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Abstract

The paper is concerned with a class of trend cycle filters, encompassing pop-
ular ones, such as the Hodrick-Prescott filter, that are derived using the Wiener-
Kolmogorov signal extraction theory under maintained models that prove unrealistic
in applied time series analysis. As the maintained model is misspecified, inference
about the unobserved components, and in particular their first two conditional mo-
ments, given the observations, are not delivered by the Kalman filter and smoother
or the Wiener-Kolmogorov filter for the maintained model.

The paper proposes a model based framework according to which the same class
of filters is adapted to the particular time series under investigation; via a suitable
decomposition of the innovation process, it is shown that any linear time series with
ARIMA representation can be broken down into orthogonal trend and cycle compo-
nents, for which the class of filters is optimal. Finite sample inferences are provided
by the Kalman filter and smoother for the relevant state space representation of the
decomposition.

In this framework it is possible to discuss two aspects of the reliability of the
signals’ estimates: the mean square error of the final estimates and the extent of
the revisions. The paper discusses and illustrates how the uncertainty is related to
features of the series and the design parameters of the filter, the role of smoothness
priors, and the fundamental trade-off between the uncertainty and the magnitude of
the revisions as new observations become available.

Keywords: Signal Extraction, Revisions, Kalman filter and Smoother.

*Address for Correspondence: Via Treppo 18, 1-33100 Udine. e-mail: proietti@dss.uniud.it.



https://core.ac.uk/display/9310474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The separation of the trend from the cycle is a major issue in the analysis of the dynamic
behaviour of macroeconomic variables, such as output, unemployment and inflation. Re-
cent contributions, and in particul@rphanides and van Nord€B002), have focussed
on the issue of the uncertainty with which signals are estimated in macroeconomics: for
instance, given the relevance that measures of the output gap are assigned for the conduct
of monetary policy, the econometric profession should provide a clear assessment of the
reliability of such measures, includinpter alia, the evaluation of features that are re-
lated to the properties of the signal extraction filter, such as the final estimation error and
the process of revision.

When the signals are estimated within a parametric approach /Heruey and dger
(1993, this assessment is a natural by product of the modelling effort. Often, however,
those measures are provided by the applicaticaaddiocfilters that select certain features
of the series without entertaining a model of the series dynamics; in other occurrences,
which are the ones considered in this paper, the filter has a genuine model based interpre-
tation, but the the underlying model is clearly misspecified for the series under investiga-
tion. In all these occurrences it may not be immediately clear how the reliability of the
corresponding signals should be evaluated.

This is the case for the Hodrick-Prescott fillelodrick and Prescotl997), HP hence-
forth): the underlying local linear trend model, that decomposes the series into uncorre-
lated components represented by an integrated random walk trend plus pure white noise
(see sectiof? below), is usually inadequate for macroeconomic time series such as real
gross domestic product. If the signal to noise ratio were estimated, rather than fixed, ex-

perience suggests that its value would result so large to render the trend indistinguishable



from the series; furthermore, the usual residual based diagnostics would definitively speak
out against the maintained model.

The objective of this paper is to assess two important aspects of the uncertainty of
the trend-cycle estimates arising from a class of filters, considei®dliock (2000) and
Gomez(2001), and nesting popular filters such as HP and rational square wave filters: the
final estimation error mean square error (MSE) and the magnitude of the revision of the
estimates at the end of the sample, as new observations become available.

This assessment is allowed for by the fact that the filters admit an interpretation within
a model based framework: extending the approach initiaté@drgez(2001) andKaiser
and Maravall(2007), we show that it is possible to define a trend-cycle decomposition
of any ARIMA process via a suitable decomposition of the ARIMA innovation process.
The trends and cycles emerging from the decomposition are artificial, as they do not nec-
essarily correspond to a mechanism that has generated the data; nevertheless, the decom-
position furnishes the theoretical underpinning for framing the filters within the general
theory of linear estimation. This assumes that the filters have autonomous justification,
eg. as bandpass filters, an interpretation that we review in the course of the discussion.

