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Abstract

The paper is concerned with a class of trend cycle filters, encompassing pop-
ular ones, such as the Hodrick-Prescott filter, that are derived using the Wiener-
Kolmogorov signal extraction theory under maintained models that prove unrealistic
in applied time series analysis. As the maintained model is misspecified, inference
about the unobserved components, and in particular their first two conditional mo-
ments, given the observations, are not delivered by the Kalman filter and smoother
or the Wiener-Kolmogorov filter for the maintained model.

The paper proposes a model based framework according to which the same class
of filters is adapted to the particular time series under investigation; via a suitable
decomposition of the innovation process, it is shown that any linear time series with
ARIMA representation can be broken down into orthogonal trend and cycle compo-
nents, for which the class of filters is optimal. Finite sample inferences are provided
by the Kalman filter and smoother for the relevant state space representation of the
decomposition.

In this framework it is possible to discuss two aspects of the reliability of the
signals’ estimates: the mean square error of the final estimates and the extent of
the revisions. The paper discusses and illustrates how the uncertainty is related to
features of the series and the design parameters of the filter, the role of smoothness
priors, and the fundamental trade-off between the uncertainty and the magnitude of
the revisions as new observations become available.
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1 Introduction

The separation of the trend from the cycle is a major issue in the analysis of the dynamic

behaviour of macroeconomic variables, such as output, unemployment and inflation. Re-

cent contributions, and in particularOrphanides and van Norden(2002), have focussed

on the issue of the uncertainty with which signals are estimated in macroeconomics: for

instance, given the relevance that measures of the output gap are assigned for the conduct

of monetary policy, the econometric profession should provide a clear assessment of the

reliability of such measures, including,inter alia, the evaluation of features that are re-

lated to the properties of the signal extraction filter, such as the final estimation error and

the process of revision.

When the signals are estimated within a parametric approach, as inHarvey and J̈ager

(1993), this assessment is a natural by product of the modelling effort. Often, however,

those measures are provided by the application ofad hocfilters that select certain features

of the series without entertaining a model of the series dynamics; in other occurrences,

which are the ones considered in this paper, the filter has a genuine model based interpre-

tation, but the the underlying model is clearly misspecified for the series under investiga-

tion. In all these occurrences it may not be immediately clear how the reliability of the

corresponding signals should be evaluated.

This is the case for the Hodrick-Prescott filter (Hodrick and Prescott(1997), HP hence-

forth): the underlying local linear trend model, that decomposes the series into uncorre-

lated components represented by an integrated random walk trend plus pure white noise

(see section2 below), is usually inadequate for macroeconomic time series such as real

gross domestic product. If the signal to noise ratio were estimated, rather than fixed, ex-

perience suggests that its value would result so large to render the trend indistinguishable
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from the series; furthermore, the usual residual based diagnostics would definitively speak

out against the maintained model.

The objective of this paper is to assess two important aspects of the uncertainty of

the trend-cycle estimates arising from a class of filters, considered inPollock(2000) and

Gómez(2001), and nesting popular filters such as HP and rational square wave filters: the

final estimation error mean square error (MSE) and the magnitude of the revision of the

estimates at the end of the sample, as new observations become available.

This assessment is allowed for by the fact that the filters admit an interpretation within

a model based framework: extending the approach initiated byGómez(2001) andKaiser

and Maravall(2001), we show that it is possible to define a trend-cycle decomposition

of any ARIMA process via a suitable decomposition of the ARIMA innovation process.

The trends and cycles emerging from the decomposition are artificial, as they do not nec-

essarily correspond to a mechanism that has generated the data; nevertheless, the decom-

position furnishes the theoretical underpinning for framing the filters within the general

theory of linear estimation. This assumes that the filters have autonomous justification,

eg. as bandpass filters, an interpretation that we review in the course of the discussion.

Within the model-based framework, the class of filters yields the Wiener-Kolmogorov

optimal filters of the components, given the availability of a doubly infinite sample. How-

ever, although the impulse responses for the central sample points are invariant, the MSE

of the smoothed estimates depends on the time series model for the series. The paper

provides an upper bound for it and discusses its dependance upon the filter design pa-

rameters. Moreover, the filtered estimates and the MSE of the components depend on

the properties of the series under investigation, in that they vary according to the ARIMA

process considered.

