
WHAT CAUSES THE FORECASTING FAILURE OF
MARKOV-SWITCHING MODELS ? A MONTE CARLO

STUDY

Marie BESSEC� Othman BOUABDALLAHy

March 22, 2005

Abstract

This paper explores the forecasting abilities of Markov-Switching models. Although MS models

generally display a superior in-sample �t relative to linear models, the gain in prediction remains

small. We con�rm this result using simulated data for a wide range of speci�cations by applying

several tests of forecast accuracy and encompassing robust to nested models. In order to explain

this poor performance, we use a forecasting error decomposition. We identify four components

and derive their analytical expressions in di¤erent MS speci�cations. The relative contribution

of each source is assessed through Monte Carlo simulations. We �nd that the main source of

error is due to the misclassi�cation of future regimes.

Keywords: Forecasting, Regime Shifts, Markov-Switching.

JEL classi�cations: C22,C32,C53.

Introduction

Since the seminal paper of Hamilton (1989), there is a great deal of interest in modelling

time series that are subject to structural changes using Markov-Switching (MS). The cyclical

behaviour of many economic variables has been of particular interest.

Several recent studies use MS models to predict economic series (see for example Clements

and Krolzig, 1998, Krolzig, 2004). However, the results are disappointing (see Clements et al.,

2004, for a review of the literature in this area). Although MS models give a better in-sample

�t relative to linear models, they are usually outperformed by linear models in out-of-sample
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forecasting exercises. Dacco and Satchell (1999) present a theoretical explanation for this bad

performance in a fairly simple speci�cation. They consider a model with no autoregressive

terms and with a switch on the intercept. They show that only a small misclassi�cation of

future regimes, due to the failure to forecast the regime indicator, dramatically deteriorates the

predictions of this model.

The aim of this paper is to assess the robustness of this result on a wide range of speci�cations.

To this end, we perform a Monte Carlo study. First, the quality of the linear and non-linear

predictions are compared by applying several tests of forecast accuracy and encompassing robust

to nested models. Second, the forecasting error is decomposed as suggested in Krolzig (2004).

The analytical expressions of the four di¤erent sources of error are derived and their relative

contribution is assessed using simulated data.

We focus on speci�cations with only a shift in the deterministic part where it is possible to

derive analytically optimal predictors (Krolzig, 2004). We consider a wide range of speci�cations

for these models. Representations with a switching intercept (and variance) or a switching mean

(and variance) are studied using di¤erent sets of parameters1. In particular, we examine the

impact of changes in the persistence and error-variance parameters. For all speci�cations, we

show that the failure to predict the future regimes explains the major part of the total prediction

error of the MS models.

The remainder of the paper proceeds as follows. Section 2 introduces the four subclasses

of the models under study and reports the expression of the optimal predictor in these speci�-

cations. Section 3 describes the simulation procedure and compares the performances of linear

and non-linear models in forecasting exercises. Section 4 presents the error decomposition and

discusses the simulation results that are based on it. Section 5 gives our concluding remarks.

1 Prediction in MS Autoregressive Models

Krolzig (2004) shows that analytical expressions for the optimal predictors can be derived in

MS-VAR models only if the autoregressive parameters are time�invariant. For this reason,

we have chosen to focus in the following sections on four important subclasses of MS-VAR

models: speci�cations with switches only on the intercept (MSI), on the intercept and the

variance (MSIH), on the mean (MSM) and on the mean and the variance (MSMH). As an

illustrative example, we use the special case of univariate speci�cations with two regimes and

one autoregressive term2.

1These speci�cations are widely used to capture the dynamics of real variables (Hamilton, 1989, Krolzig and
Toro, 2002, Clements and Krolzig, 2003) and �nancial series (Cecchetti et al., 1990, Engel and Hamilton, 1990,
Engel, 1994, Garcia and Perron, 1996, Bidarkota, 2001).

2The general case of MS(m)-VAR(p) is presented in detail in the Appendix A.
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1.1 The MSI(H) Model

Let yt be the time series of interest. Suppose that yt follows a �rst autoregressive process with

a switch on the intercept (MSI). These switches occur between two states and are governed by

an unobservable variable St which follows a �rst-order Markov process and takes the value 1 or

2.

yt = �st + �yt�1 + ut ut � NID(0; �) (1)

Following Krolzig (2004), we can de�ne an unobservable 2 � 1 state vector �t consisting of
two binary indicator variables as �t = [I(st = 1); I(st = 2)]

0 and F the transition matrix of the

Markov process:

F =

�
p11 1� p22

1� p11 p22

�
The dynamics of the centered state vector of being in state one, �t = �1t � �1, is given by:

�t+1 = (p11 + p22 � 1)�t + vt+1 (2)

where �1 is the �rst component of the 2�1 vector of ergodic probabilities � = [P (st = 1); P (st =
2)]0 and vt is a martingale di¤erence sequence.

