 =
P2
h=1 ²1,t−h ²2,t−hq

(
P2
h=1 ²

2
1,t−h)(

P2
h=1 ²

2
2,t−h)

. (10)

with ²it = yit / σit for i = 1, 2.
6

6All computations reported in this paper assume M = K in the definition of Ψt.

8



We consider four experimental setups. The true parameter values of the data gen-

erating processes of these experiments, labelled E1 through E4, are given in Tables 1.1

and 1.2. Observations {yt} are generated from these models assuming the errors are

normally distributed. We consider T = 500, 1000 and 1500. The MLE are calculated

for each generated sample. Using Monte Carlo samples of 1000 runs, we estimate the

bias and mean squared error (MSE) of the MLE.

E1 and E2 represent models with higher volatility persistence (as measured by αi +

βi), while E3 and E4 represent models with lower volatility persistence. The selected

values of ρ in the experiments are 0.2 and 0.7. It can be seen from the Monte Carlo

results that the biases of the MLE are generally quite small. The bias decreases with

the sample size, although in some cases not steadily. Likewise, the same is true for the

MSE. Overall, for the sample sizes and models considered, the bias and MSE appear to

be small.

In the next section, we illustrate the application of the VC-MGARCH model with

some real data sets.

4 Some Illustrative Examples

We examine three sets of financial data, denoted by DS1, DS2 and DS3. DS1 consists

of two exchange rate (versus US dollar) series, namely, the Deutschmark (D) and the

Japanese Yen (J). These series represent 2131 daily observations from January 1990

through June 1998. DS2 covers the stock market indices of the Hong Kong and the

Singapore markets. We use the Hang Seng Index (H) for the Hong Kong market and

the SES Index (S) for the Singapore market. There are 1942 daily (closing) prices for

each series, covering the period from January 1990 through March 1998. DS3 consists

of three sectoral price indices of the Hong Kong stock market. These are the Finance

(F), Properties (P) and Utilities (U) sectors. Each series have 2389 daily observations
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covering the period from January 1991 through August 2000. DS1 was downloaded from

the website of the Federal Reserve Bank of New York. DS2 was compiled from various

issues of the Stock Exchange of Singapore Journal. Some adjustments were made to

account for the differences in the holidays of the two exchanges. DS3 was downloaded

from Datastream.

Figures 1 through 3 present the plots of the seven series in the three data sets. In

Figure 1 the Japanese Yen (Y) series have been rescaled for easy presentation. This

is similarly done for the Hang Seng Index (H) series in Figure 2. We can see that the

exchange rates of the Deutschmark and the Japanese Yen generally moved in tandem

against the US dollar during the sample period. As expected, the three sectoral indices

in the Hong Kong stock market moved quite closely together. This is especially true for

the Finance and Properties Indices. In contrast, the Utilities Index was quite sluggish in

the mid 90s while the Finance and Properties Indices were undergoing a bull run during

this period. It is quite clear from Figure 2 that the national stock markets of Hong Kong

and Singapore experienced different phases of bulls and bears. The general impression

is that Hong Kong has a more volatile market compared to Singapore.

Table 2 provides a summary of the descriptive statistics of the data. The summary

statistics refer to those of the differences of the logarithmic series (expressed in per-

centage). It can be seen that all differenced logarithmic series exhibit excess kurtosis

(compared to the normal distribution) in the unconditional distribution. While the ex-

change rate data (DS1) demonstrate no evidence of serial correlation, the stock return

data (DS2 and DS3) have significant serial correlation as suggested by the Q1 statistics.

The Q2 statistics show that there is serial correlation in the conditional variance for all

data sets and GARCH type of modelling may be required.7 In the subsequent analysis,

we apply autoregressive filters to the differenced logarithmic series and model the fil-

7Q1(20) is the Box-Pierce portmanteau statistic of the differenced logarithmic series based on the
autocorrelation coefficients up to order 20. Similarly, Q2(20) is the portmanteau statistic of the squared
differenced logarithmic series.
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tered residuals using MGARCH models. The autoregressive filters are estimated using

ordinary least squares (OLS).

