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Abstract

Markov chain Monte Carlo (MCMC) methods have become a ubiquitous tool in Bayesian analysis.

This paper implements MCMC methods for Bayesian analysis of stochastic frontier models using the

WinBUGS package, a freely available software. General code for cross-sectional and panel data are

presented and various ways of summarizing posterior inference are discussed. Several examples illustrate

that analyses with models of genuine practical interest can be performed straightforwardly and model

changes are easily implemented.
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1 Introduction

The use of stochastic frontiers in the analysis of productivity and firm efficiency has become widespread

since the seminal papers by Meeusen and van den Broeck (1977) and Aigner, Lovell and Schmidt (1977).

More recently, a large amount of interest has been devoted to the use of Bayesian methods for making

inference in stochastic frontier models. The latter was introduced by van den Broecket al. (1994), who

commented on its particular advantages in this context: exact (small-sample) inference on efficiencies,

easy incorporation of prior ideas and restrictions such as regularity conditions and optimal treatment

of parameter and model uncertainty. Bayesian methods are now commonplace in this literature, as

evidenced by Kim and Schmidt (2000) and recent applications bye.g.Kurkalova and Carriquiry (2002)

and Ennsfellner, Lewis and Anderson (2004). In addition, five of the 12 papers in a recent special issue

of theJournal of Econometricson “Current developments in productivity and efficiency measurement”

adopt a Bayesian approach. The complexity of stochastic frontier models makes numerical integration

methods inevitable. The most appropriate method in this context is clearly Markov chain Monte Carlo

(MCMC), as introduced by Koop, Steel and Osiewalski (1995) and used in virtually all recent Bayesian
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papers in this literature, seee.g.Kurkalova and Carriquiry (2002), Tsionas (2002), Huang (2004) and

Kumbhakar and Tsionas (2005).

A problem that occurs, especially for applied users that have not yet implemented Bayesian methods

in this field, is the availability of reliable and user-friendly software. To our knowledge, there is only one

publicly available software, which is described in Arickxet al. (1997). However, the latter is based on

importance sampling, rather than MCMC, and lacks flexibility in model specification (it basically only

implements the simple cross-sectional stochastic frontier model with a restricted choice of efficiency

distributions and priors).

Thus, this paper describes the use of a freely available software for the analysis of complex statistical

models using MCMC techniques, called WinBUGS, in the context of stochastic frontiers. It turns out that

WinBUGS can become a very powerful and flexible tool for Bayesian stochastic frontier analysis, and

only requires a relatively small investment on the part of the user. Once the (applied) user understands

the logic of model building with WinBUGS, Bayesian analysis is conducted quite easily and many built-

in features can be accessed to produce an in-depth and interactive analysis of these models. In addition,

execution is quite fast, even of complicated models with large amounts of data and model extensions

can easily be accommodated in a modular fashion. The modeller can really concentrate on building and

refining an appropriate model1, without having to invest large amounts of time in coding up the MCMC

analysis and the associated processing of the results. Despite the relative ease of use, we do wish to

reiterate the health warning that comes with WinBUGS: “The programs are reasonably easy to use and

come with a wide range of examples. There is, however, a need for caution. A knowledge of Bayesian

statistics is assumed, including recognition of the potential importance of prior distributions, and MCMC

is inherently less robust than analytic statistical methods. There is no in-built protection against misuse.”

We illustrate the use and flexibility of WinBUGS for Bayesian stochastic frontier modelling of the

cross-sectional data on electric utility companies used and listed in Greene (1990) and of the panel data

on hospitals used in Koop, Osiewalski and Steel (1997).

The WinBUGS software (together with a user manual) can be downloaded (the current fee is zero)

from the website

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

We have used Version 1.4 in this paper. All WinBUGS code used in this paper, as well as the data on the

electricity firms and hospitals is freely available at

http://www.warwick.ac.uk/go/msteel/steel homepage/software/.

2 Stochastic Frontier Model

The basic model relates producers’s costs (or outputs) to a minimum cost (or maximum output) frontier.

