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Abstract

This paper models an inflation forecast density framework that closely resembles actual
policy makers behaviour regarding the determination of the modal point, the uncertainty
and asymmetry in the inflation forecasts.
The framework combines policy makers prior information about these parameters with a
standard parametric density estimation technique using Bayesian theory. The combination
crucially hinges on an information-theoretic utility function gains of the policy maker from
performing the forecast exercise.
JEL Classification: C53, E37, E58
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1 Introduction

The aim for price stability has lead many central banks to be key inflation forecasters. This
fact has been even more noticeable with the advent of the inflation-targeting framework for
monetary policy. Inflation forecasts are important in this regime because they can be regarded
as intermediate targets in the implementation of the regime as proposed in Svensson (1997).
On the other hand, inflation forecasts made by a central bank together with the formal expla-
nation of the factors behind them serve as a signaling device for central banks to communicate
how their actions are taken in relation to the likely outcomes for inflation forecasts at a spec-
ified horizon. An important challenging factor is that the forecasts are in practice subject to
a myriad of asymmetric risks that unavoidably affect the asymmetry of the inflation forecast
itself. This sheer fact has prompted central banks to turn attention to density instead of point
forecasts - see Goodhart (2001).
The forecasting practice in central banks generally relies on conditioning the forecast not only
to a specific policy stance but also to the outlook of exogenous factors that drive inflation. Our
approach lies in estimating a parametric inflation density forecast where uncertainty, asym-
metry and central tendency profiles are brought about mainly from the exogenous variables
through the use of a core macroeconomic forecasting model. The estimated parameters are

∗I thank Charles Goodhart for his comments and support. The opinions expressed herein are those of the
author and not necessarily represent those of the Central Bank of Peru.
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combined with the prior views through an explicit Bayesian approach. The prior views en-
compass all other factors of risk and uncertainty that may affect the inflation forecast. The
formulation postulates that policymakers weigh their confidence in both; their prior beliefs and
their model via a utility function of the sorts used in information-theoretic design as proposed
by Lindley (1956).
This is a more realistic way of combining prior beliefs with model-based density forecasts.
The approach is particularly important, in conditions where macroeconometric formulation of
models is hindered by measurement errors and poor data availability. Nevertheless, even in
stable and rich countries with quality data reach environments, prior inputs are essential.
The paper proceeds as follows, in Section 2 we outline the density forecast framework, in
Section 3 we first describe the central bank forecasting process under investigation and then put
forward the basic definitions regarding the density forecasts as well as the prior assumptions.
In Section 4 we illustrate the methodology with a simple example for forecasting Peruvian
inflation. Finally, in section 5 we draw our concluding remarks.

2 Density forecast framework

The forecasting literature has recently turned attention from point forecasts towards density
forecasts1. The reasons to provide complete representations of probability distributions lie on
the failure of the certainty equivalence principle in a world overwhelmingly characterised by
asymmetric risks. This failure is particularly relevant in the fields of financial risk management
and modern monetary policy where decision theory plays a substantial role nowadys.
The certainty equivalence principle in a gaussian stochastic linear-quadratic (LQ) environment2

allows to compute the expected loss of an action taken at time t to achieve a particular objective
value at time t+ n in terms of computing that loss as a function of the expected value of the
objective. However, even if we can entertain the idea of a quadratic loss function for a central
bank; it is hard to believe that all users of central bank inflation forecasts have quadratic loss
functions. Moreover, some risks are asymmetric in nature, which makes point forecasts or
expected-value calculations insufficient to assess expected losses.
Some central banks like the Federal Reserve in the USA or the Bank of England have a long
tradition in macroeconomic point forecasts. Only recently, the Bank of England has pioneered
the presentation of density forecasts by means of fan charts. Since then, a number of inflation
targeting central banks publish density forecasts with varying degrees of detail. On the second
half of 2003, twelve out of twenty inflation-targeting central banks published a fan chart3.
The value of publishing this fan charts has been stressed in Blix and Sellin (1998), Good-
hart (2001), Tarkka and Mayes (2000) and Wallis (2003b). The density forecast approach is
appropriate because:

1See Diebold, Hahn and Tay (1998) and Tay and Wallis (2000).
2Linear in constraints and quadratic in loss function.
3In alphabetical order: Brazil, Chile, Colombia, Hungary, Iceland, Israel, Norway, Peru, South Africa, South

Korea, Sweden, Thailand, and United Kingdom. In Fracasso et al (2002), Israel appears as not publishing a Fan
chat because the inflation report under assessment exceptionally did not have one. Colombia is not considered
in their sample due to ”limited information”.
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• Central banks can better communicate their assessment of uncertainty and risk through
adequate presentations of their density forecasts. This type of information provides a
much richer insight of how a central bank views the future, allowing the users of the
inflation report to produce probabilistic assessments of future outcomes. As Sims (2002)
puts it, this makes it clear that the policymaker does not make mistakes when outcomes
deviate from their most likely values by about the expected absolute amount.

• The internal discussions about the forecasts to be published are focused on a number of
dimensions representing underlying sources and degrees of uncertainty and risk.

• The density forecasts can be quantitatively evaluated as opposed to the scenarios (or
variants) approach advocated as an alternative device to show forecast uncertainty4.

Leading density forecast central banks5 have favoured the use of specific parametric methods
to construct their densities. The parameters governing the forecast densities directly control
for uncertainty and risk.

Uncertainty:
One direct measure of uncertainty is given by the variance of historical forecast errors; which
is general enough to aggregate all the sources of uncertainty6 for forecasts made at previous
periods. Nevertheless, determining the uncertainty of forecasts made at a current period is by
all means a daunting task given that the policymaker has to be able to somehow aggregate all
the sources of uncertainty that will likely prevail now and in the coming future.
The classical econometric literature treats model-based forecast uncertainty coming from pa-
rameters and exogenous variables in a fairly standard way: it assumes that all historical condi-
tions will prevail and extrapolates historical records into the future. Central bankers however
might worry more about future prospective sources of uncertainty rather than the historical
accounts of them. For example, inflation reports - published before the Iraq war in early 2003
- stated concerns about the evolution of oil prices in the future.