We fit the CC-MGARCH(1, 1) model to all data sets using Bollerslev’s (1990) al-

gorithm. The results are summarised in Panel A of Table 3.8 It can be seen that the

estimates of α, β and ρ are statistically significant at the 5 percent level for all data

sets. In comparison, the exchange rate data have the highest intensity of persistence in

volatility as measured by α̂+ β̂. With respect to the correlation coefficients, the returns

of the national stock markets of Hong Kong and Singapore have the lowest correlation.

In contrast, the correlations between the various sectoral indices of the Hong Kong stock

market are the highest.

Panel B of Table 4 summarises the estimation results of the VC-MGARCH(1, 1)

models for the three data sets.9 Again, it can be seen that the estimates of α, β and ρ are

statistically significant at the 5 percent level for all data sets. In addition, all estimates of

θ1 and θ2 are statistically significant at the 5 percent level, indicating that the correlations

are significantly time varying. We note that the intensity of the volatility persistence

remains approximately unchanged compared to the CC-MGARCH models. Indeed,

incorporating time-varying correlations does not have much effect on the estimates of

α and β. The estimates of ρ in the varying-correlation models are all larger than the

corresponding estimates of ρ in the constant-correlation models. This, however, does

not imply that the correlations are on average higher in the varying-correlation model.

It should be noted that the time-invariant component of the conditional correlation

coefficient in the VC-MGARCH model is (1−θ1−θ2) ρ. A comparison of the correlation

correlations in the two models will be provided below.

As the CC-MGARCH model is nested within the VC-MGARCH model, ignoring

8All parameter estimates reported in Table 3 are the MLE assuming normality. The standard errors
are calculated using the robustified quasi-MLE (QMLE) of the covariance matrix of the parameters.

9The results are based on the assumptionM = K. We have re-estimated the models withM = K+1.
The results are qualitatively similar.
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the extension would induce model misspecification. We now proceed to examine the

model diagnostics of the constant-correlation and varying-correlation models. Table 4

summarises a battery of diagnostic tests for the fitted models. The constant-correlation

assumption is tested using a Lagrange multiplier test (LMC) based on the estimates of

the CC-MGARCH(1, 1) model and the likelihood ratio test (LR) based on the estimates

of the VC-MGARCH(1, 1) model. LMC is the Lagrange multiplier test suggested by

Tse (2000) for the assumption of constant correlation in a MGARCH model. It is

asymptotically distributed as χ2R, where R = K (K − 1) /2, under the null.10 From

Panel A of Table 4 we can see that the constant-correlation assumption is rejected for

all data sets at the 5 percent level of significance. In Panel B of the table we present

the likelihood ratio statistic LR, which tests for the restriction H0 : θ1 = θ2 = 0. It

can be seen that the constant-correlation assumption is rejected for all data sets at any

conventional level of significance.

To further test for misspecification in the MGARCH models we adopt the regression-

based diagnostics suggested by Wooldridge (1990, 1991). The methodology developed

by Wooldridge applies to a wide class of possible misspecification. Here we focus on

the problem of misspecification in the conditional heteroscedasticity. As shown by

Wooldridge, the suggested tests are robust to departure from distributional assumptions

that are not being tested. Since our main concern is misspecification in the conditional

variance, we use the squared standardised residuals and the cross products of the squared

standardised residuals as the indicators.

We first consider tests based on the squared standardised residuals. We denote ²̂it as

the estimate of the standardised residual ²it and σ̂
2
it as the estimated conditional variance

of yit. We define λ̂it = (²̂
2
i,t−1, ²̂

2
i,t−2, ..., ²̂

2
i,t−Q)

0 as the vector of indicator variables, and

5θσ̂
2
it as the gradient vector of σ

2
it with respect to θ evaluated at θ̂. Denoting (5θσ̂

2
it)/σ̂

2
it

10Tse (2000) provided some Monte Carlo results for the finite-sample distributions of the LMC test.
In particular, he showed that the test is robust against nonnormality in moderate samples.
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as 5θσ̃
2
it, we regress each element of λ̂it on 5θσ̃

2
it to obtain the Q-element residuals r̂it.

Finally, we regress unity on the vector of Q regressors φ̂itr̂it, where φ̂it = ²̂2it − 1. We
calculateWii(Q) = T−SSR, where SSR is the sum of squares of the residuals of the last
regression. If there is no model misspecification, Wii(Q) is asymptotically distributed as

χ2Q.