Within the model-based framework, the class of filters yields the Wiener-Kolmogorov
optimal filters of the components, given the availability of a doubly infinite sample. How-
ever, although the impulse responses for the central sample points are invariant, the MSE
of the smoothed estimates depends on the time series model for the series. The paper
provides an upper bound for it and discusses its dependance upon the filter design pa-
rameters. Moreover, the filtered estimates and the MSE of the components depend on
the properties of the series under investigation, in that they vary according to the ARIMA
process considered.

In sum, the model based framework allows correct inferences on the reliability of the



estimates of trends and cycles, and the paper discusses how the estimation MSE depends
on both the features of series (for instance, the order of integration), and the parameters
that regulate the design of the filter, discussing also the the role of smoothness priors.
The paper is organised as follows: secfintroduces the class of filters that we con-
centrate upon, presenting the local trend model for which it is optimal and discussing the
role of the main parameters. The frequency domain arguments which enforce the inter-
pretation of as bandpass filters is also reviewed. SeBisets up the decomposition of
any ARIMA process into trends and cycles that yield the same filters as the minimum
mean square estimators of the components for a doubly infinite sample. In finite samples
inferences are provided by the Kalman filter and smoother for the state space represen-
tation of the decomposition, which is given in the appendix. In sediare derive an
upper bound for the MSE of the final estimate and discuss how it depends on features of
the series, namely the order of integration, and the design parameters of the filter. Sec-
tion[H discusses further aspects of the uncertainty of the signal estimates. It presents an
empirical example, referring to the U.S. real gross domestic product, a well known case
study in the application of the HP filter, illustrating how the estimates of the cycle de-
pend on the time series model adapted to the series, how the uncertainty is understated
by the MSE outputted by the Kalman filter and smoother for the misspecified local lin-
ear trend model at the basis of the HP filter, and finally how the uncertainty depends on
the cutoff frequency, and thus on the bandpass nature of the filter. Finally, the revision
issue is addressed when the true model is ARIMA(1,1,0) and illustrate the fundamental
trade-off between the reliability and the extent of the revision process. In stsiome

conclusions are drawn.



2 A class of trend-cycle filters

The class of filters considered in this paper arises from the application of the Wiener-
Kolmogorov (WK) optimal signal extraction theory to the signal plus noise, or local trend,

model:
Y - ,ut—i_wt? t:1727"'7T7
(1)

Am,ut = (1 + L)ncty Ct ~ NID(O7 0-2)7
wt ~ NlD(O7 /\O-?)a E(Chz/}tfj) = O,Vj,

wherey;, is the signal, or trend, component, is the noiseA is the difference operator,
A =1— LandL is the lag operator such thaty, = y,_; for integer;.

The (pseudo) autocovariance generating functions (ACGF) of the components and the
series are:

= LHLE o ae? (D) = o (L L
gu( )—maga gy(L) = ¢, gy( )—gu< )+9w( ),

where|1+ L|? = (1+ L)(1+ L ') and|1—L|* = (1— L)(1— L~'). Assuming a doubly
infinite sample, the minimum mean square estimators (MMSE) of the components are
respectivelyii; = w,(L)y: anddy = y, — i = wy(L)y, wherew, (L) = g,(L)/g,(L)

andwy (L) = g4(L)/g,(L); seeWhittle (1983. Hence, the WK filters can be written:

11+ L|> () AL — L|?m
= w =
11+ L2+ A1 — L]zm" 11+ L2 + A|1 — L|?»

=1—w,(L).
(2)

The above trend filter can be equivalently derived by solving the following penalised

wu(L)



least square problem:

min PLS= 37 [(1+ L)"(ye — )] + A 3 (A" 1),

t

as can be shown by direct differention. Also, after a transformation and with a change
of sign, the PLS above coincides with the kernel of the joint Gaussian density of the
observations and the trend, whgnis generated according td)( The connection with

the signal-noise ratio makes clear that the Lagrange multipljeneasures the variability

of the noise component relative to that of the trend, and regulates the smoothness of the
long-term component.