Risk:
In the inflation targeting context, the concept of risk denotes the probabilities that the inflation
forecasts will lie above and/or below three likely benchmark measures: the central forecast,
the inflation target or the inflation-target bounds.
Here, we concentrate on the probability of the inflation realizations being below (above) the
central forecast of inflation7. The inflation reports analysed in this study seem to convey to
the readers the connection between the risk balance of exogenous factors and the resulting risk
balance of inflation.

4See Don (2000) for an analysis of this approach. In practice, the Bank of Canada or the Czech National
Bank follow this scheme.

5For the Bank of England the references are Britton, Fisher and Whitley (1998) and Wallis (2003), For the
Riksbank the references is Blix and Sellin (1998), Blix and Sellin (1999).

6Such as changes in the underlying structure of the economy, model uncertainty, measurement errors, exoge-
nous variables, subjective adjustments to model-based forecasts, etc.

7In Kilian and Manganelli (2003) the risk assessment is done in terms of probabilities of being away from
the target.
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Given that future uncertainty and risk factors affecting the forecast have an essential subjective
input, a natural framework to study this behaviour is Bayesian theory. The subjective approach
to risk and uncertainty necessary in the monetary policy process can not be conceptualized
by classical econometric practice. Instead a Bayesian approach seems to provide a reasonable
framework. To this we turn now.

3 Modelling a central bank forecasting process

A central bank forecasting process is basically an institutional arrangement contingent on
the historical perspective and organizational structure of each central bank. Regardless of
how elaborate and particular this process may be, there are striking common features. In
general, both; central banks policy and forecast publications stress explicitly that the output
of the forecast is influenced (or conditioned) by the outlook of exogenous variables and the
particular conditioning policy. Other conditioning factors such us parameters or model types
are mentioned scantily if at all.
To this end, models seem to be key elements that link both exogenous variables and policy
decisions with the forecasted endogenous variables. The role of models within this process
has been recognized by academics and practitioners alike. In a recent survey of central banks
practicing inflation targeting (Schmidt-Hebbel and Tapia (2002)), basically all 20 surveyed
banks refer the use of some kind of model. The key evidence is that most central banks,
specially inflation targeters endorse the use of one core forecasting model that helps center
policy discussions within the bank.
But the use of models in forecasting does not mean that subjective views are filtered out in the
forecasting process. In fact, a factor also mentioned in the Schmidt-Hebbel and Tapia (2002)
survey is that in most central banks; the published forecasts are a ”balanced combination”
of technical forecasts and decision makers’ views. The practice of including subjective ap-
proaches to macroeconomic forecasting within central banks is also recognized in Sims (2002)
and Goodhart (2001).
From the standpoint of decision makers, the subjective approach is justified in a context of
monetary policy making under uncertainty. Central banks use a core forecasting model but
they are aware that their model can not capture the richness of reality, not to mention how
this reality may evolve in the future. According to Sims (2001), the forecasting process within
central banks can be understood using Bayesian decision theory;

”Policy discussion at central banks uses the language of Bayesian decision theory
putting postsample probabilities on models, generating probability distributions
for future values of variables that reflect uncertainty about parameter values and
subjective judgment, weighing expected losses of alternative courses of action”.

We attempt to take this view of central banks forecasting process. We model a forecasting
process that somewhat resembles this approach. In our framework; the technical staff inter-
acts with the policy decision makers. The staff implements simulations using a model and
policymakers input priors about parameters that reflect uncertainty, risk balance and central
forecast values. In Table 1,we depict the tasks involved in the forecasting exercise, the arrows
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indicate who executes each task and the tasks are numbered in some sequential order. The
technical staff starts gathering information relevant to the model and interaction with policy
makers produces the assumptions of the model. As mentioned before, the outlook of exogenous
factors serves to shed light on the uncertainty surrounding the final forecast. This is task (3)
where policy makers provide a general view which is subsequently translated by the technical
staff. Tasks (3) and (4) are repeatedly done until a sensible central scenario is achieved. Task
(5) produces the density forecast and estimates its parameters. Task (6) corresponds to the
elicitation of priors by policy makers. This task is done after receiving a first notion about the
density forecast (in form of an initial fan chart). Finally, by performing task (7), the technical
staff factors policy makers priors into the density forecast by means of Bayes theorem.

Table 1: A Central Bank forecasting process:

Technical Policy
Staff Maker

−→ (1) Gather information

−→ (2) Make assumptions about initial conditions, trends and cycles ←−

(3) Produce outlook of exogenous factors

Provide a general view ←−

−→ Parameterize variance, skewness and central scenario

−→ (4) Run forecast rounds and Monte Carlo simulations

−→ (5) Parameterize density forecast

(6) Input ”subjective” view of density forecast parameters ←−

−→ (7) Combine subjective views from (6) into (5)

In what follows attention is put to tasks (5), (6) and (7). We provide formal detail.

3.1 The density forecast

Suppose that the forecasting process at time t about future realizations of an inflation sequence
up to horizon H, is denoted by {bπs}Hs=t+1 which is generated through a model8:

πs =Ms(Yt,Xt; θ, It) for s = t+ 1, t+ 2...H (1)

8Hatted variables are forecast of either exogenous or endogenous variables. In the case of the instrument
setting, it refers to the stance assumed by the policymaker.
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In equation [1], Yt denotes the known history of endogenous macroeconomic variables yt in the
model including inflation πt. Formally:

Yt = {yt, ..., yt−n}
A macroeconomic model-based forecast is conditional upon various factors that can be con-
trolled in the process. These factors are Xt, θ, and It. The first one denotes the history and
likely future realizations of the exogenous variables: Xt = {xt−n, .., xt, bxt+1...bxt+H ...}, θ de-
notes the set of parameters that defines the particular economic model in use. This set of
parameters is included in the broader set of parameters Θ that defines model uncertainty. The
last factor, It denotes the history as well as the particular stance of the central bank instrument

assumed at time t: It =
n
it−n,..., it,bit+1, ...o.