The above diagnostic statistic can be calculated for the cross products of the stan-

dardised residuals from different equations. Specifically, we define λ̂ijt = (²̂i,t−1²̂j,t−1,

²̂i,t−2²̂j,t−2, ..., ²̂i,t−Q²̂j,t−Q)0 and 5θφ̃ijt as the gradient vector of φijt = ²it²jt − ρijt with

respect to θ evaluated at θ̂. We regress each element of λ̂ijt on 5θφ̃ijt to obtain the

Q-element residuals r̂ijt, and then regress unity on the Q regressors φ̂ijtr̂ijt, where φ̂ijt =

²̂it²̂jt− ρ̂ijt. We define the test statistic as Wij(Q) = T −SSR for 1 ≤ i < j ≤ K, which
is asymptotically distributed as χ2Q when there is no misspecification.

11

We apply the W statistics to the MGARCH models with Q = 4. From the results

in Table 4 we can see that both the CC-MGARCH and the VC-MGARCH models pass

the diagnostic checks of the W statistics. Indeed, the W statistics of the two models

are quite similar. As the constant-correlation assumption is not supported by the LMC

and the LR statistics, one might expect the W statistics of the CC-MGARCH model to

be significant. The fact that this is not the case may be an indication of loss in power

when the test has no specific alternative.

Table 5 reports the summary statistics of the in-sample conditional variances, co-

variances and correlations of the VC-MGARCH(1, 1) models. It can be seen that the

sample means of the conditional correlations are remarkably close to the MLE of the

(constant) correlation coefficients of the CC-MGARCH(1, 1) models reported in Panel A

of Table 3. Nonetheless, the range of the conditional correlations is quite large in some

cases. For example, for the exchange rate data (DS1) the range of {ρ̂DJt} is 0.4057,
11In this paper the gradient vectors required for the computation of the W statistics are calculated

using numerical differentiation.
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with a mean of 0.5226. For the cross-national stock market returns (DS2), the range

of the conditional correlations is 0.6962. Indeed, the conditional correlation was once

below zero. In contrast, the sectoral market indices (DS3) represent the case where the

conditional correlations vary within the smallest range.

In Table 6 we present the summary statistics of the standardised residuals of the CC-

MGARCH and VC-MGARCH models. It can be seen that the standardised kurtosis and

the Q2 statistics have dropped significantly compared to those of the raw data in Table

2.12

To obtain a clearer picture of the time history of the conditional correlations, we

plot the time paths of the conditional correlations based on the VC-MGARCH(1, 1)

models. The plots are presented in Figures 4 through 8, in which both the conditional

correlations and the constant correlations (given by the dotted lines) are provided.

Figure 4 presents the correlations between of the Deutschmark and the Japanese

Yen. Large, there were two subperiods when the conditional correlations of these two

currencies were mostly above the average (constant) level, namely, October 1991 to June

1993 and March 1994 to October 1996. From October 1996 to June 1998, the conditional

correlations were mostly below the average level.

Figure 5 presents an interesting case in which we can see that the conditional cor-

relations between the Hong Kong and the Singapore stock markets were experiencing

an upward shift. From 1994 onwards, the conditional correlations were mostly above

the average level, whereas the reverse was true before 1994. This finding has important

implications for the international diversification of equity portfolios. While the increas-

ing conditional correlations means that the two national markets were becoming more

closely integrated, it also implies that there is reducing benefits for international diversi-

12We note that the Q1 and Q2 statistics are presented here for completeness. As pointed out by Li
and Mak (1994) and Ling and Li (1997a) these statistics are not distributed as χ2 under the null of
no misspecification. While some of the Q1 statistics appear to be large, we report that none of the lag
autocorrelation coefficients is larger than 0.08 in absolute value.
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fication. Using moving windows of unconditional correlations, Longin and Solnik (1995)

showed that there was evidence of increasing correlations between international stock

markets in 1960 — 1990.13 Our similar finding for the Hong Kong and the Singapore

markets is commensurate with the increasing importance of intra-Asian business in the

90s.14

Figures 6 through 8 show that the pairwise correlations between the three sectors

in the Hong Kong stock market are quite similar. Broadly speaking, the conditional

correlations were above average in the subperiods of 1993 to 1994 and mid 1997 to mid

1999. These two subperiods coincide with the time when the Hong Kong stock market

was experiencing a downturn. In contrast, during the subperiods of the bull runs from

1995 to mid 1997 and post mid 1999, the conditional correlations were below average.