The state space representation of this MSI(2)-AR(1) process can thus be de�ned by:�
yt � �y = (�1 � �2)�t + �(yt�1 � �y) + ut

�t+1 = ��t + vt+1
(3)

with � = p11 + p22 � 1 and �y = (1� �)�1(�1; �2) �.
It follows that the optimal predictor ŷt+hjt is given by:

ŷt+hjt � �y = �h(yt � �y) + (�1 � �2)
 

hX
i=1

�h�i�i

!
�̂tjt (4)

The second term in (4) represents the contribution of the non-linear part. The weight of this

term increases with the shift on the intercept j�1 � �2j, the persistence parameters � and �, and
diminishes with the horizon of prediction h. In the absence of change in the intercept (�1 = �2),

this equation reduces to the linear optimal predictor �h(yt � �y).
Note that this analytical expression also applies for a MSIH(2)-AR(1) process where the

variance of ut depends on the state ut=st � NID(0; �st).

1.2 The MSM(H) Model

Let us now consider an AR(1) process with a switching mean as motivated by Hamilton (1989).

The dynamics of a MSM(2)-AR(1) model is described by the following equation:

yt = �st + �(yt�1 � �st�1) + ut ut � NID(0; �) (5)
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Using the same notations, the state space representation of this model is given by:8<:
yt � �y = (�1 � �2)�t + zt

zt+1 = �zt + ut+1
�t+1 = ��t + vt+1

(6)

with zt the autoregressive component of the process zt = yt � �st and �y = (�1; �2) �.
It is easy to show in this representation that the optimal predictor ŷt+hjt is obtained as

follows:

ŷt+hjt � �y = �h(yt � �y) + (�1 � �2)
�
�h � �h

�
�̂tjt (7)

As above, the MSM predictor consists of two parts: the linear optimal predictor and a second

part which takes into account the shifts in the mean. The weight of the last one depends on

the magnitude of the shift j�1 � �2j and on the persistence of the regimes � relative to the
persistence of the process �.

Again, this expression is still valid when we allow for a dependence of the variance on the

realized regime st (MSMH(2)-AR(1) model).

2 Forecasting Failure of MS Models

Many studies show the poor performance of non-linear models against the linear counterpart

for prediction. We explore the robustness of this result for a wide range of DGPs (MSI, MSIH,

MSM and MSMH) and di¤erent sets of parameters.

Table 1: Comparison of models with MAE

MSI MSIH MSM MSMH
� 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.92 0.88 0.94 0.89 0.92 0.88 0.95 0.91 0.96 0.91 0.95 0.91
2 0.96 0.93 0.97 0.92 0.96 0.92 0.97 0.93 0.98 0.92 0.97 0.93
3 0.98 0.96 0.99 0.94 0.98 0.95 0.99 0.95 0.99 0.95 0.99 0.95
4 1 0.98 1 0.96 1 0.97 1 0.96 1 0.96 1 0.96
5 1 0.99 1 0.98 1 0.98 1 0.98 1 0.97 1 0.98
6 1 0.99 1 0.99 1 0.99 1 0.98 1 0.98 1 0.98
7 1 1 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99
8 1 1 1 1 1 1 1 0.99 1 0.99 1 0.99

To assess the relative performance of the two competing alternatives for forecasting pur-

poses, we perform Monte Carlo simulations. First, data from one of the four MS processes are

generated. Then, the linear and non-linear alternatives are estimated3. The lag order of the
3We make use of Warne�s code available on http://texlips.hypermart.net/warne/code.html to estimate the

MSI, MSM and MSIH models.
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Table 2: Comparison of models with RMSE

MSI MSIH MSM MSMH
� 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.96 0.94 0.96 0.93 0.96 0.93 0.98 0.95 0.98 0.95 0.98 0.95
2 0.98 0.96 0.98 0.95 0.98 0.96 0.99 0.96 0.99 0.96 0.99 0.97
3 0.99 0.98 0.99 0.97 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.98
4 1 0.99 1 0.98 1 0.99 1 0.98 1 0.98 1 0.98
5 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99
6 1 1 1 0.99 1 1 1 0.99 1 0.99 1 0.99
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: Test of predictive power of the MS model - ENC-T statistics

MSI MSIH MSM MSMH
� 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.48 0.62 0.44 0.64 0.37 0.56 0.36 0.57 0.34 0.45 0.18 0.42
2 0.26 0.40 0.21 0.39 0.20 0.36 0.19 0.40 0.19 0.27 0.11 0.27
3 0.14 0.23 0.13 0.27 0.12 0.25 0.14 0.28 0.13 0.17 0.09 0.18
4 0.10 0.17 0.11 0.19 0.08 0.17 0.12 0.22 0.11 0.12 0.08 0.14
5 0.09 0.13 0.10 0.16 0.07 0.14 0.11 0.18 0.11 0.10 0.08 0.12
6 0.07 0.09 0.10 0.14 0.07 0.13 0.11 0.16 0.11 0.10 0.08 0.10
7 0.07 0.09 0.08 0.13 0.06 0.12 0.10 0.14 0.09 0.09 0.08 0.10
8 0.06 0.09 0.07 0.13 0.06 0.11 0.09 0.13 0.09 0.09 0.08 0.10

linear autoregressive model is selected using the BIC criterion with a maximum lag length of

3. Finally, the predictions are computed into the two models at di¤erent horizons h = 1; : : : ; 8.

The predictions are made in an out-of sample context with a rolling forecast origin and the es-

timated parameters are recalibrated at each iteration4. This procedure is replicated 2000 times.