In sum, the model based framework allows correct inferences on the reliability of the
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estimates of trends and cycles, and the paper discusses how the estimation MSE depends

on both the features of series (for instance, the order of integration), and the parameters

that regulate the design of the filter, discussing also the the role of smoothness priors.

The paper is organised as follows: section2 introduces the class of filters that we con-

centrate upon, presenting the local trend model for which it is optimal and discussing the

role of the main parameters. The frequency domain arguments which enforce the inter-

pretation of as bandpass filters is also reviewed. Section3 sets up the decomposition of

any ARIMA process into trends and cycles that yield the same filters as the minimum

mean square estimators of the components for a doubly infinite sample. In finite samples

inferences are provided by the Kalman filter and smoother for the state space represen-

tation of the decomposition, which is given in the appendix. In section4 we derive an

upper bound for the MSE of the final estimate and discuss how it depends on features of

the series, namely the order of integration, and the design parameters of the filter. Sec-

tion 5 discusses further aspects of the uncertainty of the signal estimates. It presents an

empirical example, referring to the U.S. real gross domestic product, a well known case

study in the application of the HP filter, illustrating how the estimates of the cycle de-

pend on the time series model adapted to the series, how the uncertainty is understated

by the MSE outputted by the Kalman filter and smoother for the misspecified local lin-

ear trend model at the basis of the HP filter, and finally how the uncertainty depends on

the cutoff frequency, and thus on the bandpass nature of the filter. Finally, the revision

issue is addressed when the true model is ARIMA(1,1,0) and illustrate the fundamental

trade-off between the reliability and the extent of the revision process. In section6 some

conclusions are drawn.
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2 A class of trend-cycle filters

The class of filters considered in this paper arises from the application of the Wiener-

Kolmogorov (WK) optimal signal extraction theory to the signal plus noise, or local trend,

model:

yt = µt + ψt, t = 1, 2, . . . , T,

∆mµt = (1 + L)nζt, ζt ∼ NID(0, σ2
ζ ),

ψt ∼ NID(0, λσ2
ζ ), E(ζt, ψt−j) = 0, ∀j,

(1)

whereµt is the signal, or trend, component,ψt is the noise,∆ is the difference operator,

∆ = 1− L andL is the lag operator such thatLjyt = yt−j for integerj.

The (pseudo) autocovariance generating functions (ACGF) of the components and the

series are:

gµ(L) =
|1 + L|2n

|1− L|2m
σ2

ζ , gψ(L) = λσ2
ζ , gy(L) = gµ(L) + gψ(L),

where|1+L|2 = (1+L)(1+L−1) and|1−L|2 = (1−L)(1−L−1). Assuming a doubly

infinite sample, the minimum mean square estimators (MMSE) of the components are

respectivelỹµt = wµ(L)yt andψ̃t = yt − µ̃t = wψ(L)yt, wherewµ(L) = gµ(L)/gy(L)

andwψ(L) = gψ(L)/gy(L); seeWhittle (1983). Hence, the WK filters can be written:

wµ(L) =
|1 + L|2n

|1 + L|2n + λ|1− L|2m
, wψ(L) =

λ|1− L|2m

|1 + L|2n + λ|1− L|2m
= 1− wµ(L).

(2)

The above trend filter can be equivalently derived by solving the following penalised
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least square problem:

min
µt

PLS=
∑

t

[(1 + L)n(yt − µt)]
2 + λ

∑

t

(∆mµt)
2,

as can be shown by direct differention. Also, after a transformation and with a change

of sign, the PLS above coincides with the kernel of the joint Gaussian density of the

observations and the trend, whenyt is generated according to (1). The connection with

the signal-noise ratio makes clear that the Lagrange multiplier,λ, measures the variability

of the noise component relative to that of the trend, and regulates the smoothness of the

long-term component.

Using Whittle’s result (1983, page 58), the ACGF of the final estimation error,et =

µt − µ̃t = −(ψt − ψ̃t), is equal to

ge(L) =
gµ(L)gψ(L)

gy(L)
=

λ|1 + L|2n

|1 + L|2n + λ|1− L|2m
σ2

ζ

The estimators̃µt, ψ̃t, are also known assmoothedor final estimators. From the oper-

ational standpoint, given a time seriesyt, available at timest = 1, 2, . . . , T , the MMSE

estimates of the components using information up to and including timet + l, denoted

µ̃t|t+l andψ̃t|t+l, along with their mean square errors, are computed by the Kalman filter

and the associated smoothing algorithms for the model (1), seeHarvey(1989). For l = 0

the estimators are also known asfilteredor real timeestimators. The treatment of initial

conditions in the presence of nonstationarity is dealt with inde Jong(1991), Ansley and

Kohn (1985) andKoopman(1997), andde Jong(1989) presents various smoothing algo-

rithms; the connection with the WK signal extraction theory is discussed inBurridge and

Wallis (1988).