At the risk of over-simplification, this casual observation agrees with the hypothesis that

contagion is stronger for negative returns than for positive returns.15

We shall end this section by stating that it is not our intention to claim that the

VC-MGARCH models as presented here represent the best MGARCH models for the

data. Other MGARCH models could also provide the conditional-correlation structure.

The VC-MGARCH model, however, does provide a viable alternative that is relatively

easy to estimate. As the examples have illustrated, modelling correlations as a time-

varying structure provides some interesting results that are not obtainable from constant-

correlation models.

13For an update of the correlations of international stock markets in the recent crisis period, see
Longin and Solnik (2000).
14In the second half of the 90s, many companies with business activities in Hong Kong were listed on

the Singapore exchange. The most notable example is the listing of the five companies in the Jardine
group.
15Bae, Karolyi and Stulz (2000) examined the financial contagion among Asian and Latin American

economies using a multinomial logit model. They reported that the evidence of contagion being stronger
for negative returns than for positive returns is mixed.
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5 Conclusions

In this paper we propose a new MGARCH model with time-varying correlations. We

assume a vech-diagonal structure in which each conditional-variance term follows a

univariate GARCH formulation. The remaining task is to specify the conditional-

correlation structure. We apply an autoregressive moving average type of analogue

to the conditional-correlation matrix. By imposing some suitable restrictions on the

conditional-correlation-matrix equation, we construct a MGARCH model in which the

conditional-correlation matrix is guaranteed to be positive definite during the optimisa-

tion.

We report some Monte Carlo results on the finite-sample distributions of the MLE

of the varying-correlation MGARCH model. It is found that the bias and MSE of the

MLE are small for sample sizes of 500 or above. The new model is applied to three data

sets, namely, the exchange rate data, the national stock market data and the sectoral

price data. The new model is found to pass the model diagnostics satisfactorily, while

the constant-correlation MGARCH model is found to be inadequate. Extending the

constant-correlation model to allow for time-varying correlations provides some interest-

ing empirical results. In particular, the estimated conditional-correlation path provides

an interesting time history that would not be available in a constant-correlation model.
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Table 1.1: Estimated Bias and MSE of the MLE of Bivariate VC-MGARCH(1, 1) Models

Experiment: E1 Experiment: E2
Parameters True Value Sample Size Bias MSE True Value Sample Size Bias MSE

ω1 0.4 500 0.0907 0.0687 0.4 500 0.1166 0.0993
1000 0.0363 0.0194 1000 0.0487 0.0273
1500 0.0266 0.0116 1500 0.0328 0.0157

α1 0.8 500 -0.0135 0.0033 0.8 500 -0.0183 0.0043
1000 -0.0056 0.0012 1000 -0.0070 0.0016
1500 -0.0046 0.0008 1500 -0.0050 0.0010

β1 0.15 500 -0.0007 0.0013 0.15 500 0.0005 0.0017
1000 -0.0005 0.0006 1000 -0.0010 0.0008
1500 0.0005 0.0004 1500 -0.0004 0.0005

ω2 0.2 500 0.0313 0.0095 0.2 500 0.0364 0.0118
1000 0.0132 0.0031 1000 0.0123 0.0040
1500 0.0076 0.0017 1500 0.0089 0.0024

α2 0.7 500 -0.0170 0.0062 0.7 500 -0.0230 0.0079
1000 -0.0094 0.0023 1000 -0.0075 0.0031
1500 -0.0043 0.0015 1500 -0.0047 0.0018

β2 0.2 500 -0.0018 0.0023 0.2 500 0.0011 0.0030
1000 0.0013 0.0010 1000 -0.0003 0.0013
1500 -0.0005 0.0008 1500 -0.0005 0.0009

ρ 0.7 500 -0.0011 0.0028 0.2 500 -0.0008 0.0077
1000 -0.0027 0.0084 1000 -0.0012 0.0034
1500 0.0010 0.0009 1500 0.0001 0.0022

θ1 0.8 500 -0.0018 0.0014 0.8 500 -0.0358 0.0181
1000 -0.0090 0.0023 1000 -0.0194 0.0065
1500 0.0011 0.0004 1500 -0.0111 0.0029

θ2 0.1 500 -0.0006 0.0008 0.1 500 0.0043 0.0016
1000 -0.0064 0.0014 1000 0.0023 0.0008
1500 0.0005 0.0003 1500 0.0011 0.0004

Notes: See equations (8), (9) and (10) for the data generating processes.