We consider samples with 200 observations5 and the forecast origin Tf rolls from 160 to 200�h
for each horizon h. This exercise is repeated for di¤erent values of the transition probability

p22 2 f0:70; 0:85g and of the variance parameter � 2 f0:3; 0:5g. The other parameters are chosen
close to the estimates of the Hamilton model of the US GNP growth rate (1989): �1 = �1 = 1;

�2 = �2 = �1; � = 0:2 ; p11 = 0:95.
We proceed in two steps to compare the linear and non-linear predictions. First, we compute

the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in the two models

4Note that this choice is consistent with Tashman (2000). He shows that the e¢ ciency and reliability of
out-of-sample tests can be improved by employing rolling-origin evaluations and recalibrating coe¢ cients.

5We remove the �rst 100 observations of the 300 observations initially generated, in order to avoid the possible
e¤ects of the initial conditions.
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Table 4: Test of predictive power of the MS model - MSE-T statistics

MSI MSIH MSM MSMH
� 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.29 0.40 0.23 0.39 0.22 0.37 0.31 0.40 0.24 0.36 0.16 0.31
2 0.14 0.25 0.11 0.26 0.12 0.25 0.16 0.32 0.14 0.27 0.10 0.20
3 0.09 0.17 0.08 0.19 0.07 0.17 0.11 0.23 0.11 0.20 0.09 0.16
4 0.07 0.12 0.08 0.14 0.06 0.13 0.10 0.20 0.10 0.14 0.09 0.13
5 0.07 0.10 0.07 0.13 0.06 0.11 0.10 0.17 0.10 0.11 0.09 0.12
6 0.06 0.09 0.07 0.12 0.06 0.11 0.10 0.16 0.10 0.10 0.09 0.11
7 0.06 0.09 0.07 0.11 0.06 0.10 0.09 0.14 0.09 0.10 0.09 0.11
8 0.06 0.09 0.06 0.11 0.06 0.10 0.09 0.13 0.08 0.10 0.09 0.10

Table 5: Test of predictive power of the MS model - ENC-NEW statistics

MSI MSIH MSM MSMH
� 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.84 0.91 0.85 0.93 0.81 0.90 0.46 0.80 0.55 0.61 0.45 0.68
2 0.62 0.65 0.64 0.74 0.54 0.69 0.34 0.55 0.45 0.34 0.16 0.52
3 0.36 0.36 0.42 0.51 0.35 0.47 0.25 0.31 0.37 0.15 0.05 0.31
4 0.21 0.19 0.33 0.36 0.23 0.33 0.23 0.21 0.33 0.07 0.01 0.18
5 0.17 0.11 0.31 0.27 0.18 0.30 0.22 0.14 0.31 0.04 0.01 0.12
6 0.14 0.08 0.29 0.25 0.15 0.29 0.21 0.11 0.29 0.02 0.00 0.08
7 0.12 0.06 0.27 0.22 0.14 0.27 0.21 0.08 0.27 0.02 0.00 0.06
8 0.12 0.06 0.24 0.20 0.14 0.27 0.20 0.07 0.26 0.01 0.00 0.04

in order to measure the potential gain of the MS model over the linear one. Second, we carry out

several tests of forecast accuracy and encompassing to assess if this potential gain is statistically

signi�cant. As suggested in Clark and McCracken (2004), we implement four tests: the test

of forecast encompassing proposed in Harvey, Leybourne and Newbold (1998) (ENC-T in the

following), the Diebold-Mariano test of equal accuracy (1995) (MSE-T) and two variants of these

two tests developed by Clark and McCracken (2004) (ENC-NEW and MSE-F).