If a panel of costs has been observed, a simple model regresses the logarithm of cost,yit, associated with

firm i observed at timet and producing a certain quantityQit, on a set of regressors inxit, which will be

1This can include models which have not previously appeared in the literature, such is the flexibility of the software.
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functions of the logarithm of input prices andQit (i = 1, . . . , N, t = 1, . . . , T ):

yit
ind∼ N(α + x′itβ + uit, σ

2), (1)

where N(µ, σ2) denotes a normal distribution with meanµ and varianceσ2. Inefficienciesuit model the

difference between best-practice and actual cost, and these are assumed to have a one-sided distribution,

such as the exponential (ase.g.in Meeusen and van den Broeck, 1977). Often we will exploit the panel

context by assuming that inefficiencies remain constant over time,i.e. uit = ui, t = 1, . . . , T , leading

to2

ui
i.i.d.∼ Exp(λ), (2)

which denotes an exponential distribution with mean1/λ. The parameters introduced in this model are

assigned priors, for example a multivariate normal:

β ∼ N(0,Σ),

possibly truncated to reflect regularity conditions (see Subsection 3.3),

σ−2 ∼ Ga(a0, a1),

a gamma distribution with shape parametera0 and meana0/a1, and

λ ∼ Exp(− log r?),

where the latter prior implies that prior median efficiency is equal tor?. Minor changes are required

for production frontiers.3 Firm-specific efficiencies are introduced as functions of the inefficiency terms;

in particular, the efficiency of firmi is defined asri = exp(−ui). These are clearly key quantities of

interest in practice.

In WinBUGS, models are expressed in code through the distributions of the observations and param-

eters together with their independence structure. A stochastic frontier model is formulated in Display 1

for a potentially unbalanced panel of observations with time-invariant inefficiencies and a cost frontier.

Firstly, the distribution of the log cost in equation (1) is coded. The vectory holds theK observed log

costs, and the matrixdata is a K × (p + 2) matrix. Each row holds the observed values for each

firm of thep regressors, thep+1 -th column holds an index for each firm running from1 to N and the

p+2 -th column holds the time of the observation, which has a maximum value ofT (the latter variable

is used in Section 4, where we have a time trend in the frontier and allow for efficiencies to vary over

time). The distribution ofyit is encoded using the commanddnorm for thestochastic nodey[k] which

has two arguments representing the mean and the precision (the inverse of the variance). WinBUGS re-

stricts the parameters of the command to be variables and so the mean must be defined as alogical node

mu[k] which can be formed in a standard way. The expressioninprod(beta[],data[k, 1:p]

representsx′itβ.

2For largeT that assumption might be weakened, as we will discuss in Subsection 4.2.
3If we wish to model production frontiers,yit will be the output produced with a certain quantity of inputs, which will

determine the regressors inxit and the inefficiency termuit will appear with a negative sign in the mean ofyit.
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The inefficiencyui is specified to have an exponential distribution with mean1/λ using the com-

manddexp(lambda) . A useful feature of WinBUGS is the use of logical nodes to define interesting

functions of the parameters in the model. Thei-th firm’s efficiency is represented byeff[i] . Finally,

the prior distributions of each unknown parameter is specified as above.

model

{

for ( k in 1:K ) {

firm[k] <- data[k, p + 1]

mu[k] <- alpha + u[firm[k]] + inprod(beta[],data[k,1:p])

y[k] ˜ dnorm(mu[k], prec)

}

for (i in 1:N) {

u[i] ˜ dexp(lambda)

eff[i] <- exp(- u[i])

}

lambda0 <- -log(rstar)

lambda ˜ dexp(lambda0)

alpha ˜ dnorm(0.0, 1.0E-6)

for (i in 1:p) {

beta[i] ˜ dnorm(0.0, 1.0E-6)

}

prec ˜ dgamma(0.001, 0.001)

sigmasq <- 1 / prec

}

Display 1: WinBUGS model specification code for the basic cost frontier with panel data

It is very easy to change some of the model assumptions above. For example, we may want to use a

different distribution for the inefficiencies, such as the half-normal used in Aigner, Lovell and Schmidt

(1977) or the truncated normal of Stevenson (1980)4. For the half-normal

ui ∼ N+
(
0, λ−1

)

we simply replace the distribution ofu[i] by

4The truncated normal and half-normal need a “shared component” which can be downloaded from the WinBUGS develop-

ment site, currently athttp://homepages.tesco.net/ ∼creeping death/shared.html .
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u[i] ˜ djl.dnorm.trunc(0,lambda,0,1000),

while the truncated normal distribution

ui ∼ N+
(
ζ, λ−1

)

also allows the mean of the underlying normal distribution to be estimated and is implemented by

u[i] ˜ djl.dnorm.trunc(zeta,lambda,0,1000)

A general gamma Ga(φ, λ) distribution as in Greene (1990) would correspond to

u[i] ˜ dgamma(phi,lambda).

Appropriate prior specifications for the parameters need to be included. Various suggestions for prior

choices have been made in the literature (e.g.in Tsionas, 2000 and Griffin and Steel, 2004).