The class of filters depends on the order of integration of the trend (m, which regulates
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its flexibility), on the order of the unit root at the Nyquist frequency (n, which cœteris

paribusregulates the smoothness of∆mµt), andλ, which measures the relative variance

of the noise component. The filter proposed byHodrick and Prescott(1997), enjoying

large popularity in economics, arises for the combinationm = 2, n = 0, λ = 1600 for

quarterly data.Gómez(2001) consider two types of Butterworth filters for whichn = 0 or

m = n. Rational square wave trend-cycle filters have been introduced byPollock(2000)

using 5 ideal conditions (phase-neutrality, complementarity, symmetry, high- and lowpass

conditions); as Pollock shows, they constitute the optimal filters for the decomposition (1)

with the noise replaced by the processψt = ∆n−mκt; our framework thus encompasses

rational square wave filters withn = m, which is perhaps the most interesting case, as

it postulates a stationary and invertible representation forψt. Finally, the multiresolution

Haar scaling and wavelet filters (seePercival and Walden(1999)) occur form = n =

1, λ = 1, in which case the trend filter and the cycle filter are both finite impulse response

filters: wµ(L) = 0.25L−1 + 0.5L + 0.25L−1, wψ(L) = −0.25L−1 + 0.5L− 0.25L−1.

The trend filter can also be characterised as a lowpass filter whose cutoff frequency

depends on the three parameters. Frequency domain arguments can be advocated for

designing the parameters so as to select the fluctuations that are in a specified periodicity

range.

In particular, letwµ(ω) denote the Fourier transform of the trend filter (2), wµ(ω) =

wµ(e−ıω), ω ∈ [0, π]; as the latter is real and positive, it is coincident with the gain of the

filter. The gain of the trend is a monotonically decreasing withλ, it is unit at the zero

frequency and it is zero ifn is greater than zero. The trend filter will preserve to a great

extent those fluctuations at frequencies for which the gain is greater than 1/2 and reduce

to a given extent those for which the gain is below 1/2. This simple argument justifies the

definition of a lowpass filter with cutoff frequencyωc if the gain halves at that frequency;
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seeGómez(2001), section 1.

Solving the equationwµ(ωc) = 1/2, the parameterλ is expressed as a function of the

cutoff frequency and the ordersm andn:

λ = 2n−m

[
(1 + cos ωc)

n

(1− cos ωc)m

]
. (3)

In the light of this relationship,f(m,n, ωc) will denote the trend filter corresponding to

the ordersm andn and the cutoffωc.

Figure1 displays the gains of various trend filters form,n = 1, 2, 3 and two cutoff

frequency, the first corresponding toωc = π/20 (a period of 10 years of quarterly obser-

vations) andπ/2. The upper panels illustrate that for low cutoff frequencyωc = π/20, the

gain is invariant to the values ofn, whereas this is not the case for higher frequencies. The

lower panels consider the effects of increasing the parameterm, given the others. Sharper

gains are obtained with more appreciable differences atπ/2. Notice thatf(1, 1, π/2) cor-

responds to the gain of the Haar scaling filter (λ = 1) and thatf(2, 0, π/20) is close to

the HP filter for quarterly observations, as the smoothness parameter corresponding to

this cutoff frequency isλ = 1649. As m andn increase the gain gets closer to the ideal

lowpass filter, with unit gain forω ≤ ωc and zero forω > ωc.

3 Model based interpretation: embedding the trend-cycle

decomposition

Economic time series only rarely admit the representation (1); nevertheless, applications

of the filters2 is widespread, as the popularity of the HP filter testifies; the bandpass

nature could provide a justification for their use (seeGómez(2001)). However, when
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the available seriesyt cannot be modelled as (1) it is not immediately clear how trends

and cycles should be defined and how inferences on them should be made. In particular,

the Kalman filter and the associated smoothing algorithms for the model (1) no longer

provide the MMSE estimators of the components nor their MSE.