As shown in Clark and McCracken (2004), the distributions of the four implied statistics

are non-standard when applied to nested alternatives and dependent on the parameters of the

data-generating process for horizons of prediction higher than one. For this reason, we derive the

critical values by applying a bootstrap procedure. The linear model is estimated using the full

sample of observations from the simulated MS process. A block of p consecutive observations is

chosen at random from the simulated data to initiate the bootstrap sample. Time series are then

generated by drawing from the residuals with replacement and using the autoregressive structure
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Table 6: Test of predictive power of the MS model - MSE-F statistics

MSI MSIH MSM MSMH
� 0.3 0.5 0.3, 0.5 0.3 0.5 0.3, 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.70 0.75 0.67 0.75 0.62 0.74 0.48 0.65 0.46 0.53 0.37 0.58
2 0.50 0.55 0.49 0.58 0.44 0.54 0.30 0.46 0.37 0.37 0.15 0.44
3 0.27 0.34 0.34 0.42 0.28 0.38 0.24 0.30 0.32 0.22 0.06 0.29
4 0.18 0.22 0.28 0.31 0.20 0.29 0.21 0.23 0.28 0.11 0.02 0.19
5 0.16 0.13 0.26 0.26 0.17 0.26 0.21 0.16 0.28 0.06 0.01 0.14
6 0.13 0.08 0.26 0.23 0.14 0.26 0.20 0.12 0.26 0.04 0.01 0.09
7 0.12 0.07 0.24 0.20 0.14 0.24 0.20 0.10 0.25 0.02 0.00 0.07
8 0.11 0.06 0.21 0.20 0.14 0.24 0.19 0.08 0.24 0.02 0.00 0.06

of the model to recursively construct the data. These observations are used to estimate the

linear and MS models, form the two alternative predictors and compute the four test statistics.

Following Clark and McCracken, the number of bootstrap draws is 2000. The critical values are

obtained as percentiles of the 2000 bootstrapped statistics.

The results are summarized in Tables 1-66. We report in Tables 1 and 2 the relative MAE

and RMSE of the MS predictor to the linear one. A result inferior to one indicates that the

Markov-Switching model performs better than the linear alternative and vice versa. Several

�ndings emerge from these tables. First, the gain of the non-linear alternative relative to the

linear one is rather small, although the data are generated from a MS model. Indeed, the

gain never exceeds 12% and shrinks to zero for large horizons (as shown above). Such a result

is consistent with �ndings obtained in previous studies (Clements and Krolzig, 1998, Krolzig,

2004). Second, the comparison of the three DGPs shows that the MSIH displays an enhancement

of no more than 12% (with the MAE criteria) at short horizons. At longer horizons, the MSI or

MSM speci�cations provide the best relative performance with a maximum gain of 6% (using

the MAE criteria). Third, for each DGP, increasing the variance parameter generally leads to a

slight deterioration of the MS prediction. On the contrary, an increase in the persistence of the

regimes improves the relative performance of the non-linear speci�cation up to 6%. This increase

also slows down the convergence of the non-linear predictor with the linear one as predicted by

equations (4) and (7).

Tables 3-6 contain the results of the ENC-T, ENC-NEW, MSE-T and MSE-F tests. We

report the percentage of Monte Carlo trials in which the sample test statistics exceed the 5%

critical values, that is where the MS model performs signi�cantly better than the linear alter-

native. Again the results are favourable to the non-linear model at short horizons. The MSE-T

6We have only reported the results for univariate speci�cations. However, our �ndings are still valid in the
bivariate case. The corresponding results are given in Appendix C.
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and MSE-F statistics often reject the null of equal MSE with respective mean percentages of

rejection equal to 31% and 61% for h = 1 and the ENC-T and ENC-NEW statistics reject the

null of encompassing with respective average percentages of 45% and 73% for h = 1. However

for horizons higher than two, the predictive gain of the MS model is no more signi�cant and we

accept the null of forecast equality with average percentages of 91% for the MSE-T and 92% for

the MSE-F statistics. The null of encompassing is accepted in 88% and 82% of the replications

with the ENC-T and the ENC-NEW tests respectively.

In conclusion, we �nd that the gain in prediction of the MS model relative to the linear

speci�cation is small (it does not exceed 12% in the most favourable case) and signi�cant only

at short horizons.

3 Forecasting Error Decomposition

To explain such a poor performance of the MS speci�cations, we decompose the forecast error

of the non-linear models into four components as suggested by Krolzig (2004).

The prediction error êt+hjt = yt+h � E[yt+h =
t; b�] associated with the optimal predictorbyt+hjt can be written as follows:
êt+hjt = (yt+h � E[yt+h = st+h;
t; �0])

+ (E[yt+h = st+h;
t; �0]� E[yt+h = st;
t; �0])
+ (E[yt+h = st;
t; �0]� E[yt+h =
t; �0])
+ (E[yt+h =
t; �0]� E[yt+h =
t; b�])

(8)

�0 is the set of actual parameters, �̂ the estimated set of parameters and 
t the information

set available at time t. The �rst component ê(1)t+hjt re�ects the error we get if we know the exact

set of parameters and the dynamics of the Hidden Markov process st+h = fst+h; st+h�1;...,st�1g.
This source of uncertainty reduces to the unpredictable Gaussian components (us)t<s�t+h. The

second term ê
(2)
t+hjt measures the contribution of the regime prediction error, i.e. the impact of

the misclassi�cation of future values of the Markov process. The third one ê(3)t+hjt measures the

error due to the �lter uncertainty, that is the error induced by the �ltering process of the past

and current states involved in the prediction. These three components are evaluated conditional

to the true parameters �0. The last component ê
(4)
t+hjt stands for the parameter uncertainty due

to the estimation procedure7.