Using Whittle’s result/f983 page 58), the ACGF of the final estimation errgr=

pe — fir = — (v — ), is equal to

L L M1+ L]*"
ge(L) _ gﬂ( )gw( ) — ’ + ‘ O_z
g9y(L) 1+ L[> + A[1 = L[>

The estimatorgi,, ¢, are also known asmoothedr final estimators. From the oper-
ational standpoint, given a time serigs available at timeg = 1,2,...,T, the MMSE
estimates of the components using information up to and includingttiné denoted
flt]t+1 and@ZﬂtH, along with their mean square errors, are computed by the Kalman filter
and the associated smoothing algorithms for the mdjekeeHarvey(1989. Forl = 0
the estimators are also known fétered or real timeestimators. The treatment of initial
conditions in the presence of nonstationarity is dealt witdenJong(1997), Ansley and
Kohn (1985 andKoopman(1997), andde Jony(1989 presents various smoothing algo-
rithms; the connection with the WK signal extraction theory is discuss@adirndge and
Wallis (1989.

The class of filters depends on the order of integration of the trenevhich regulates
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its flexibility), on the order of the unit root at the Nyquist frequeney Which cceteris
paribusregulates the smoothnessafyi, ), and A, which measures the relative variance

of the noise component. The filter proposedHigdrick and Prescotf1997), enjoying

large popularity in economics, arises for the combination= 2,n = 0, A = 1600 for
quarterly dataGomez(2001) consider two types of Butterworth filters for whieh= 0 or

m = n. Rational square wave trend-cycle filters have been introduc&blgck (2000

using 5 ideal conditions (phase-neutrality, complementarity, symmetry, high- and lowpass
conditions); as Pollock shows, they constitute the optimal filters for the decompo@ltion (
with the noise replaced by the procegs= A" "™k,; our framework thus encompasses
rational square wave filters with = m, which is perhaps the most interesting case, as
it postulates a stationary and invertible representationfoFinally, the multiresolution
Haar scaling and wavelet filters (sPercival and Waldei1999) occur form = n =

1, A = 1, in which case the trend filter and the cycle filter are both finite impulse response
filters: w, (L) = 0.25L~" + 0.5L + 0.25L 7", wy (L) = —0.25L~" 4+ 0.5L — 0.25L".

The trend filter can also be characterised as a lowpass filter whose cutoff frequency
depends on the three parameters. Frequency domain arguments can be advocated for
designing the parameters so as to select the fluctuations that are in a specified periodicity
range.

In particular, letw,(w) denote the Fourier transform of the trend filt@, (w,(w) =
w,(e™),w € [0, 7]; as the latter is real and positive, it is coincident with the gain of the
filter. The gain of the trend is a monotonically decreasing wiitht is unit at the zero
frequency and it is zero if is greater than zero. The trend filter will preserve to a great
extent those fluctuations at frequencies for which the gain is greater than 1/2 and reduce
to a given extent those for which the gain is below 1/2. This simple argument justifies the

definition of a lowpass filter with cutoff frequency. if the gain halves at that frequency;



seeGomez(2007), section 1.
Solving the equatiow, (w.) = 1/2, the parametek is expressed as a function of the

cutoff frequency and the ordens andn:

©)

) = gn-m [(1 + cos w,) ]

(1 —coswe)™ |
In the light of this relationshipf(m, n, w.) will denote the trend filter corresponding to
the ordersn andn and the cutoffu..

Figurel displays the gains of various trend filters farn = 1,2,3 and two cutoff
frequency, the first correspondingdp = 7/20 (a period of 10 years of quarterly obser-
vations) andr/2. The upper panels illustrate that for low cutoff frequency= 7 /20, the
gain is invariant to the values of whereas this is not the case for higher frequencies. The
lower panels consider the effects of increasing the parametgiven the others. Sharper
gains are obtained with more appreciable differences at Notice thatf (1, 1, 7/2) cor-
responds to the gain of the Haar scaling filter=€ 1) and thatf (2,0, 7/20) is close to
the HP filter for quarterly observations, as the smoothness parameter corresponding to
this cutoff frequency is\ = 1649. As m andn increase the gain gets closer to the ideal

lowpass filter, with unit gain fo < w,. and zero fow > w..