Table 1.2: Estimated Bias and MSE of the MLE of Bivariate VC-MGARCH(1, 1) Models

Experiment: E3 Experiment: E4
Parameters True Value Sample Size Bias MSE True Value Sample Size Bias MSE

ω1 0.4 500 0.0293 0.0148 0.4 500 0.0315 0.0188
1000 0.0137 0.0062 1000 0.0114 0.0088
1500 0.0090 0.0037 1500 0.0051 0.0052

α1 0.5 500 -0.0131 0.0092 0.5 500 -0.0181 0.0109
1000 -0.0077 0.0036 1000 -0.0067 0.0051
1500 -0.0053 0.0022 1500 -0.0025 0.0031

β1 0.3 500 -0.0050 0.0037 0.3 500 -0.0032 0.0042
1000 -0.0007 0.0017 1000 -0.0019 0.0021
1500 0.0003 0.0011 1500 -0.0022 0.0015

ω2 0.2 500 0.0197 0.0067 0.2 500 0.0219 0.0081
1000 0.0089 0.0026 1000 0.0109 0.0032
1500 0.0054 0.0016 1500 0.0089 0.0024

α2 0.5 500 -0.0291 0.0216 0.5 500 -0.0352 0.0268
1000 -0.0125 0.0090 1000 -0.0188 0.0110
1500 -0.0083 0.0054 1500 -0.0089 0.0074

β2 0.2 500 -0.0028 0.0030 0.2 500 -0.0008 0.0034
1000 -0.0017 0.0014 1000 0.0016 0.0017
1500 0.0001 0.0009 1500 0.0021 0.0013

ρ 0.7 500 0.0011 0.0064 0.2 500 0.0002 0.0139
1000 0.0014 0.0025 1000 0.0007 0.0068
1500 -0.0003 0.0015 1500 0.0001 0.0041

θ1 0.6 500 -0.0026 0.0034 0.6 500 -0.0137 0.0055
1000 -0.0015 0.0014 1000 -0.0035 0.0023
1500 -0.0011 0.0010 1500 -0.0058 0.0016

θ2 0.3 500 -0.0048 0.0019 0.3 500 0.0035 0.0023
1000 -0.0019 0.0009 1000 -0.0009 0.0010
1500 -0.0006 0.0006 1500 0.0019 0.0007

Notes: See equations (8), (9) and (10) for the data generating processes.



Table 2: Summary Statistics of the Differenced Logarithmic Series of Various Data Sets

Variable (Code) Mean Std Dev Minimum Maximum Std Skewness Std Kurtosis Q1(20) Q2(20) No of Obs

Panel A: Forex Market Data (DS1), 90/1 — 98/6

Deutschmark (D) 0.0025 0.6746 —2.8963 3.1030 0.3715 16.6655 21.9957 464.2324 2131
Japanese Yen (J) —0.0023 0.6750 —4.5228 3.2269 —9.5384 33.4012 27.6373 112.5759 2131

Panel B: National Stock Market Data (DS2), 90/1 — 98/3

Hong Kong (H) 0.0721 1.7093 —14.7347 17.2471 —0.0533 120.2852 36.6618 759.7676 1942
Singapore (S) —0.0010 1.0768 —7.7236 8.7867 —1.6643 95.7543 116.8250 846.2872 1942

Panel C: Hang Seng Sectoral Indices Data (DS3), 91/1 — 00/8

Finance (F) 0.1061 1.8308 —17.6894 18.0011 —2.8257 108.1039 57.4268 962.9816 2389
Properties (P) 0.0562 2.1723 —14.2739 20.6846 5.4033 86.7263 91.6266 958.5099 2389
Utilities (U) 0.0626 1.7017 —14.4889 16.6176 6.5861 91.3024 44.7659 595.3206 2389

Notes: Q1(20) is the Box-Pierce portmanteau statistic of the differenced logarithmic series based on the autocorrelation coefficients up
to order 20. Similarly, Q2(20) is the portmanteau statistic of the squared differenced logarithmic series.