Model M is general enough and need not be explicit as it may correspond to a rational
expectations equilibrium solution. We make the following definition:

Definition 1. A central forecast9 is an inflation sequence {bπc,s}Hs=t+1 obtained by conditioning
the model to: (a) the most likely sequence of exogenous variables within the forecast horizon
{bxc,s}Hs=t+1, (b) parameter values θc and (c) the monetary policy instrument setting Ic,t
The central forecast is the result of tasks (1), (2) and (3) as outlined above and achieved in
possibly multiple rounds.

On the other hand, the technical assessment of risk and uncertainty relies on random realiza-
tions of exogenous variables from suitably calibrated probability distribution functions. The
random draws take into account a chosen parameterized standard deviation, skewness and the
”most-likely” sequence of exogenous variables. The parameters of these probability density
functions reflect the technical staff historical estimates as well as subjective and the informed
view of sectorial experts.

Among the distinct probability density functions that are suitable to perform random draws
are the Beta and the Split Normal. The latter is used intensively in Blix and Sellin (1998) and
Briton, Fisher and Whitley (1998). These two types of distribution are useful because their
parameters illustrate the distributional characteristics that matter most in a density forecast;
a central point; a measure of dispersion and a measure of skewness.

Performing simulated histories of exogenous variables within the forecast horizon allows to
determine alternative trajectories of inflation. Evaluated at each point in time within the
forecast horizon, the distinct inflation points originated in the simulation can be hypothesized
as coming from a generic probability function conditional on the probability distribution of
the exogenous variables.
The determination of the exact probability distribution function of inflation resulting from
this exercise is hindered by two facts (a) the mapping from the exogenous variables to inflation
imply a solution like [1] which can be highly non-linear and (b) even if we manage to find the

9In this definition, the subscript c denotes both central forecasts and assumed central values.
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exact form of the distribution; its communication to policy makers would not be easy. A way
to circumvent the problem is to assume a parametric form for the distribution function that
can serve two purposes; be a good approximation to the true pdf and allow a communication
strategy that can easily be grasped by the policy maker. A good candidate for the assumed
pdf is the Split Normal, given that its parameters can be easily communicated in terms of
straightforward balance of risks.

Definition 2. A model-based parametric density forecast of inflation is a sequence of param-

eters
nbΛc,soH

s=t+1
describing a probability density function of the inflation forecast at every

point in time s.

The parameters are obtained by a likelihood estimation procedure assuming the Split Normal
distribution for inflation.

Henceforth, we are going to concentrate on the relevant horizon H and drop time subscripts.
After S number of stochastic simulations on the exogenous variables, we can define the following
mapping from data conditional on the model parameters and the instrument setting to object
ω:

³
{Xt}Sj=1 , Yt;Θ, It

´
→ ω (2)

Object ω contains the elements upon which both the econometrist and the policy maker care
about10: the inflation forecast at horizon H and the three parameters that underlie policy
discussions. We will group these three parameters in the vector Λ =

¡
m,σ2, γ

¢
, with m being

the modal point, σ2 the uncertainty measure and γ the skewness of the inflation forecast
distribution. These three parameters uniquely define the Split Normal SN

¡
m,σ2, γ

¢
. This

distribution collapses into a Normal N
¡
m,σ2

¢
whenever the skewness parameter γ equals zero.

The γ parameter varies on the range h−1, 1i and is closely linked to the balance or risks made
at central banks (see Appendix B). We specify ω in a compact way:

ω = ({π}Sj=1 ,Λ) (3)

We treat ω in a Bayesian context. We characterise its posterior probability density condi-
tional on all the information acquired after performing S number of simulations of the model
conditional on all the given factors Ω (observe that S itself is a variable to be determined)

p(ω| Ω) = p(Λ| Ω)p({π}Sj=1 | Λ,Ω) (4)

where:
Ω is the given information set: Ω = {{Xt}Sj=1 , Yt;Θ, It}
p(Λ| Ω) is the prior density elicited by the policy maker, and
10Observe that the parameter as well as the instrument remain constant along the simulations.
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p
³
{π}Sj=1 | Λ,Ω

´
is the probability of the simulated inflation forecast data given the informa-

tion Ω and the parameters of interest. The likelihood principle implies that this probability is
equivalent to the likelihood of the parameters given the simulated data and the information
set: L(Λ| {π}Sj=1 ,Ω).

Our interest is to draw probabilistic judgments of the inflation forecast distribution, thus we
need to find the posterior conditional distribution of the parameters. This is achieved by
making use of Bayes theorem:

p(Λ| {π}Sj=1 ,Ω) =
p(Λ| Ω)L(Λ | {π}Sj=1 ,Ω)

p({π}Sj=1 | Ω)
(5)

Given that the prior distribution as well as the likelihood are known parameterized functions,
the posterior distribution can be explicitly determined. Furthermore, by holding constant a
pair of parameters we can determine the conditional distribution of the remaining parameter.

3.2 Elicitation of the priors as the outcome of policy makers views:

Upon learning the outcome of the model-based density forecast, policy-maker’s views are
formed. These views take into account other forms of uncertainties not included in the forecast:
model-uncertainty; measurement errors, etc. The way to optimally extract these views and to
translate them into tractable distribution functions is an internal operational task.
For our purpose we assume that the first subjective view is that the three parameters are
independent random variables, so that the joint prior is:

p(Λ| Ω) = p(σ2| Ω)p(γ| Ω)p(m| Ω) (6)

Prior for uncertainty parameter σ2

As customarily done in the literature, we assume the family of the Inverted Gamma-2 distri-
butions iG2(b, a) in terms of the parameters (a, b) to be chosen by the policy maker. This
distribution has support h0,∞i and its parameters can be specified using the two moments
and the mode of the distribution as guidelines:

E(σ2|.) ≡ b

a− 2 for a > 2

and

V (σ2|.) ≡ 2

a− 4
µ

b

a− 2
¶2

for a > 4

while the mode is:

8



mode(σ2|.) ≡ b

a+ 2

It can be observed that the mean is always higher than the mode, by taking the estimated bσ2c
in Definition 2 as a reference point, possible values of b and a can be evaluated by weighing
the resulting mode, mean and variance.