3 Model based interpretation: embedding the trend-cycle
decomposition

Economic time series only rarely admit the representallpnngvertheless, applications
of the filters2 is widespread, as the popularity of the HP filter testifies; the bandpass

nature could provide a justification for their use ($&@mez(2001)). However, when



the available serieg, cannot be modelled adl(it is not immediately clear how trends

and cycles should be defined and how inferences on them should be made. In particular,
the Kalman filter and the associated smoothing algorithms for the mi@idab(longer
provide the MMSE estimators of the components nor their MSE.

In this section we propose an embedding strategy that defines artificial trend and cycli-
cal components whose optimal signal extraction filters are provideg)lwyhen a doubly
infinite sample is available, and that rely on the Kalman filter and smoother associated
to an appropriately specified state space model for the computation of the MMSE of the
components and their MSE in real time. As a result, the optimal filter varies with the
properties of the series under investigation.

This approach was initiated yomez(2007) andKaiser and Maravelf2007). In the
present section we provide a novel derivation of the model based interpretation of the
filters (@) based on the decomposition of the innovation process into ARMA components
with noninvertible roots and common stationary AR polynomial.

Let y, denote a univariate time with ARIMA( d, ¢q) representation, that we write
¢(L)(Adyt - C) = H(L)fta gt ~ NID(07 0-2)7

wherec is a constantp(L) = 1 — ¢, L — --- — ¢,LP is the AR polynomial with sta-
tionary rootsA =1 — Landf(L) =1+ 6,L + --- + §,L9 is invertible. The (pseudo)
autocovariance generating functionpfis

e,
W) = T Ipaemp”

where|0(L)| = 6(L)0(L ), and|6(L)| = o(L)6(L ™).



Let us now introduce the following decomposition of the white noise disturbgnce

(I L)"G+ (1= L)k
&= D) , (@)

where(; andx; are two mutually and serially independent Gaussian disturbagces,

NID(0, 02), k; ~ NID(0, Ac?), and

(P(L)* = o(L)p(L™") = [1+ L™ + AL = L|*™. (5)

We refer to[B) as the spectral factorisation of the lag polynomial on the right hand side; the
existence of the polynomial(L) = pg+ @1 L+ - - -+, L7, of degrees* = max(m,n),
is guaranteed by the fact that the Fourier transform of the rhs is never zero over the entire
frequency range; séeayed and Kailail001).

In the light of @)-(5), the series can be decomposed into orthogonal trend and cyclical

components:

Yy = e+,
(6)
(L) p(L) (A% —¢) = (1+L)"0(L)¢;, ¢ ~ NID(0,0?)
SL)p(L)e = A" 0(Ly,,  ry ~ NID(0, \0%)

such that the trend has the same order of integration as the series (regaratgssnoff

the cycle is stationary provided that > d. An interesting case arises for = d + n, for

which the trend and the cycle have the same number of unit roots in the MA representa-
tion, at ther and zero frequency, respectively.

The decomposition is an artifact, as it does not necessarily correspond to a characteris-



tic of the phenomenon under investigation (if it does the components would be estimated
with the minimum MSE among all alternative decompositions); nevertheless, nothing pre-
vents that artificial components are introduced and measured with the intent of selecting
some fluctuations of interest.

The ACGFs of the components are respectively:

9u(L) = w,(L)g,(L), 9y (L) = wy(L)g, (L), (7)

Obviously, g,(L) = g,(L) + g,(L). Given the availability of a doubly infinite sample,
the optimal signal extraction filters are obtained from the ratio of the ACGFs of the com-
ponents to that of,. Thus,i, = w,(L)y, andi, = wy (L)y:, with impulse response
function given by[@), are the WK estimators of the components.