Table 3: Estimation Results of Constant-Correlation and Varying-Correlation Models

Data K Variable ω α β θ1 θ2 Correlations

Panel A: CC-MGARCH(1, 1) Model

DS1 2 D 0.0071 0.9349 0.0487 - - ρDJ = 0.5234
(0.0035) (0.0156) (0.0099) (0.0171)

J 0.0102 0.9315 0.0479
(0.0072) (0.0310) (0.0188)

DS2 2 H 0.2141 0.7776 0.1337 - - ρHS = 0.3152
(0.0870) (0.0595) (0.0337) (0.0253)

S 0.0920 0.7229 0.1908
(0.0290) (0.0633) (0.0486)

DS3 3 F 0.1660 0.8401 0.1024 - - ρFP = 0.7597
(0.0679) (0.0482) (0.0302) (0.0118)

P 0.1418 0.8661 0.0956 ρFU = 0.6811
(0.0389) (0.0230) (0.0160) (0.0148)

U 0.2126 0.7861 0.1287 ρPU = 0.7103
(0.0471) (0.0320) (0.0212) (0.0153)

Panel B: VC-MGARCH(1, 1) Model

DS1 2 D 0.0056 0.9377 0.0501 0.9726 0.0146 ρDJ = 0.6298
(0.0031) (0.0145) (0.0100) (0.0071) (0.0042) (0.0462)

J 0.0104 0.9316 0.0469
(0.0069) (0.0295) (0.0176)

DS2 2 H 0.1761 0.8042 0.1222 0.9598 0.0285 ρHS = 0.4839
(0.0728) (0.0518) (0.0302) (0.0146) (0.0101) (0.0728)

S 0.0888 0.7231 0.1899
(0.0258) (0.0583) (0.0462)

DS3 3 F 0.1203 0.8630 0.0961 0.9744 0.0130 ρFP = 0.8201
(0.0459) (0.0350) (0.0242) (0.0064) (0.0030) (0.0223)

P 0.1158 0.8703 0.0991 ρFU = 0.7442
(0.0337) (0.0213) (0.0160) (0.0284)

U 0.1620 0.8143 0.1233 ρPU = 0.7867
(0.0413) (0.0291) (0.0205) (0.0254)

Notes: The parameter estimates are the MLE assuming normality. Figures in parentheses are stan-

dard errors. They are calculated using the robustified quasi-MLE (QMLE) of the covariance matrix

of the parameters.



Table 4: Diagnostic Checks for Constant-Correlation and Varying-Correlation Models

Forex Market National Stock Markets Hang Seng Sectoral Indices
Tests D-J H-S F-P-U

Panel A: CC-MGARCH(1, 1) Model

LMC 4.5663∗ 9.7552∗ 8.3815∗

W11(4) 5.905 3.7357 7.9761
W22(4) 3.957 1.2229 4.2384
W33(4) 3.7496
W12(4) 7.886 4.9076 4.4561
W13(4) 7.9565
W23(4) 6.4020

Panel B: VC-MGARCH(1, 1) Model

LR 43.3562∗ 38.2371∗ 79.7401∗

W11(4) 5.874 3.6733 8.6249
W22(4) 3.955 1.2654 4.1959
W33(4) 4.0204
W12(4) 7.304 2.002 4.6163
W13(4) 8.4929
W23(4) 5.6295

Notes: Wij(4), for 1 ≤ i ≤ j ≤ 3 are Wooldridge’s (1991) residual-based diagnostic statistics computed
from the standardised residuals of variables i and j based on indicator variables up to 4 lags. The suffixes

are according to the order of the coded variables. Thus, W13(4) in the system (F-P-U) is WFU (4). If

there is no model misspecification, Wij(4) is asymptotically distributed as χ
2
4. LMC is the Lagrange

multiplier test for constant correlation due to Tse (2000). It is approximately distributed as χ21 for a

bivariate system and χ23 for a trivariate system when the correlations are time invariant. LR is the

likelihood ratio statistic for H0 : θ1 = θ2 = 0. Asterisks denote that the test is significant at the 5

percent level.