Prior for skewness parameter γ

For the skewness parameter we need a distribution with bounded support. We assume a slight
transformation of a Beta distribution; we name it eB(c, d). This allows γ to vary in the interval
h−1, 1i. To do this we make a transformation of a random variable z lying on the interval h0, 1i
and following a Beta distribution B(c, d) (the transformation applied is γ = 2z − 1). The first
two moments are defined as:

E(γ|Ω) ≡ c− d
c+ d

and

V (γ|Ω) ≡ 4cd

(c+ d+ 1) (c+ d)2

with mode:

mode(γ|Ω) ≡ c− d
c+ d− 2

Prior for mode parameter m

We impose a non-informative uniform distribution for the mode m:

p(m|am, bm) ∝ constant (7)

3.3 The posterior distribution

Given the Split Normal likelihood assumption11, the kernel of the joint posterior distribution
of the three parameters of interest are:

11See Appendix [B] for details about this distribution.
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p (Λ| πt+H ,Ω) ∝
µ
γ + 1

2

¶c−1µ1− γ

2

¶d−1 ¡
σ2
¢−(a+2)

2 e

³
−b
2σ2

´
 ¡

σ2
¢− 1

2

√
1− γ +

√
1 + γ

N e
Ã
−1
2

(
S1P
i=1

³
πt+H−m
σ
√
1−γ

´2
+

SP
i=S1+1

³
πt+H−m
σ
√
1+γ

´2)!
(8)

From this joint pdf, we can obtain the posterior conditional distribution of σ2. As expected,
this distribution is also an Inverted Gamma-2.

p
¡
σ2| γ,m,πt+H ,Ω

¢
∝
¡
σ2
¢−(a+N+2)

2 e

³−(ϑ(m,γ)+b)
2σ2

´
(9)

where ϑ(m, γ) =

(
S1P
i=1

³
(πt+H−m)2

1−γ
´
+

SP
i=S1+1

³
(πt+H−m)2

1+γ

´)
The other two relevant conditional distributions are given by:

p
¡
m| γ,σ2,πt+H ,Ω

¢
∝ e

Ã
−1
2σ2

(
S1P
i=1

µ
(πt+H−m)2

(1−γ)

¶
+

SP
i=S1+1

µ
(πt+H−m)2

(1+γ)

¶)!
(10)

and

p
¡
γ|m ,σ2,πt+H ,Ω

¢
∝

µ
γ + 1

2

¶c−1µ1− γ

2

¶d−1µ 2√
1− γ +

√
1 + γ

¶S

e

 −1
2σ2

 S1P
i=1

 (πt+H−m)2
1−γ

+ SP
i=S1+1

 (πt+H−m)2
1+γ




(11)

The conjugacy of the prior distribution of σ2 allows to express the conditional moments from
the posterior from an inverted gamma distribution iG2(a+S2 ,

2
ϑ(m,γ)+b): The moments are:

E(σ2|.) ≡
a+S
2

2
ϑ(m,γ)+b − 2

for
2

ϑ(m, γ) + b
> 2

and

V (σ2|.) ≡ 2
2

ϑ(m,γ)+b − 4

Ã
a+S
2

2
ϑ(m,γ)+b − 2

!2
for

2

ϑ(m, γ) + b
> 4

while the mode is:

10



mode(σ2|.) ≡
a+S
2

2
ϑ(m,γ)+b + 2

From this explicit representation, we can see that as the sample size increases, the posterior
mean and mode collapse to the model-based estimates. In that case, the prior view has a
small effect on the posterior outcome. In an econometric estimation environment, a larger
sample size is always good because it improves the model-based information. Our context is
rather different. It is based on the willingness of a Bayesian policy maker to learn about the
properties of the inflation forecast from a general perspective. It is not about a non-Bayesian
econometrist who wants to learn the properties of its model-based forecast.

3.4 The choice of sample size as an information theoretic design problem

In the framework we propose, the sample size S is a choice variable as well. If a high enough
sample size is considered, the prior view of the policy makers becomes useless. On the other
hand, if the sample size is small, then the model-based estimation turns less accurate so that
the simulation experiment becomes informationally poor.
Policy makers need to weigh the information provided by the model and the prior beliefs they
may hold. In practice, this process appears complex as it is bound to the subjective beliefs of
the policy makers coupled with out-of-model information they have.
Under these circumstance, the information-theoretic approach12 for ”experiment design” seems
plausible. In our view, the experiment performed by policy makers consists in updating their
prior beliefs about the inflation forecast modal point, uncertainty and risks by means of a
econometric forecasting model. The outcome of these updating depends crucially on the simu-
lation sample size under evaluation. They choose sample size S so that policy makers maximize
their expected utility resulting from the experiment.

S∗ = argmax
S

{KL(S)− λS} (12)

The expected utility of the experiment with sample size S depends on two factors; a) the
Kullback-Leibler (KL hereon) divergence between the posterior and prior distribution of the
parameters KL(S) and b) the linear loss function λS. The KL number provides the value of
the information provided by the forecasting model under use13. The loss of the policy maker
is rationalised by the unwillingness to disregard their priors. So, as the sample size increases,
the prior of the policy maker is downweighted and thus reduces the utility of a policy maker
who considers her priors are indeed somewhat important. In our case, the utility parameter λ
is the degree of importance of the prior in the overall utility function14.

12This view was proposed by Lindley (1956). Applications of Lindley’s approach are found for example
in Ryan (2003), Clyde(2001), Parmigiani and Berry(1994?), Chaloner and Verdinelli (1995) and Muller and
Parmigiani(1996). Most of these applications are in the design of clinical experiments.
13KL(S) is increasing in S and concave. See Lindley (1956)
14λ can also be interpreted as the inverse of policymakers credibility on the model.
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The KL divergence number is defined as:

KL(S) =

Z
Λ

Z
Π
log

·
p(Λ|Π, S)
p(Λ)

¸
p(Π,Λ|S)dΠdΛ (13)

Where Π = {π}Sj=1 is the simulated inflation data of size S, p(Λ) is the prior distribution of
the parameters and p(Λ|Π, S) is the posterior distribution.