We apply this decomposition in the Monte Carlo design described above. For each DGP

analyzed in Section 3, the relative weights of each component in absolute value for the eight

horizons are depicted in Figure 1. Several results are worth commenting on. First, the third

component ê(3)t+hjt is found to be insigni�cant in all speci�cations and at all horizons. Second,

7See the Appendix B for the derivation of each component in the MSI(m)-VAR(p) and MSM(m)-VAR(p)
speci�cations.
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the weight of the estimation error ê(4)t+hjt remains stable and small over all speci�cations (10-

15%). Hence, the two major sources of forecasting error are due to the Gaussian terms and the

misclassi�cation of future states. The relative part of these two terms varies across horizons.

The �rst component is the most important at the �rst horizon (h = 1). For larger h, the second

component ê(2)t+hjt dominates with a weight increasing with the horizon and ranging from 40% to

65%. Such a contribution is positively related to the persistence of the regime. On the contrary,

it tends to decrease with the volatility. This last result is intuitive: a larger variance gives a

heavier weight to the unpredictable component, ê(1)t+hjt.

4 Conclusion

In this paper, we have examined the performances of Markov-Switching models in predicting

economic variables that are subject to regime switching.

A simulations-based study has shown that the improvement in the forecast performance is

rather small compared to the linear speci�cation and occurs only at short horizons. Checking

the relevance of this result for di¤erent parameter settings has shown the robustness of this

�nding. Indeed, changing the persistence parameters and the variability of the process does not

signi�cantly a¤ect the forecasting performance of the MS models relative to the linear one.

To explain this result, we have performed a forecasting error decomposition exercise. Four

di¤erent sources of error have been identi�ed and their relative contribution has been assessed

using simulated data. It turns out that the misclassi�cation of future-state realizations explains

the failure of MS models in prediction exercises with an average contribution of 60% of the total

error.

This result suggests that the prediction enhancements made in the MS models require im-

proving the prediction of the states. This will be the subject of future research.

9



APPENDIX

A Optimal Predictors

A.1 MSI-VAR Model

If the variance and autoregressive parameters of a MS-VAR model are regime-invariant Aj;st =

Aj for j 2 f1; :::; pg, there exists a linear state space representation. For a MSIH(m)-VAR(p)
model, this representation can be written as follows:�

yt � �y =M�t +A1(yt�1 � �y) + :::+Ap(yt�p � �y) + ut
�t+1 = F�t + vt+1

where �y = (IK � A1 � : : : � Ap)�1(�1; � � � ; �m) � is the unconditional mean of yt; M =

(�1 � �m; � � � ; �m�1 � �m) and F =

0B@ p1;1 � pm;1 � � � pm�1;1 � pm;1
...

...
p1;m�1 � pm;m�1 � � � pm�1;m�1 � pm;m�1

1CA is a (m�

1)� (m� 1) matrix.
Let us consider the VAR(1) representation of the VAR(p) process. Denoting xt the Kp� 1

vector de�ned as xt =
�
xt xt�1 � � � xt�p+1

�0
where xt is a K � 1 vector, the state space

representation can be rewritten as:�
yt � �� = H�t +A(yt�1 � ��) + ut

�t+1 = F�t + vt+1

whereA =

0BBB@
A1 ::: Ap�1 Ap
IK 0 � � � 0

. . . . . .
...

0 IK 0

1CCCAis aKp�Kpmatrix, �� = E(yt) andH =
�
M 0 � � � 0

�0
is

a Kp� (m� 1) matrix.
It follows that the optimal predictor ŷt+hjt is given by:

ŷt+hjt � �y =
 

hX
i=1

JK;KpA
h�iHF i

!
�̂tjt + JK;KpA

h(yt � ��)

with Jn;np = (In 0n � � � 0n) a n� np matrix.

A.2 MSM-VAR Model

The state space representation of a MSM(m)-VAR(p) model is given by:8<:
yt � �y =M�t + zt
zt+1 = Azt + ut+1
�t+1 = F�t + vt+1

where �y = (�1; � � � ; �m) � is the unconditional mean of yt,M = (�1��m; � � � ; �m�1��m) and
zt = yt � �y �M�t.
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In a MSM(m)-VAR(p) process, the optimal predictor �yt+hjt is given by:

ŷt+hjt � �y = JK;KpAh(yt � ��)+
�
MFhJ(m�1);(m�1)p � JK;KpAhM

�
�̂
tjt

whereM = Ip 
M .

B Error Decomposition

B.1 MSI-VAR Model

In a MSI(m)-VAR(p) model, the expression of the optimal predictor for the estimated set of

parameters is given by:

ŷt+hjt = �̂y +

 
hX
i=1

JK;KpÂ
h�iĤF̂ i

!
�̂tjt + JK;KpÂ

h
�
yt � b���

where �̂ denotes the estimate of the parameter �.