In this section we propose an embedding strategy that defines artificial trend and cycli-

cal components whose optimal signal extraction filters are provided by (2) when a doubly

infinite sample is available, and that rely on the Kalman filter and smoother associated

to an appropriately specified state space model for the computation of the MMSE of the

components and their MSE in real time. As a result, the optimal filter varies with the

properties of the series under investigation.

This approach was initiated byGómez(2001) andKaiser and Maravall(2001). In the

present section we provide a novel derivation of the model based interpretation of the

filters (2) based on the decomposition of the innovation process into ARMA components

with noninvertible roots and common stationary AR polynomial.

Let yt denote a univariate time with ARIMA(p, d, q) representation, that we write

φ(L)(∆dyt − c) = θ(L)ξt, ξt ∼ NID(0, σ2),

wherec is a constant,φ(L) = 1 − φ1L − · · · − φpL
p is the AR polynomial with sta-

tionary roots,∆ = 1 − L andθ(L) = 1 + θ1L + · · · + θqL
q is invertible. The (pseudo)

autocovariance generating function ofyt is

gy(L) =
|θ(L)|2

|1− L|2d|φ(L)|2σ2,

where|θ(L)| = θ(L)θ(L−1), and|φ(L)| = φ(L)φ(L−1).
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Let us now introduce the following decomposition of the white noise disturbanceξt:

ξt =
(1 + L)nζt + (1− L)mκt

ϕ(L)
, (4)

whereζt andκt are two mutually and serially independent Gaussian disturbances,ζt ∼
NID(0, σ2), κt ∼ NID(0, λσ2), and

|ϕ(L)|2 = ϕ(L)ϕ(L−1) = |1 + L|2n + λ|1− L|2m. (5)

We refer to (5) as the spectral factorisation of the lag polynomial on the right hand side; the

existence of the polynomialϕ(L) = ϕ0 +ϕ1L+ · · ·+ϕq∗L
q∗, of degreeq∗ = max(m,n),

is guaranteed by the fact that the Fourier transform of the rhs is never zero over the entire

frequency range; seeSayed and Kailath(2001).

In the light of (4)-(5), the series can be decomposed into orthogonal trend and cyclical

components:

yt = µt + ψt,

φ(L)ϕ(L)(∆dµt − c) = (1 + L)nθ(L)ζt, ζt ∼ NID(0, σ2)

φ(L)ϕ(L)ψt = ∆m−dθ(L)κt, κt ∼ NID(0, λσ2)

(6)

such that the trend has the same order of integration as the series (regardless ofm) and

the cycle is stationary provided thatm ≥ d. An interesting case arises form = d + n, for

which the trend and the cycle have the same number of unit roots in the MA representa-

tion, at theπ and zero frequency, respectively.

The decomposition is an artifact, as it does not necessarily correspond to a characteris-
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tic of the phenomenon under investigation (if it does the components would be estimated

with the minimum MSE among all alternative decompositions); nevertheless, nothing pre-

vents that artificial components are introduced and measured with the intent of selecting

some fluctuations of interest.

The ACGFs of the components are respectively:

gµ(L) = wµ(L)gy(L), gψ(L) = wψ(L)gy(L), (7)

Obviously,gy(L) = gµ(L) + gψ(L). Given the availability of a doubly infinite sample,

the optimal signal extraction filters are obtained from the ratio of the ACGFs of the com-

ponents to that ofyt. Thus,µ̃t = wµ(L)yt and ψ̃t = wψ(L)yt, with impulse response

function given by (2), are the WK estimators of the components.

This simple argument shows that the signal extraction filter for the central data points

will continue to be represented by (2), regardless of the properties ofyt, but this is the

only feature that is invariant to those properties. The MSE of the smoothed components,

as a matter of fact, depends on the ACGF ofyt as will be shown in the next section.

Furthermore, the estimators̃µt+l|t, ψ̃t+l|l, and the corresponding MSEs will be provided

by the Kalman filter and smoother (ifl ≤ 0) associated to the model (6), whose state

space representation is presented in the appendix.
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4 An upper bound for the estimation error variance

We can apply general principles and in particular Whittle’s formula for obtaining the

ACGF of the components’ estimation error,et = ψt − ψ̃t = −(µt − µ̃t):

ge(L) =
gµ(L)gψ(L)

gy(L)
= wµ(L)wψ(L)gy(L) =

λ|1− L|2m|1 + L|2n

|ϕ(L)|4 gy(L). (8)

Let us denotegx(L) the ACGF of the stationary processxt = ∆dyt and consider the

factorisation:

ge(L) =
λ|1− L|2(m−d)|1 + L|2n

|ϕ(L)|4 gx(L) ≡ v(L)gx(L).