This simple argument shows that the signal extraction filter for the central data points
will continue to be represented b)( regardless of the properties gf, but this is the
only feature that is invariant to those properties. The MSE of the smoothed components,
as a matter of fact, depends on the ACGFypfas will be shown in the next section.
Furthermore, the estimatofs.,, @ZH”, and the corresponding MSEs will be provided
by the Kalman filter and smoother (if < 0) associated to the modéd)( whose state

space representation is presented in the appendix.
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4 An upper bound for the estimation error variance

We can apply general principles and in particular Whittle’s formula for obtaining the

ACGF of the components’ estimation errey,= v, — gEt = — (e — fi):

9u(L)gy (L)
gy(L)

= w(D)wy(D)gy(D) = VT LA LTy (g

%:(L) = PO

Let us denotey, (L) the ACGF of the stationary process = Ay, and consider the

factorisation:

AL — L= 4 L
(L)

ge(L) = 9:(L) = v(L)gx(L).

Applying the Cauchy-Schwartz inequality, the estimation mean square error has an upper

bound that can be broken down as follows:

™

MSE(e;) = 71T/07r ge(w)dw < 1 [/OW v(w)zdw] v [/OW gm(w)2dw] v :

The last factor depends on the ACGF of the stationary representation of the process and
it is invariant to the trend-cycle filter; the first factor; the first, on the other hand, depends
solely on the properties of the filter and the true order of integration

We now consider how different values of, n andw,. affect the uncertainty of the
estimated components components, distinguishing three cases, according as to whether
the series is stationaryl (= 0) or integrated up to the second ordér= 1, 2. Figure )
displays the logarithm of v(w)dw versus the cutoff frequency used in the determination
of the smoothing parameter according to form{#a (

In the stationary case the components defined using high and low cutoff frequencies
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are estimated with lower uncertainty. Moreover, for a givgrthe upper bound decreases

asm andn increase: this important feature holds also in the nonstationary case; however,
the sensitivity to these parameters decreases quite rapidly, as can be seen from the second
and third panels as we move from = 2 to m > 2. For nonstationary serieg,= 1,2,

the upper bound decreases monotonically with the cutoff frequencyhis implies that
components defined using a lower cutoff, i.e. the trend preserves the longer periodicities,

are estimated with greater uncertainty.

5 Uncertainty and revisions

The previous section discussed how the nature of the filter affects the upper bound of
the components MSE. We turn now to two case studies that illustrate how the reliability
of the trend-cycle estimates depends on the cutoff frequency and the other parameters
that regulate the flexibility and the smoothness of the filter, and the extent of the revision

process

5.1 The decomposition of U.S. GDP

Ouir first illustration deals with the popular HP filten(= 2,n = 0, A = 1600) adapted

to the logarithm of the U.S. quarterly real gross domestic product (GDP), available at
the time of writing for the sample period 1947.91-2003.93. We consider three ARIMA
models, with parameter estimates presented below, along with the Akaike and Bayesian
information criteria (AIC and BIC, respectively), and the Ljung-Box portmanteau auto-

correlation test with 8 lags (p-value in parenthesis): the first is a simple random walk

1The computations in the paper were performed using the programming languag®0eriok (2007),
and the library of state space function SsfPaciKbppman, Shephard and Doori(ik999. The ARIMA
models were estimated using E-views
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with drift, the second is an ARIMA(1,1,0) selected on the grounds of parsimony, and the
third is the model adapted Iorley, Nelson and Zivo(2002), which provides a smaller
AIC, but greater BIC. The Ljung-Box statistic clearly points out that the RW model is

misspecified.