The total prediction error is given by:

êt+hjt = yt+h � E
�
yt+h

���
t; �̂� = yt+h � ŷt+hjt
This error can be decomposed into four components:

êt+hjt = ê
1
t+hjt + ê

2
t+hjt + ê

3
t+hjt + ê

4
t+hjt

� First component (measures the e¤ect of the Gaussian error):

ê1t+hjt = yt+h � E (yt+h jst+h; : : : ; st;
t; �0 ) = yt+h � ŷ
1
t+hjt

with ŷ1t+hjt = �y +
hP
i=1
JK;KpA

h�iH�t+i + JK;KpAh
�
yt � ��

�
.

� Second component (measures the e¤ect of future regime misclassi�cations):

ê2t+hjt = E (yt+h jst+h; : : : ; st;
t; �0 )� E (yt+h jst;
t; �0 ) = ŷ
1
t+hjt � ŷ

2
t+hjt

with ŷ2t+hjt = �y +
�

hP
i=1
JK;KpA

h�iHF i
�
�t + JK;KpA

h
�
yt � ��

�
.

We then deduce:

ê2t+hjt =
hX
i=1

JK;KpA
h�iH

�
�t+i �F i�t

�
This component is proportional to the error made in predicting the future states

�
�t+i �F i�t

�
,

i = 1; : : : ; h.

11



� Third component (due to the error in detecting the current regime):

ê3t+hjt = E (yt+h jst;
t; �0 )� E (yt+h j
t; �0 ) = ŷ
2
t+hjt � ŷ

3
t+hjt

with ŷ3t+hjt = �y +
�

hP
i=1
JK;KpA

h�iHF i
�
�̂t=t + JK;KpA

h
�
yt � ��

�
.

It follows that:

ê3t+hjt =
hX
i=1

JK;KpA
h�iHF i

�
�t � �̂t=t

�
ê3t+hjt is related to the �ltering error

�
�t � �̂t=t

�
.

� Fourth component (error due to the estimation process):

ê4t+hjt = E (yt+h j
t; �0 )� E
�
yt+h

���
t; �̂� = ŷ3t+hjt � ŷt+hjt

B.2 MSM-VAR Model

Now, the optimal predictor ŷt+hjt is given by:

ŷt+hjt = �̂y +
�
M̂F̂hJ(m�1);(m�1)p � JK;KpÂhM̂

�
�̂
tjt + JK;KpÂ

h
�
yt � b���

In the same way, we can decompose the forecast error into four components:

� First component (the Gaussian error):

ê1t+hjt = yt+h � E
�
yt+h

���st+h; : : : ; st;
t; �0� = yt+h � ŷ1t+hjt
with ŷ1t+hjt = �y +MJ(m�1);(m�1)p�t+h � JK;KpAhM�t + JK;KpA

h
�
yt � ��

�
and st =�

st st�1 � � � st�p+1
�0
.

� Second component (misclassi�cation of future regimes):

ê2t+hjt = E
�
yt+h

���st+h; : : : ; st;
t; �0�� E �yt+h ��st;
t; �0 � = ŷ1t+hjt � ŷ2t+hjt
with ŷ2t+hjt = �y + (MFhJ(m�1);(m�1)p � JK;KpAhM)�t + JK;KpA

h
�
yt � ��

�
.

It follows that:

ê2t+hjt =M
�
�t+h �Fh�t

�
� Third component (the �ltering error):

ê3t+hjt = E
�
yt+h

��st;
t; �0 �� E (yt+h j
t; �0 ) = ŷ2t+hjt � ŷ3t+hjt
with ŷ3t+hjt = �y + (MFhJ(m�1);(m�1)p � JK;KpAhM)�̂t=t + JK;KpA

h
�
yt � ��

�
.
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We then deduce:

ê3t+hjt = (MFhJ(m�1);(m�1)p � JK;KpAhM) (�t � �̂t=t)

Note that this error is now dependent on the �ltering of the current as well as of the p-1

past regimes.

� Fourth component (due to the estimation error):

ê4t+hjt = E (yt+h j
t; �0 )� E
�
yt+h

���
t; �̂� = ŷ3t+hjt � ŷt+hjt

C Results for Bivariate MS-Processes

This appendix assesses the robustness of our results for bivariate MS-processes. To this aim, we

simulate data from MS-VAR models with a switch on the intercept or on the mean and eventually

on the variance parameters8. The transition probabilities are chosen as in the univariate design:

p11 = 0:95 and p22 = f0:70; 0:85g. The other parameters of the equation i = f1; 2g are given by:

�i1 = �
i
1 = 1 ; �

i
2 = �

i
2 = �1 and A =

�
0:2 0:1
0:1 0:2

�
. At last, the errors of the two equations are

supposed to be uncorrelated and of equal variance.