4 An example

In order to provide an example, we use a simple ad-hoc univariate model for quarterly inflation
estimated using ordinary least squares15. We run the inflation rate at quarter t against the
following regressors: the exchange rate depreciation at lag 3 (∆et−3), GDP growth at lag 2
(gt−2), the mean interbank interest rate at lag 1 (it−1), the mean three months Libor rate at
lag 3 (i∗t−3) and the terms-of-trade growth at lag 4 (∆tott−4).

πt = 0.69πt−1 +0.24∆et−1 +0.23gt−2 −0.30it−1 +0.55i∗t−3 +0.06∆tott−4 +εt
(9.23) (3.58) (3.06) (−1.95) (1.72) (1.70)

(14)

The estimation16 is carried out using data from the first quarter of 1994 to the second quarter
of 2003. Except for lagged inflation, all the variables on the right-hand side are considered
as exogenous. Hence, to start the density forecast we need to construct a baseline scenario
and uncertainty and risk profiles for the set of exogenous variables: (gt, it,∆et, i

∗
t ,∆tott). In

particular, we assume the following distributions:

Exogenous variable Balance of risk Distribution Mode σ2

Libor rate upside 70% Split normal 3.57 1.2
Nominal exchange rate depreciation upside 55% Split normal 0.00 10.6
GDP growth upside 60% Split normal 3.90 8.3
Terms of trade growth neutral Normal 0.5 4.9

Table 1: Distributional assumptions for exogenous variables at the end of the forecast horizon

In Figure [1] we show the historical, central scenario and the 90 per cent central prediction
interval for the exogenous variables along the forecast periods. The asymmetry as well as the
uncertainty increases linearly until it reaches the values specified in Table [3]. In each forecast
period, we also consider random realizations of the unforecastable shock εt, drawn from a

15We use data from Peru. The Central Bank of Peru has recently adopted the Inflation Targeting framework
(January 2002).
16In equation [14] the lag structure minimises the sum of squared residuals. As usual, the t-values are in

parenthesis.
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normal distribution N(0, 0.3). This last feature is important for two reasons; first it makes
the first-period-ahead inflation forecast random given that all the exogenous determinants are
predetermined for this horizon. Second, it allows the inflation uncertainty to increase even in
the absence of uncertainty in the exogenous variables.
To complete the conditioning factors, we also need to assume a particular monetary policy
setting within the forecast horizon. In this case, we consider a constant-interest-rate forecast
with the rate kept at 2.75 per cent during the forecast period.

The inflation density forecast is then achieved by estimating the parameters of an assumed
split normal distribution SN(m,σ2, γ) for the simulated sample of size17 ST for each forecast
period.

An important conclusion emerges from this exercise: Notwithstanding that the exchange rate
depreciation, GDP growth and the Libor rate all show considerable asymmetry18 (especially at
the end of the forecast horizon). There is no build up of asymmetry in both inflation measures;
the quarterly and the year-on-year rate. In Figure [2] we show the estimated densities at each
of the eight forecast periods along with the estimated parameters; mode m, σ2 and γ. The
gamma parameter is close to zero in all periods.
The reasons why the increasingly asymmetric nature of exogenous variables does not pass
on to inflation are twofold; the lag structure and the interplay between the variability versus
asymmetric forces. Regarding the lag structure, as the asymmetric exogenous variables affect
quarterly inflation with some lags, then full asymmetry is not transferred to inflation at the
end of the forecast horizon. As of the relation variability/asymmetry, it is known that when
the variability of inflation increases the asymmetric forces that affect inflation are dampened
(see for example Blix and Sellin 2000). Inflation variability does grow because the exoge-
nous variability increases linearly and because the persistent nature of inflation (as it depends
strongly on its own lags) exacerbates all the sources of uncertainty in inflation, even the one
that corresponds to the inflation shock itself.

The estimated mode from the simulations is quite different from the one computed using only
the central scenario values of exogenous variables. There is an upward bias (See Figure [3])
in both the quarterly inflation and the year-on-year inflation. The reason is that at the end
of the forecast horizon, the simulated distribution is quite symmetric around the mean. The
mean is the central tendency that is preserved in both the point and the density forecast.

Once the results of the simulation are known, we proceed to introduce the information provided
by the policy maker. To do this, we concentrate in forecast horizon H = 8. We need to assume
a prior distribution for the set of parameters Λ =

¡
m,σ2, γ

¢
. We take the distributional

assumptions outlined in Section 3. Namely:

17In this step, the sample size ST can be as large as possible. The objective here is to get the most accurate
distributional representation originated from the forecasting model alone.
18In Figure [3] in the appendix the estimated means differs from the modes of the asymmetric exogenous

variables. In Figure [4] the asymmetry parameter γ for the exogenous variables becomes larger towards the end
of the forecast horizon.
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The mode follows a uniform distribution; m ∼ U(mlow,mhigh) with parameters mlow = −0.22
and mhigh = 5.78 such that the distribution is centered in an year-on-year inflation rate of 2.78
percent.

The uncertainty parameter follows an inverted gamma-2 distribution; σ2 ∼ iG2(b, a). In order
to find the parameters, we can consider that the estimated bσ2 from the simulation step is too
low. Policy makers may consider that there are other factors that necessarily drive forecast
uncertainty to a higher level. For example they can assume that Eprior(σ

2) = 1.95 and the
modeprior(σ

2) = 1.8. This implies the corresponding parameters (a, b) = (38, 72)

The asymmetry parameter follows a beta type of distribution considered in Section 3; γ ∼eB(c, d). In this case, we assume policy makers believe that the inflation forecast at horizon H
will have an upside risk, as opposed to the model-based case which considers a slight downside
risk. Let’s suppose that the mean prior gamma is Eprior(γ) = 0.3 (which is close to a 60 percent
upside risk) and that they believe about this asymmetry quite strongly Vprior(γ) ≈ 0.006. This
implies parameter values (c, d) = (92.857, 50).