Random walk [AIC =-6.09, BIC =-6.07,Q(8) = 33.13(0.00)]

Ay, = 0.0092 +&, & ~ NID(0,0.01722)

(0.0010)

ARIMA(1,1,0) [AIC =-6.18, BIC = -6.14,Q(8) = 8.98(0.25)]

(1— 0.3260 L)Ay, = 0.0092 +&, & ~ NID(0,0.01092)

(0.0833) (0.0014)

ARIMA(2,1,2) [AIC =-6.20, BIC =-6.10,Q(8) = 2.12(0.71)]

(1— 14432 L+ 08527 L2)Ay, = 00092 +(1— 12240 L+ 0.6914 L2)¢,

(0.0853) (0.0753) (0.0011) (0.1124) (0.0938)

& ~ NID(0,0.0106%)

We consider now the trend-cycle decomposition with cutoff frequency 0.16 cor-
responding to a period of about 10 years (39.7 quarters) and1600; each ARIMA
model implies a different representation for the components; estimates of the latter, com-
puted by the Kalman filter and smoother for the corresponding state space model, are
displayed in figuré3, where the trend component refers to the ARIMA(2,1,2) model.

The HP cyclical component is also displayed in the second and the third panel, which
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presentsZﬂT for the last years in the sample, in order to appreciate better the differences
among the estimates. The HP cycle is the MMSLE of the cycle under the IMA(2,2) model
A2y, = (1 — 1.7771L + 0.7994L?)¢;, which would not be selected for the series under
investigation, being manifestly misspecified.

As figurel3 shows the HP estimates at the end of the sample differ from those that
would be obtained from the model based decompositions. The optimal filter varies with
the times series model fgr; however, the estimates for the ARIMA(1,1,0) and ARIMA(2,1,2)
are indistinguishable, and those for the RW model are quite close. Differences arise with
respect to the estimation MSE, plotted in the last panel. That arising from the HP filter
Is a clear underestimation of the MSE that would arise from models that provide a better
representation of the series. We notice also that the latter is quite sensitive to the model
selected, being greater for the ARIMA(1,1,0) model.

Leaving the other parameters unchanged-€ 2 andn = 0), we next consider the
model-based filter that arise for the cutoff frequency equal to 1.26, corresponding to a
period of 5 quarters andl = 0.52. This filter has been adopted Bytis, Marcellino and
Proietti (2003 in order to extract a lowpass component reducing the amplitude of those
fluctuations with periodicity less than the minimum cycle duration (one year and a quar-
ter), which is employed used to date the peaks and troughs of the business cycle; as a
matter of fact, in dating the business cycle, we should abstract from those high frequency
movements that cannot qualify as cyclical because they are too short lived. The estimates
of the components and the estimation error MSE are presented infigliree evidence,
given the properties of the series under investigation, such that the high frequency com-
ponents ofAy; have little amplitude, the estimates of the highpass component do not vary
with the model selected and are virtually coincident with the HP filter with 0.52. The

difference pertains the MSE, which in turn is very small and close to zero. This reflects
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the fact that for an integrated series, components with high cutoff frequency are esti-
mated with greater reliability. The example fosters the conclusions that long run trends
are estimated less reliably than short run ones. We notice in closing that both cyclical
components are affected by a change in volatility, as documeni8tbok and Watson

(2002.

5.2 The ARIMA(1,1,0) case

The extent of the revision process is assessed comparing the final estimation error MSE
with the real time one. This ratio is important for characterising the magnitude of the
revision process as future observations become available, as it is shown below.

Since the MSE of the filtered and smoothed estimates is identical for the two com-
ponents (recallinge; — jiyy = @Zt‘t — 1y), let us concentrate on the cycle and denote
MSE(¢y:) = E[(¢ — ¥y:)?], MSE(4;) = E[(¢; — 1)?]. The MSE of the filtered esti-

mates admits the following decomposition:
MSE(JJt\t) = MSE(¢;) + Vg,

whereVy = E[(¢); — ;)?] is the variance of the revisions. Thus the ratio

R MSEWw) _ Ve (9)
MSE() MSE(t)

measures the relative importance of the revision process; the larger the the more the ratio
moves away from unity, which is the reference value that would be achieved were the
components fully estimated in real time.