We report in the following the results obtained in the �rst equation of the VAR. The results

for the second one - very similar - are not given here.

The comparison exercise shows the same qualitative results as those obtained in the uni-

variate speci�cations. The predictive gain of the MS speci�cation relative to the linear one is

small and non signi�cant for horizons larger than one. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) of the MS predictor relative to the linear one obtained in

the �rst equation are reported in Tables 7 and 8. A result inferior to one still indicates that

the Markov-Switching model performs better than the linear alternative and vice versa. We

note that the gain in prediction is a slightly smaller than in the univariate case and converges

more quickly to zero. Tables 9-12 show the percentages of rejection of the MSE equality or

encompassing by the MSE-T, MSE-F, ENC-T and ENC-NEW statistics for the �rst equation.

Again the gain in prediction is generally found not signi�cant except for h = 1. For instance,

the forecast equality is accepted in 91% and 81% of the 2000 replications for horizons higher

than two with the MSE-T and MSE-F statistics.

The explanation for this failure is the same as in the linear framework. Figure 2 gives the

decomposition of the error prediction for the �rst variable of the VAR. Again the two major

sources of forecasting error are due to the Gaussian terms and the misclassi�cation of future

8Given the computional burden, we do not consider the bivariate MSMH speci�cations.
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states. The �rst component is the most important at the �rst horizon (h = 1). For larger h, the

second component dominates with a weight increasing with the horizon and ranging from 40%

to 65%.

Table 7: Comparison of models with MAE

MSI MSIH MSM
� 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.94 0.91 0.95 0.92 0.94 0.91 0.97 0.95 0.98 0.95
2 0.97 0.96 0.97 0.94 0.97 0.94 0.99 0.96 0.99 0.95
3 0.99 0.99 0.99 0.96 0.99 0.98 0.99 0.97 1 0.96
4 1 1 0.99 0.98 0.99 1 1 0.98 1 0.97
5 1 1.01 1 0.99 1 1.01 1 0.99 1 0.98
6 1 1.01 1 1 1 1.01 1 0.99 1 0.99
7 1 1.01 1 1 1 1.01 1 0.99 1 0.99
8 1 1.01 1 1 1 1.01 1 0.99 1 0.99

Table 8: Comparison of models with RMSE

MSI MSIH MSM
� 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.97 0.95 0.97 0.95 0.97 0.95 0.99 0.98 0.99 0.97
2 0.98 0.97 0.98 0.96 0.98 0.97 0.99 0.98 0.99 0.97
3 0.99 0.98 0.99 0.98 0.99 0.98 1 0.99 1 0.98
4 0.99 0.99 0.99 0.99 0.99 0.99 1 0.99 1 0.99
5 0.99 0.99 1 0.99 0.99 0.99 1 1 1 0.99
6 0.99 0.99 1 1 0.99 0.99 1 1 1 0.99
7 1 0.99 1 1 1 0.99 1 1 1 1
8 1 0.99 1 1 1 0.99 1 1 1 1
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Table 9: Test of predictive power of the MS model - ENC-T statistics

MSI MSIH MSM
� 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.38 0.53 0.39 0.62 0.26 0.38 0.24 0.34 0.23 0.41
2 0.20 0.26 0.23 0.40 0.13 0.25 0.17 0.26 0.15 0.34
3 0.10 0.15 0.14 0.24 0.08 0.12 0.13 0.18 0.10 0.25
4 0.07 0.09 0.09 0.14 0.07 0.08 0.10 0.14 0.09 0.20
5 0.06 0.08 0.08 0.09 0.07 0.06 0.10 0.13 0.09 0.15
6 0.06 0.07 0.07 0.08 0.06 0.05 0.10 0.12 0.08 0.14
7 0.06 0.07 0.07 0.05 0.06 0.05 0.09 0.12 0.08 0.14
8 0.06 0.07 0.07 0.05 0.06 0.05 0.09 0.12 0.08 0.14

Table 10: Test of predictive power of the MS model - MSE-T statistics

MSI MSIH MSM
� 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.23 0.31 0.25 0.39 0.17 0.25 0.24 0.30 0.19 0.29
2 0.13 0.15 0.12 0.27 0.08 0.14 0.15 0.25 0.13 0.26
3 0.08 0.09 0.08 0.16 0.06 0.07 0.12 0.18 0.10 0.20
4 0.06 0.07 0.07 0.09 0.06 0.05 0.10 0.15 0.10 0.17
5 0.06 0.07 0.07 0.07 0.06 0.05 0.10 0.12 0.09 0.14
6 0.06 0.06 0.07 0.06 0.06 0.04 0.09 0.12 0.09 0.12
7 0.06 0.06 0.07 0.05 0.06 0.04 0.08 0.12 0.08 0.12
8 0.06 0.06 0.07 0.05 0.06 0.04 0.08 0.11 0.08 0.12