Applying the Cauchy-Schwartz inequality, the estimation mean square error has an upper

bound that can be broken down as follows:

MSE(et) =
1

π

∫ π

0
ge(ω)dω ≤ 1

π

[∫ π

0
v(ω)2dω

]1/2 [∫ π

0
gx(ω)2dω

]1/2

.

The last factor depends on the ACGF of the stationary representation of the process and

it is invariant to the trend-cycle filter; the first factor; the first, on the other hand, depends

solely on the properties of the filter and the true order of integrationd.

We now consider how different values ofm,n andωc affect the uncertainty of the

estimated components components, distinguishing three cases, according as to whether

the series is stationary (d = 0) or integrated up to the second order,d = 1, 2. Figure (2)

displays the logarithm of
∫

v(ω)dω versus the cutoff frequency used in the determination

of the smoothing parameter according to formula (3).

In the stationary case the components defined using high and low cutoff frequencies
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are estimated with lower uncertainty. Moreover, for a givenωc, the upper bound decreases

asm andn increase: this important feature holds also in the nonstationary case; however,

the sensitivity to these parameters decreases quite rapidly, as can be seen from the second

and third panels as we move fromm = 2 to m > 2. For nonstationary series,d = 1, 2,

the upper bound decreases monotonically with the cutoff frequency,ωc. This implies that

components defined using a lower cutoff, i.e. the trend preserves the longer periodicities,

are estimated with greater uncertainty.

5 Uncertainty and revisions

The previous section discussed how the nature of the filter affects the upper bound of

the components MSE. We turn now to two case studies that illustrate how the reliability

of the trend-cycle estimates depends on the cutoff frequency and the other parameters

that regulate the flexibility and the smoothness of the filter, and the extent of the revision

process1.

5.1 The decomposition of U.S. GDP

Our first illustration deals with the popular HP filter (m = 2, n = 0, λ = 1600) adapted

to the logarithm of the U.S. quarterly real gross domestic product (GDP), available at

the time of writing for the sample period 1947.q1-2003.q3. We consider three ARIMA

models, with parameter estimates presented below, along with the Akaike and Bayesian

information criteria (AIC and BIC, respectively), and the Ljung-Box portmanteau auto-

correlation test with 8 lags (p-value in parenthesis): the first is a simple random walk

1The computations in the paper were performed using the programming language Ox byDoornik(2001),
and the library of state space function SsfPack byKoopman, Shephard and Doornik(1999). The ARIMA
models were estimated using E-views
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with drift, the second is an ARIMA(1,1,0) selected on the grounds of parsimony, and the

third is the model adapted byMorley, Nelson and Zivot(2002), which provides a smaller

AIC, but greater BIC. The Ljung-Box statistic clearly points out that the RW model is

misspecified.

Random walk [AIC = -6.09, BIC = -6.07,Q(8) = 33.13(0.00)]

∆yt = 0.0092 +ξt, ξt ∼ NID(0, 0.01722)

(0.0010)

ARIMA(1,1,0) [AIC = -6.18, BIC = -6.14,Q(8) = 8.98(0.25)]

(1− 0.3260 L)∆yt = 0.0092 +ξt, ξt ∼ NID(0, 0.01092)

(0.0833) (0.0014)

ARIMA(2,1,2) [AIC = -6.20, BIC = -6.10,Q(8) = 2.12(0.71)]

(1− 1.4432 L+ 0.8527 L2)∆yt = 0.0092 +(1− 1.2240 L+ 0.6914 L2)ξt

(0.0853) (0.0753) (0.0011) (0.1124) (0.0938)

ξt ∼ NID(0, 0.01062)

We consider now the trend-cycle decomposition with cutoff frequencyωc = 0.16 cor-

responding to a period of about 10 years (39.7 quarters) andλ = 1600; each ARIMA

model implies a different representation for the components; estimates of the latter, com-

puted by the Kalman filter and smoother for the corresponding state space model, are

displayed in figure3, where the trend component refers to the ARIMA(2,1,2) model.