Table 5: Summary Statistics of the Conditional Variance, Covariance and Correlation

of the Estimated VC-MGARCH(1, 1) Models

Data System Statistic Mean Std Dev Minimum Maximum

DS1 D-J σ2D 0.4574 0.2455 0.1487 1.5607
σ2J 0.4545 0.1864 0.2123 1.9258
σDJ 0.2357 0.1109 0.0665 0.7847
ρDJ 0.5226 0.0895 0.3020 0.7077

DS2 H-S σ2H 2.7240 3.7569 1.0161 71.0641
σ2S 1.0868 1.6044 0.3443 29.1311
σHS 0.5586 1.0961 -0.0404 13.8341
ρHS 0.2851 0.1596 -0.0606 0.6356

DS3 F-P-U σ2F 3.2100 3.6028 1.0877 66.3576
σ2P 4.4317 5.2476 1.1165 64.2797
σ2U 2.7971 3.1568 0.9907 61.7953
σFP 2.8350 3.1904 0.8517 48.0168
σFU 2.0321 2.3842 0.6058 45.6830
σPU 2.5052 2.9036 0.6342 47.2813
ρFP 0.7547 0.0565 0.5318 0.8529
ρFU 0.6738 0.0663 0.4877 0.8045
ρPU 0.7135 0.0799 0.4776 0.8347

Notes: σ2i and σij are the conditional variance and covariance terms, respectively, and ρij is the

conditional correlation.



Table 6: Summary Statistics of Standardised Residuals for Constant-Correlation and Varying Correlation Models

Variable (Code) Mean Std Dev Minimum Maximum Std Skewness Std Kurtosis Q1(20) Q2(20) No of Obs

Panel A: CC-MGARCH(1, 1) Model

Forex Market Data (DS1)

Deutschmark (D) 0.0021 0.9994 —4.9721 4.1500 -1.3947 10.9156 21.4962 17.5600 2131
Japanese Yen (J) 0.0102 0.9984 —5.9169 4.1616 —11.3437 28.9282 23.9003 10.8972 2131

National Stock Market Data (DS2)

Hong Kong (H) 0.0454 0.9990 —8.1404 4.8727 —9.6894 44.7941 32.7361 7.6177 1942
Singapore (S) —0.0049 1.0010 —6.3663 5.7398 —0.7097 33.4642 29.5697 10.4003 1942

Hang Seng Sectoral Indices Data (DS3)

Finance (F) 0.0647 0.9979 —6.2040 4.3923 —3.1430 21.6766 32.1809 17.9032 2389
Properties (P) 0.0270 0.9993 —6.9085 4.4455 —3.9588 22.7340 39.0274 20.1223 2389
Utilities (U) 0.0255 1.0001 —7.1906 4.5031 —4.3233 28.6097 28.9502 9.4468 2389

Panel B: VC-MGARCH(1, 1) Model

Forex Market Data (DS1)

Deutschmark (D) 0.0017 0.9975 —5.1912 4.1174 —1.6249 11.2586 21.6819 16.6230 2131
Japanese Yen (J) 0.0103 1.0016 —5.9272 4.1733 —11.3152 28.8989 23.9186 10.9223 2131

National Stock Market Data (DS2)

Hong Kong (H) 0.0460 1.0024 —8.3075 4.6570 —10.1355 46.3682 32.3344 7.9557 1942
Singapore (S) —0.0050 1.0100 —6.4123 5.7884 —0.6696 33.3612 29.6305 10.3820 1942

Hang Seng Sectoral Indices Data (DS3)

Finance (F) 0.0661 1.0006 —6.3670 4.4115 —3.1965 22.2290 31.6209 20.8353 2389
Properties (P) 0.0279 1.0044 —7.1636 4.3127 —4.2219 23.5032 39.1166 16.0551 2389
Utilities (U) 0.0256 0.9986 —7.4710 4.4468 —4.7024 30.1182 28.5384 8.1040 2389

Notes: Q1(20) is the Box-Pierce portmanteau statistic of the standardised residuals based on the autocorrelation coefficients
up to order 20. Similarly, Q2(20) is the portmanteau statistic of the standardised residuals.