Table 11: Test of predictive power of the MS model - ENC-NEW statistics

MSI MSIH MSM
� 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.76 0.90 0.82 0.89 0.74 0.83 0.20 0.27 0.36 0.65
2 0.47 0.74 0.68 0.67 0.55 0.68 0.19 0.19 0.21 0.54
3 0.26 0.54 0.50 0.35 0.43 0.47 0.14 0.13 0.11 0.41
4 0.21 0.40 0.34 0.17 0.39 0.30 0.12 0.11 0.05 0.32
5 0.16 0.32 0.27 0.09 0.37 0.20 0.10 0.09 0.02 0.26
6 0.12 0.29 0.23 0.05 0.37 0.17 0.10 0.08 0.01 0.22
7 0.09 0.29 0.19 0.04 0.34 0.16 0.09 0.07 0.01 0.19
8 0.07 0.29 0.17 0.03 0.32 0.13 0.09 0.07 0.01 0.17
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Table 12: Test of predictive power of the MS model - MSE-F statistics

MSI MSIH MSM
� 0.3 0.5 0.3, 0.5 0.3 0.5
p22 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.70 0.85

1 0.63 0.75 0.64 0.73 0.57 0.67 0.27 0.30 0.34 0.52
2 0.43 0.59 0.53 0.53 0.42 0.52 0.20 0.20 0.23 0.47
3 0.27 0.42 0.38 0.32 0.33 0.34 0.14 0.14 0.12 0.37
4 0.21 0.33 0.27 0.17 0.32 0.24 0.13 0.12 0.06 0.29
5 0.17 0.30 0.22 0.10 0.32 0.18 0.11 0.11 0.04 0.25
6 0.14 0.28 0.20 0.05 0.32 0.16 0.10 0.09 0.02 0.22
7 0.11 0.28 0.17 0.04 0.32 0.15 0.10 0.09 0.02 0.19
8 0.08 0.27 0.16 0.03 0.29 0.14 0.09 0.09 0.02 0.18

References

Bidarkota P.V. (2001), �Alternative Regime Switching Models for Forecasting In�ation�,

Journal of Forecasting , 20(1), 21-35.

Cecchetti G.C., Lam P-S., Nelson C.M. (1990), �Mean Reversion in Equilibrium Asset

Prices�, American Economic Review, 80(3), 398-418.

Clark T.E., McCracken M.W. (2004), �Evaluating Long-Horizon Forecasts�,Working Paper,

Federal Reserve Bank of Kansas City and University of Missouri.

Clements M.P., Franses P.H., Swanson N.R. (2004), �Forecasting Economic and Financial

Time-Series with Non-linear Models�, International Journal of Forecasting, 20, 169-183.

Clements M.P., Krolzig H.-M. (1998), �A Comparison of the Forecast Performance of Markov-

Switching and Threshold Autoregressive Models of US GNP�, Econometrics Journal, 1, C47-

C75.

Clements M.P., Krolzig H.-M. (2003), �Business Cycle Asymmetries: Characterization and

Testing Based on Markov-Switching Autoregressions�, Journal of Business and Economic Sta-

tistics, 21(1), 196-211.

Dacco R., Satchell C. (1999), �Why do Regime-Switching Forecast So Badly?�, Journal of

Forecasting, 18, 1-16.

Diebold F.X., Mariano S.R. (1995), �Comparing Predictive Accuracy�, Journal of Business

and Economic Statistics, 13(3), 253-63.

Engel C. (1994), �Can the Markov Switching Model Forecast Exchange Rates?�, Journal of

International Economics, 36(1-2), 151-165.

Engel C., Hamilton J.D. (1990), �Long Swings in the Dollar: Are They in the Data and Do

Markets Know it?�, American Economic Review, 80(4), 689-713.

16



Garcia R., Perron P. (1996), �An Analysis of the Real Interest Rate Under Regime Shifts�,

Review of Economics and Statistics, 78(1), 111-125.

Hamilton J.D. (1989), �A New Approach to the Economic Analysis of Nonstationary Time

Series and the Business Cycle�, Econometrica, 57, 357-384.

Harvey D.I., Leybourne S.J., Newbold (1998), �Tests for Forecast Encompassing�, Journal

of Business and Economic Statistics, 16(2), 254-59.

Krolzig H.-M. (2004), �Predicting Markov-Switching Vector Autoregressive Processes�, Jour-

nal of Forecasting (In press).

Krolzig H.-M., Toro J. (2002), �Classical and Modern Business Cycle Measurement: the

European Case�, Working Paper, Fundacion Centro de Estudios Andaluces, No. 2002/20.

Tashman L.J. (2000), �Out-of-sample Tests of Forecasting Accuracy: an Analysis and Re-

view�, International Journal of Forecasting, 16, 437-450.

17



Figure 1: Error decomposition results
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Figure 2: Error decomposition results in the bivariate case (�rst equation)
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