The HP cyclical component is also displayed in the second and the third panel, which
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presents̃ψt|T for the last years in the sample, in order to appreciate better the differences

among the estimates. The HP cycle is the MMSLE of the cycle under the IMA(2,2) model

∆2yt = (1 − 1.7771L + 0.7994L2)ξt, which would not be selected for the series under

investigation, being manifestly misspecified.

As figure3 shows the HP estimates at the end of the sample differ from those that

would be obtained from the model based decompositions. The optimal filter varies with

the times series model foryt; however, the estimates for the ARIMA(1,1,0) and ARIMA(2,1,2)

are indistinguishable, and those for the RW model are quite close. Differences arise with

respect to the estimation MSE, plotted in the last panel. That arising from the HP filter

is a clear underestimation of the MSE that would arise from models that provide a better

representation of the series. We notice also that the latter is quite sensitive to the model

selected, being greater for the ARIMA(1,1,0) model.

Leaving the other parameters unchanged (m = 2 andn = 0), we next consider the

model-based filter that arise for the cutoff frequency equal to 1.26, corresponding to a

period of 5 quarters andλ = 0.52. This filter has been adopted byArtis, Marcellino and

Proietti (2003) in order to extract a lowpass component reducing the amplitude of those

fluctuations with periodicity less than the minimum cycle duration (one year and a quar-

ter), which is employed used to date the peaks and troughs of the business cycle; as a

matter of fact, in dating the business cycle, we should abstract from those high frequency

movements that cannot qualify as cyclical because they are too short lived. The estimates

of the components and the estimation error MSE are presented in figure4. The evidence,

given the properties of the series under investigation, such that the high frequency com-

ponents of∆yt have little amplitude, the estimates of the highpass component do not vary

with the model selected and are virtually coincident with the HP filter withλ = 0.52. The

difference pertains the MSE, which in turn is very small and close to zero. This reflects
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the fact that for an integrated series, components with high cutoff frequency are esti-

mated with greater reliability. The example fosters the conclusions that long run trends

are estimated less reliably than short run ones. We notice in closing that both cyclical

components are affected by a change in volatility, as documented inStock and Watson

(2002).

5.2 The ARIMA(1,1,0) case

The extent of the revision process is assessed comparing the final estimation error MSE

with the real time one. This ratio is important for characterising the magnitude of the

revision process as future observations become available, as it is shown below.

Since the MSE of the filtered and smoothed estimates is identical for the two com-

ponents (recallingµt − µ̃t|t = ψ̃t|t − ψt), let us concentrate on the cycle and denote

MSE(ψ̃t|t) = E[(ψt − ψ̃t|t)2], MSE(ψ̃t) = E[(ψt − ψ̃t)
2]. The MSE of the filtered esti-

mates admits the following decomposition:

MSE(ψ̃t|t) = MSE(ψ̃t) + VR,

whereVR = E[(ψ̃t − ψ̃t|t)2] is the variance of the revisions. Thus the ratio

R =
MSE(ψ̃t|t)

MSE(ψ̃t)
= 1 +

VR

MSE(ψ̃t)
, (9)

measures the relative importance of the revision process; the larger the the more the ratio

moves away from unity, which is the reference value that would be achieved were the

components fully estimated in real time.

The ratio (9) clearly depends on the ARIMA model foryt; in this paper we limit the
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analysis of its behaviour to the fairly realistic and representative case when the series fol-

lows the ARIMA(1,1,0) process(1−φL)(∆yt− c) = ξt. If φ is positive, the dynamics of

∆yt are dominated by low frequency components and viceversa; we mention that similar

results hold for the ARIMA(0,1,1) process. Figure5 displays the values ofR against the

cutoff frequency for different combinations of the pairm,n. Both the numerator and the

denominator are evaluated by the steady state Kalman filter and smoother for the state

space representation given in the appendix.

The main evidence can be summarised as follows:

• For givenφ, ωc andm = 1, 2, increasingn enhances the relative magnitude of the

revision process.

• In the RW case (φ = 0) we have the interesting property that choosingn = m

makesR invariant to the cutoff frequency.

• For givenφ, ωc andn, the magnitude of the revision process increases withm.

Hence the choice of a more flexible trend resultscœteris paribusin larger revisions.

• Long run trends (ωc is low) are subject to comparatively smaller revisions if∆yt is

dominated by low frequencies fluctuations (φ > 0).