Before combining the prior information given by the policy maker, it is necessary to establish
the sample size to use in the Bayesian procedure. The sample size is obtained from solving
the problem in equation [12)]. The calculation of the utility measure requires to get the KL
divergence number via some numerical integration procedure. In Appendix D, we follow Ryan
(2003) by using a MCMC estimation. The optimal value S∗ depends on the parameter λ. A
small λ about 0.007 is related to a large sample size (about 164), a ”large” λ, around 0.017,
generates a sample size of about 33. Hence, we interpret the sample size as the weight of
confidence in the prior. In our example, we assume λ = 0.01. Therefore the optimal sample
size is S∗ = 120 (see Figure [7])

Next, we sample from the Bayesian conditional posterior distributions (See Sub-section 3.3
and Appendix C). The corresponding mean values are shown in Table (2) and a graphical
representation of conditional posterior against prior distributions is shown in Figure [8]).

Prior Mean Model-based Estimation Posterior Mean

Mode m 2.78 3.03 2.75
Uncertainty σ2 1.95 0.83 0.78
Risk γ 0.30 -0.05 0.34

Table 2: Mean values of the parameters under the prior distribution, the ML estimation and the
posterior distributions.

The distributional means of the prior and posterior turn out to be very close to each other
except for the uncertainty parameter σ2. The model-based estimate of uncertainty is low while
the prior belief about this parameter is too high relative to the model. Also, the model-based
estimate of the asymmetry is slightly negative (-0.05) as opposed to the prior belief which
posits a strong upside risk (γ = 0.3). It seems that the model strongly rejects the combination
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of high levels of uncertainty and sizeable upside risks as defined by the prior. Thus, in terms
of the posterior, the prior view of the policy makers is taken into account for the modal and
the risk forecasts, yet it is not the case for the uncertainty parameter estimation. In fact, the
posterior calculation hints that a lower uncertainty seems necessary in order to ”make room”
for a high value of asymmetry provided in the likelihood19.

5 Concluding remarks

This paper contributes to the understanding of how central banks do forecasts in the context
of monetary policy making. It posits attention to Bayesian policy makers who hold or develop
prior views on key features of the inflation density forecast. The decision makers interact with
the technical staff in charged of running the macroeconomic model-based density forecast.
In reality, neither the prior views nor the model-based forecast are per se true. Prior views are
subject to human imperfection while models are always false. However, policy makers in fact
use both types of inputs to make quantitative inference about their forecasts.
In our approach, policy makers weigh both the prior view and the information provided by the
model via a utility function advocated in Information Theory. The utility function considers
the trade-off between the importance of policy makers priors and the ”faith” on the core
forecasting model. If the model is given full ”faith” then priors are irrelevant and viceversa.

19This particular result does not always hold. It depends on the relative prior variances of the parameters. If
policy makers are highly confident about their prior view of uncertainty, then the distributional variance is in
fact very low. Therefore, the resulting posterior might be closer to this posterior.
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A Prior distributions

A.1 Prior for σ2

In the main text we assume that σ2 follows an Inverted Gamma 2 distribution with parameters
(b, a):

p(σ2|.) =
Ã
Γ(
a

2
)

µ
2

b

¶a
2

!−1 ¡
σ2
¢−(a+2)

2 e

³
− b
2σ2

´
(A1)
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Where:

E(σ2|.) ≡ b

a− 2 for a > 2

and

V (σ2|.) ≡ 2

a− 4
µ

b

a− 2
¶2

for a > 4

while the mode is:

mode(σ2|.) ≡ b

a+ 2

A.2 Prior for γ

We start assuming that a random variable z follows a Beta distribution with parameters (c, d):

g(z|c, d) = Γ(c+ d)
Γ(c)Γ(d)

zc−1 (1− z)d−1 for 0 < z < 1

with:

E(z|Ω) ≡ c

c+ d

and

V (z|Ω) ≡ cd

(c+ d+ 1) (c+ d)2

with mode:

mode(z|Ω) ≡ c− 1
c+ d− 2

Then we define γ in terms of the following transformation:

γ = 2z − 1

Hence, the prior distribution of γ can be expressed as:
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p(γ|.) = g(z(γ)|c, d)
¯̄̄̄
d

dγ
z

¯̄̄̄
As a result, the prior distribution for γ is:

p(γ|.) = Γ(c+ d)
Γ(c)Γ(d)

·
1 + γ

2

¸c−1 ·1− γ

2

¸d−1
for − 1 < γ < 1 (A2)

A.3 Prior for m

As for m we assume a uniform, non-informative prior. The exact determination for this prior
is inconsequential for the Bayesian posterior sampling. However, it is used in the sample
size determination given that we require sampling from the priors. Hence, we assume: m ∼
Uniform(mlow,mhigh)

p(m|.) = 1

mhigh −mlow for mlow < m < mhigh (A3)

B Model-based density simulation and estimation

B.1 Fitting the simulated data

We define a Split Normal pdf for the data with parameters (m,σ2, γ) in the following way:

f(x;m,σ2, γ) =

2√
σ2(

√
1−γ+√1+γ)φ(

x−m√
σ2(1−γ)) if x < m

2√
σ2(

√
1−γ+√1+γ)φ(

x−m√
σ2(1+γ)

) otherwise

Where φ(z) = 1√
2π
e−z2

Given a simulated sample {x}STs=1; we can sort the data in ascending order and split the ordered
data {ex}STs=1 in two sub-samples:

S1 = {exi | exi < m}
S2 = {exi | exi ≥ m}

Let S1 and ST − S1 be the number of elements of S1 and S2 respectively. Then the likelihood
of the sample is given by:

L(x;m,σ2, γ) =

Ã
2/
√
2πσ2√

1− γ +
√
1 + γ

!ST
e

Ã
−1
2

(
S1P
i=1

µ
x−m√
σ2(1−γ)

¶2
+

STP
i=S1+1

µ
x−m√
σ2(1+γ)

¶2)!
(B1)

while the log-likelihood is:
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L(x;m,σ2, γ) = ST log
 2/

¡
2πσ2

¢ 1
2

√
1− γ +

√
1 + γ

− 1
2

S1X
i=1

Ã
x−mp
σ2 (1− γ)

!2
− 1
2

STX
i=S1+1

Ã
x−mp
σ2 (1 + γ)

!2

and further expressed as:

L(x;m,σ2, γ) = ST log
³
2/
√
2π
´
− ST
2
log
¡
σ2
¢− ST log³p1− γ +

p
1 + γ

´
− 1

2σ2

S1X
i=1

µ
x−m√
1− γ

¶2
− 1

2σ2

STX
i=S1+1

µ
x−m√
1 + γ

¶2
Estimation of the parameters requires the computation of the firs order conditions of the
likelihood problem:

For the uncertainty parameter we have:

∂

∂σ2
L(x;σ2, γ,m) = − ST

2σ2
+

1

2 (σ2)2

S1X
i=1

µ
x−m√
1− γ

¶2
+

1

2 (σ2)2

STX
i=S1+1

µ
x−m√
1 + γ

¶2
= 0

bσ2 = 1

ST (1− bγ)
S1X
i=1

(x− bm)2 + 1

ST (1 + bγ)
STX

i=S1+1

(x− bm)2 (B2)

For the risk parameter we find:

∂

∂γ
L(x;σ2, γ,m) = − ST/2√

1− γ +
√
1 + γ

µ√
1− γ −√1 + γ√
1 + γ

√
1− γ

¶
− 1

2σ2 (1− γ)2

S1X
i=1

(x−m)2 + 1

2σ2 (1 + γ)2

STX
i=S1+1

(x−m)2

which collapses to the following equation in the estimators:

STP
i=S1+1

(x− bm)2
(1 + bγ)2 −

S1P
i=1
(x− bm)2
(1− bγ)2 =

bσ2STp1 + bγp1− bγ
1

Ãp
1− bγ −p1 + bγp
1− bγ +p1 + bγ

!
(B3)

For the mode parameter we have the expression:

∂

∂m
L(x;σ2, γ,m) =

S1P
i=1
(x−m)

σ2 (1− γ)2
+

STP
i=S1+1

(x−m)

σ2 (1 + γ)2
= 0
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S1P
i=1
x−

S1P
i=1
m

(1− γ)2
+

STP
i=S1+1

x−
STP

i=S1+1
m

(1 + γ)2
= 0

which is simplified as:

S1P
i=1
x

(1− bγ)2 +
STP

i=S1+1
x

(1 + bγ)2 =
·

S1

(1− bγ)2 + ST − S1(1 + bγ)2
¸ bm (B4)

Equations [B2], [B3] and [B4] are solved to find the triple of MLE parameters bΛ = ¡ bm, bσ2, bγ¢ .
C The Posterior distribution

C.1 The joint posterior

The joint posterior distribution is given by:

p (Λ| {π} ,Ω) ∝
µ
γ + 1

2

¶c−1µ1− γ

2

¶d−1 ¡
σ2
¢−(a+2)

2 e

³
−b
2σ2

´
 ¡

σ2
¢− 1

2

√
1− γ +

√
1 + γ

ST e
Ã
−1
2

(
S1P
i=1

µ
πi−m√
σ2(1−γ)

¶2
+

S∗P
i=S1+1

µ
πi−m√
σ2(1+γ)

¶2)!

In the main text we have determined the conditional posterior distribution kernel of σ2 by
fixing the other two parameters:

p
¡
σ2| γ,m, {πH} ,Ω

¢
∝
¡
σ2
¢−(a+S∗+2)

2 e

³
−ϑ(m,γ;S∗)+b

2σ2

´
(C1)

where ϑ(m, γ;S∗) =

(
S1P
i=1

³
(πi−m)2
1−γ

´
+

S∗P
i=1+S1

³
(πi−m)2
1+γ

´)
The implied posterior distribution of σ2 is also a iG2 distribution with parameters: (ϑ(m, γ;S∗)+
b, a+S∗). From here, it is straightforward to determine the mean of σ2 under the conditional
posterior:

E
¡
σ2| .¢

post
=

ϑ(m, γ;S∗) + b
a+ S∗ − 2

On the other hand, the prior mean was given by:
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E
¡
σ2| .¢

prior
=

b

a− 2
While the fitted estimation with simulated data according to equation [B2] gives:

bσ2| fit = ϑ(m, γ;S∗)
S∗

Proposition 3. If E
¡
σ2| .¢

prior
> bσ2| fit , then E ¡σ2| .¢prior > E ¡σ2| .¢post > bσ2| fit

Proof. Starting with the conditional: b
a−2 >

ϑ(m,γ;S)
S :

(a) we post multiply and add the term b(a− 2) in both sides:
bS + b(a− 2) > (a− 2)ϑ(m, γ;S) + b(a− 2)
b (a+ S − 2) > (a− 2) (ϑ(m, γ;S) + b)
b
a−2 >

ϑ(m,γ;S)+b
a+S−2

(b) we post multiply and add the term ϑ(m, γ;S)S in both sides:
bS + ϑ(m, γ;S)S > (a− 2)ϑ(m, γ;S) + ϑ(m, γ;S)S
S (b+ ϑ(m, γ;S)) > ϑ(m, γ;S) (a− 2 + S)
b+ϑ(m,γ;S)
a−2+S > ϑ(m,γ;S)

S

The basic result when E
¡
σ2| .¢

prior
> bσ2| fit is:

b
a−2 >

b+ϑ(m,γ;S∗)
a−2+S∗ > ϑ(m,γ;S∗)

S∗
As the simulated sample becomes large, the procedure implemented here downweights the
prior; and thus the simulated variance does not differ from the posterior.

The other two relevant conditional distributions are given by:

p
¡
m| γ,σ2,πt+H ,Ω

¢
∝ e

Ã
−1
2σ2

(
S1P
i=1

µ
(πt+H−m)2

(1−γ)

¶
+

SP
i=S1+1

µ
(πt+H−m)2

(1+γ)

¶)!
(C2)

and

p
¡
γ|m ,σ2,πt+H ,Ω

¢
∝

µ
γ + 1

2

¶c−1µ1− γ

2

¶d−1µ 2√
1− γ +

√
1 + γ

¶S
(C3)

e

 −1
2σ2

 S1P
i=1

 (πt+H−m)2
1−γ

+ SP
i=S1+1

 (πt+H−m)2
1+γ
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C.2 Sampling from the posterior

In order to make inferences about the posterior distribution of the parameters, it is necessary
to obtain samples from the three posterior distributions. The posterior distribution of σ2 is an
inverted gamma-2 (equation [C1]) and thus, poses no problem. However, the other two kernels
(equations [C2] and [15)] are of unknown form. This calls for a sampling procedure commonly
known as Metropolis-Hastings within Gibbs sampling:

The sampling algorithm takes the following steps:

1. Initialize the parameters at an arbitrary value
¡
m0,σ

2
0, γ0

¢
.