The ratio [9) clearly depends on the ARIMA model fgg; in this paper we limit the
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analysis of its behaviour to the fairly realistic and representative case when the series fol-
lows the ARIMA(1,1,0) procesél — ¢L)(Ay, —c) = &. If ¢ is positive, the dynamics of

Ay, are dominated by low frequency components and viceversa; we mention that similar
results hold for the ARIMA(0,1,1) process. FiglBelisplays the values dt against the

cutoff frequency for different combinations of the pait n. Both the numerator and the
denominator are evaluated by the steady state Kalman filter and smoother for the state
space representation given in the appendix.

The main evidence can be summarised as follows:

e For giveng, w. andm = 1,2, increasing. enhances the relative magnitude of the

revision process.

e In the RW cased = 0) we have the interesting property that choosing= m

makesR invariant to the cutoff frequency.

e For given¢, w. andn, the magnitude of the revision process increases with

Hence the choice of a more flexible trend resatisteris paribug larger revisions.

e Long run trendsy. is low) are subject to comparatively smaller revisionaif; is

dominated by low frequencies fluctuatiors* 0).

6 Conclusions

The paper has focussed on a class of trend-cycle filters that is optimal for a particular local
trend model and that depends on the order of integration of the trend (trend flexibility),

on the order of the unit root at the Nyquist frequency (trend smoothness), and the relative
variance of the cyclical component. The trend filter can be characterised as a lowpass

filter whose cutoff frequency depends on the three parameters.
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By embedding the trend-cycle decomposition within the ARIMA time series model for
a univariate time series we provide a model-based framework that enables inferences on
the unobserved components to be conducted by means of the Kalman filter and smoother
associated to the relevant state space model. The components select certain features of the
series and in this respect they represent an artificial construct. Neverhteless, the model-
based interpretation allows to formalise the discussion on the relevant issue of the uncer-
tainty by which certain signals or components are estimated.

In particular, it has been shown that for the type of nonstationary time series usually
encountered in macroeconomics more stable components and long run trends and cycles,
characterised by lower cutoff frequencies are estimated with less reliability. Moreover, in
designing the filter the analyst faces some trade-offs. The purpose of this paper was that of
illustrating them. In particular, if on the hand increasing the flexibility of the trend and its
smoothness via the introduction on noninvertible for a given cutoff frequency enhances
the reliability of the signal, in real time the signal will be subject with large revisions.
Hence, smoothness priors have their costs, as the quest for smooth signals results in larger
revisions and greater discrepancies between real time and final estimates. Intuitively, the
smoother the trend, the more observations are needed before the estimate settles down to

its final value, and thus the greater the amount of revision involved.

17



References

Ansley, C.F., Kohn, R., 1985. Estimation, filtering and smoothing in state space models

with incompletely specified initial condition$he Annals of Statisticd3, 1286-1316.

Artis, M., Marcellino, M., Proietti, T., 2003. Dating the Euro Area Business Cycémntre

for Economic Policy Researcbiscussion paper n. 3696.

Burridge, P., Wallis, K.F., 1988. Prediction theory for autoregressive-moving average pro-

cessesEconometric Reviews, 65-9.

de Jong, P., 1989. Smoothing and interpolation with the state space aaelal of the
American Statistical Associatip84, 1085-1088.

de Jong, P., 1991. The diffuse Kalman filt&nnals of Statistic49, 1073-83.

Doornik, J.A., 20010Ox. An Object-Oriented Matrix Programming Languadé@nber-

lake Consultants Press, London.

Gbmez, V., 2001, The Use of Butterworth Filters for Trend and Cycle Estimation in Eco-

nomic Time Serieslournal of Business and Economic Statistit8, 365-373.

Hodrick J.R. and Prescott E.C., 1997. Postwar U.S. business cycles: an empirical investi-

gation,Journal of Money, Credit and Banking9, 1-16.

Harvey, A.C., 1989Forecasting, Structural Time Series and the Kalman Fjl@am-

bridge University Press, Cambridge.