6 Conclusions

The paper has focussed on a class of trend-cycle filters that is optimal for a particular local

trend model and that depends on the order of integration of the trend (trend flexibility),

on the order of the unit root at the Nyquist frequency (trend smoothness), and the relative

variance of the cyclical component. The trend filter can be characterised as a lowpass

filter whose cutoff frequency depends on the three parameters.
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By embedding the trend-cycle decomposition within the ARIMA time series model for

a univariate time series we provide a model-based framework that enables inferences on

the unobserved components to be conducted by means of the Kalman filter and smoother

associated to the relevant state space model. The components select certain features of the

series and in this respect they represent an artificial construct. Neverhteless, the model-

based interpretation allows to formalise the discussion on the relevant issue of the uncer-

tainty by which certain signals or components are estimated.

In particular, it has been shown that for the type of nonstationary time series usually

encountered in macroeconomics more stable components and long run trends and cycles,

characterised by lower cutoff frequencies are estimated with less reliability. Moreover, in

designing the filter the analyst faces some trade-offs. The purpose of this paper was that of

illustrating them. In particular, if on the hand increasing the flexibility of the trend and its

smoothness via the introduction on noninvertible for a given cutoff frequency enhances

the reliability of the signal, in real time the signal will be subject with large revisions.

Hence, smoothness priors have their costs, as the quest for smooth signals results in larger

revisions and greater discrepancies between real time and final estimates. Intuitively, the

smoother the trend, the more observations are needed before the estimate settles down to

its final value, and thus the greater the amount of revision involved.
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A State space representation

The spectral factorisationϕ(L)ϕ(L−1) = a0 +a1 (L + L−1)+ · · ·+ak

(
Lk + L−k

)
, k =

max(m, n) with

aj = I(j ≤ n)




2n

n + j


 + I(j ≤ m)




2m

m + j


 ,

whereI(·) is the indicator function, taking value 1 if the argument is true and 0 otherwise,

can be achieved via the Riccati equation method presented inSayed and Kailath(2001).

Let now φ(L)∗ denote the AR polynomialφ(L)∗ = φ(L)ϕ−1
0 ϕ(L) = 1 − φ∗1L −

· · · − φp+q∗L
p+q∗, common to the representation of the trend and the cycle in (6), and let

θµ(L) = (1 + L)nθ(L), the MA polynomial of the trend component. Further, define the

ordersqµ = max(p + q∗, n + q + 1), qψ = max(p + q∗, q + 1).

The state space representation of6 consists of the measurement equationyt = z′αt,

with

z′ =
[
z′µ, z′ψ

]
, αt = [α′

µ,t,α
′
ψ,t]

′, z′µ = [i′d+1, 0′qµ
], z′ψ = [1, 0′qψ

];

and the transition equationαt+1 = Tαt + c + Rεt with εt = ϕ
−1/2
0 [ηt, κt]

′,

T = diag(Tµ,Tψ), c = [cz′µ, 0′]′, R = diag(θµ,θψ),

Tµ =




A B

0 T∗
µ


 ,

whereA is ad × d upper triangular matrix with elementsaij = 1, j ≥ i, andaij = 0,

B is d × qµ matrix with zero elements except for the first column, which contains unit
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elements,B = [id, 0], and

T∗
µ =


φ∗

µ

Iqµ−1

0′


 ,Tψ =


φ∗

ψ

Iqψ−1

0′


 ,

θµ = [1, θµ,1, θµ,2, . . . , θµ,qµ ]′, θψ = [1, θψ,1, θψ,2, . . . , θψ,qψ
]′, φ∗

µ = [φ∗µ,1, φ
∗
µ,2, . . . , φ

∗
µ,qµ

]′,

φ∗
ψ = [φ∗ψ,1, φ

∗
ψ,2, . . . , φ

∗
ψ,qψ

]′. The nonzero AR coefficients inφ∗
µ andφ∗

ψ are the coeffi-

cients ofφ(L)∗, the nonzero MA coefficients inθµ are those of the polynomialθµ(L), and

finally, those ofθψ are the coefficients ofθ(L).
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Figure 3:U.S. Gross Domestic Product, 1947.q1 - 2003.q3. Trend cycle decomposition
with m = 2, n = 2 and2π/ωc = 39.7 (λ = 1600) corresponding to the HP filter
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Figure 4:U.S. Gross Domestic Product, 1947.q1 - 2003.q3. Trend cycle decomposition
with m = 2, n = 2 and2π/ωc = 5 quarters (λ = 0.52)
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