2. Generate a kth-draw σ2k ∼ p
¡
σ2k−1| γk,mk, .

¢
3. Metropolis step to get m update:

Consider the function from equation [C2]:

cm(m;σ
2, γ) = e

Ã
−1
2σ2

(
S1P
i=1

µ
(πt+H−m)2

(1−γ)

¶
+

SP
i=S1+1

µ
(πt+H−m)2

(1+γ)

¶)!

(a) Calculate a function value: Mk−1 = cm(mk−1;σ2k, γk−1)

(b) Generate a candidate draw from: m∗k ∼ mk−1+ cN(0, 1); where c is an appropriate
constant.

(c) Calculate the corresponding function value: Mk = cm(m
∗
k;σ

2
k, γk−1)

(d) Calculate the ratio: ρ = min( Mk
Mk−1 , 1)

(e) Draw a uniform random variable between zero and one ρu = Uniform(0, 1)

(f) if ρu < ρ, make the candidate m∗k draw be the selected draw mk. Otherwise go back
to [a.] and repeat the procedure.

4. Metropolis step to get γ update: Considering the function from equation [C2]:

cγ(γ;σ
2,m) ∝

µ
γ + 1

2

¶c−1µ1− γ

2

¶d−1µ 2√
1− γ +

√
1 + γ

¶S

e

 −1
2σ2

 S1P
i=1

 (πt+H−m)2
1−γ

+ SP
i=S1+1

 (πt+H−m)2
1+γ




And repeat [a.] to [f.] as in Step 3.

After a number of draws, the sampling scheme is equivalent to sampling from the true posterior
distributions outlined above. In the example developed in the paper, the number of total draws
amounts to 50,000 from which, the first 5,000 were excluded.
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D The optimal design of the sample size

As stated in the main text, the optimal sample size design maximizes the expected utility:

S∗ = argmax
S∈D

{KL(S)− λS} (D1)

Where the KL divergence number is defined as:

KL(S) =

Z
Λ

Z
Π
log

·
p(Λ|Π, S)
p(Λ)

¸
p(Π,Λ|S)dΠdΛ

Where Π = {π}Sj=1 is the simulated inflation data of size S, p(Λ) is the prior distribution of
the parameters and p(Λ|Π, S) is the posterior distribution.
Following Ryan (2003), it is straightforward to show that the KL information number is

KL(S) =

Z Z
log [p(Π|Λ, S)] p(Π,Λ|S)dΠdΛ−

Z
log [p(Π|S)] p(Π|S)dΠ

Hence, this number can be estimated by a MCMC procedure that does not rely in sampling
from the posterior distribution of the parameters. The estimator is:

dKL(S) = 1

N

NX
i=1

{log[p(Πi|Λi, S)]− log [bp(Πi|S)]} (D2)

Where (Πi,Λi) for i = 1, ..., N is a sample from p(Π,Λ|S) and bp(Πi|S) is an estimator of the
marginal density of the data p(Πi|S). The dependent pair (Πi, Λi) drawn from p(Π,Λ|S) =
p(Π|Λ, S)p(Λ), is obtained by first drawing Λi from the prior distribution p(Λ) and then Πi
from the conditional distribution p(Π|Λi, S).
The estimation of the marginal density of the data is obtained by an importance sampling
based estimator as in Ryan (2003):

bp(Πi|S) = 1

M

MX
j=1

p(Πi|Λ∗ij , S) (D3)

Where {Λ∗ij} for i = 1, ..., N and j = 1, ...,M are N samples of size M drawn from the prior
p(Λ) obtained independently of the N pairs (Πi,Λi) drawn before.

The sampling algorithm to get the estimator [D2] follows exactly that of Ryan (2003)

1. Generate a large sample of size NΛ from p(Λ), {Λ, ...,ΛNΛ
}.
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2. Generate an index set for MCMC estimator [D2] as a size N ≤ NΛ random sample
without repetition of the integers 1 to NΛ. Call this sample {outi}Ni=1

3. Generate index sets for importance sampling estimator [D3] as N independent size N ≤
NΛ random samples without repetition of the integers 1 to NΛ. Call these samples
{inij}Mj=1 for i = 1, ..., N .

4. For k = 1, ..., nd, let Sk represent nd designs to be compared. Generate one dataset Πki
from p(Π|Λouti , Sk) for each k = 1, ..., nd and each i = 1, ..., N .

5. For k = 1, ..., nd, compute

dKLM(Sk) = 1

N

NX
j=1

dKLMi (Sk) (D4)

where

dKLMi (Sk) = log[p(Πi|Λouti , Sk)]− log
 1
M

MX
j=1

p(Πi|Λ∗ij , S)


To implement the estimation, we considered the following values: NΛ = 5000, N = 1000,
M = 100, and nd = 200. Also,we consider sample size higher than 30 via: Sk = (k − 1) + 30.

In figure [6], we depict the MCMC draws of KL together with a smoothed version of it.
The smoothed version is combined with the loss term in [D1] to get the utility function shown
in figure [7].
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E Figures

Figure 1: 90 % forecast interval and modal forecast
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Figure 2: Estimated SN pdf’s for the year-on-year inflation forecast
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Figure 3: Central measures of tendency
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Figure 4: Evolution of the gamma parameter
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Figure 5: Evolution of the uncertainty parameter
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Figure 6: The KL divergence number (a.k.a entropy). The scatter plot is the estimation with
monte carlo variation, the line is the smoothed version
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Figure 7: The utility function of the policymaker as a function of the simulation sample size
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Figure 8: The utility function of the policymaker as a function of the simulation sample size
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