Harvey, A.C., and dger, A., 1993. Detrending, stylized facts and the business cycle.
Journal of Applied Econometric8, 231-247.

18



Kaiser, R. Maravall A., 200IMeasuring Business Cycles in Economic Time Sgties-

ture Notes in Statistics, 154, Springer-Verlag, New York.

Koopman, S.J., 1997. Exact initial Kalman filter and smoother for non-stationary time

series modelslournal of the American Statistical Associati®a: 1630-8.

Koopman, S.J., Shephard, N., Doornik, J.A., 1999. Statistical algorithms for models in

state space using SsfPack Z2onometrics Journal, 113-66.

Morley, J.C., Nelson, C.R., Zivot, E., 2002. Why are Beveridge-Nelson and Unobserved-
Component Decompositions of GDP So DiffereR®view of Economics and Statistics

85, 235-243.

Orphanides, A., van Norden, S., 2002. The Unreliability of Output Gap Estimates in Real

Time. Review of Economics and Statistiéd, 569-583.

Percival, D.B., and Walden, A.T., 1998/avelet Methods for Time Series Analy§lam-

bridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

Pollock, D.S.G., 2000. Trend Estimation and De-trending via Rational Square-wave Fil-

ters.Journal of Econometric99, 317-334.

Sayed, A.H., and Kailath, T., 2001. A Survey of Spectral Factorization Metihdser-
ical Linear Algebra with Applications8, 467—-496.

Stock J.H., and Watson, M., 2002. Has the business cycle Changed and MBiR
Working PapelNo. w9127.

Whittle P., 1983 Prediction and Regulation by Linear Least Squares Meth&dzond

edition. Basil Blackwell, Oxford.

19



A State space representation

The spectral factorisatiop(L)o(L™1) = ag+a; (L+ L7+ +ax (L’“ + L"“) k=
max(m,n) with
g-tG<n| " srgm| |,
n+j m+J

wherel(-) is the indicator function, taking value 1 if the argument is true and O otherwise,
can be achieved via the Riccati equation method preseni®ayiad and Kailatl2001).

Let now ¢(L)* denote the AR polynomiah(L)* = ¢(L)py p(L) = 1 — ¢1L —
coo — ¢y LPTT, common to the representation of the trend and the cyclB)iragd let
6,(L) = (1+ L)"6(L), the MA polynomial of the trend component. Further, define the
ordersg, = max(p + ¢*,n + ¢ + 1), gy = max(p + ¢*, ¢ + 1).

The state space representatiofpafonsists of the measurement equatipn= z'a,
with

7 — {z;ﬂ z” , oy = [O‘L,t’aip,t}l, ZL - [i’dH,O;M], z;/} = [1,0;w];

and the transition equatia®,.; = Ta; + ¢ + Re; With €, = ¢y /[, 5¢]',
T = diag(TH, Tw), C = [CZL, O’]/, R = diag(@m Gw),

A B
T, = ,
0 T;
whereA is ad x d upper triangular matrix with elements; = 1, > ¢, anda;; = 0,

B is d x g, matrix with zero elements except for the first column, which contains unit

20



elementsB = iy, 0], and

w— | Pu sy = Py ]
o

0= 1,001,002, 0 s 0 = [1,00,0, 000, 000, O = [F1 Dz g,
&), = (051, 9}0: - - ¥},,,]'- The nonzero AR coefficients i, and ¢, are the coeffi-
cients ofg(L)*, the nonzero MA coefficients i, are those of the polynomié),(L), and

finally, those ofg,, are the coefficients af(L).
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Series with Trend Cyclical component: smoothed estimates
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Figure 3:U.S. Gross Domestic Product, 1947.9g1 - 2003.93. Trend cycle decomposition
with m = 2,n = 2 and27/w, = 39.7 (A = 1600) corresponding to the HP filter
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Figure 4:U.S. Gross Domestic Product, 1947.q1 - 2003.93. Trend cycle decomposition
with m = 2,n = 2 and27/w, = 5 quarters § = 0.52)
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