Once the model code has been loaded, the data must be specified in a special format, which is taken

from the statistical package, S-plus. More details are available from the WinBUGS manual. Code for

converting data from some other popular packages can be found on the page

http://www.mrc-bsu.cam.ac.uk/bugs/weblinks/webresource.shtml

Finally, initial values for the variables being estimated need to be specified. The speed of convergence

of the chain is affected by these values. Values with larger posterior density will generally lead to faster

convergence. However, in our experience convergence of chains is relatively fast from most plausible

choices. Once the model, data and initial values have been entered, WinBUGS creates compiled code

to perform an MCMC algorithm for sampling from the posterior distribution. There are several sam-

pling options including multiple chains to aid convergence diagnosis and thinning of the chain to reduce

dependence between successive simulated values.

The following sections illustrate the power of WinBUGS to produce useful summary statistics and

graphical representations of the posterior distribution with several example datasets. We also show how

changes to the model specification can be implemented quite easily, and how to deal with economic

regularity conditions and model uncertainty.

3 An Old Chestnut: The Electricity Data

The first example analysesN = 123 cross-sectional data from the U.S. electric utility industry in 1970.

The data was originally analysed by Christensen and Greene (1976) and subsequently by Greene (1990).

Following that analysis, we specify the frontier for ln(Cost/Pf ) as

α + β1lnQ + β2ln(Pl/Pf ) + β3ln(Pk/Pf ) + β4ln2Q (3)

where Output (Q) is produced with three factors: labour, capital, and fuel and the respective factor prices

arePl, Pk andPf .
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3.1 The standard exponential model

Here we use the model in Section 2, where now we haveT = 1, with exponentially distributed inef-

ficiencies. The chain was run with a burn-in of 20 000 iterations with 200 000 retained draws and a

thinning to every 5th draw. WinBUGS has a number of tools for reporting the posterior distribution.

A simple summary (Table 1) can be generated showing posterior mean, median and standard deviation

with a 95% posterior credible interval. Parameter names are related in an obvious way to the model in

Section 2. A fuller picture of the posterior distribution can be provided using thedensity option in the

Sample Monitor Tool which draws a kernel density estimate of the posterior distribution of any

chosen parameter, as in Figure 1.

node mean sd MC error 2.5% median 97.5% start sample

alpha -7.47 0.3407 0.001049 -8.133 -7.472 -6.793 20001 200000

beta[1] 0.4252 0.04301 1.544E-4 0.34 0.4255 0.5088 20001 200000

beta[2] 0.2501 0.06495 1.513E-4 0.1226 0.2499 0.3776 20001 200000

beta[3] 0.0473 0.06193 1.823E-4 -0.07302 0.04679 0.17 20001 200000

beta[4] 0.02962 0.002843 8.653E-6 0.02407 0.02961 0.03524 20001 200000

lambda 12.23 5.207 0.03901 7.072 10.79 26.75 20001 200000

sigmasq 0.01332 0.003836 2.381E-5 0.007233 0.01281 0.02188 20001 200000

Table 1:WinBUGS output for the electricity data: posterior statistics

node 2.5% median 97.5%

eff[1] 1 4 90

eff[2] 34 99 123

eff[3] 13 74 121

eff[4] 9 58 120

eff[5] 25 91 122

eff[6] 23 89 122

eff[7] 21 84 122

Table 2:WinBUGS output for the electricity data: rank statistics for the first seven firms in the sample

Often, the quantities of primary interest in stochastic frontier analysis are the efficiencies. Firm-

specific efficiencies are immediately generated by the sampler for each firm and their full posterior

distributions are readily available, and can be plotted in the same way as in Figure 1. There are vari-

ous other options for displaying the posterior distribution. For example theCompare... menu item

brings up theComparison Tool that draws a boxplot (Figure 2) or caterpillar plot of the sampled

efficiencies for some chosen firms. A practically interesting function of the firm-specific efficiency mea-

surements is given by their ranks. WinBUGS can automatically compute a sample from their posterior
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alpha sample: 200000

   -9.0    -8.0    -7.0    -6.0

    0.0

    0.5

    1.0

    1.5

beta[1] sample: 200000

    0.2     0.4     0.6

    0.0
    2.5
    5.0
    7.5

   10.0

beta[2] sample: 200000

   -0.2     0.0     0.2     0.4

    0.0
    2.0
    4.0
    6.0
    8.0

beta[3] sample: 200000

   -0.4    -0.2     0.0     0.2

    0.0
    2.0
    4.0
    6.0
    8.0

beta[4] sample: 200000

   0.01    0.02    0.03    0.04

    0.0

   50.0

  100.0

  150.0

lambda sample: 200000

    0.0    10.0    20.0    30.0

    0.0
   0.05
    0.1

   0.15
    0.2

sigmasq sample: 200000

    0.0    0.01    0.02    0.03

    0.0

   50.0

  100.0

  150.0

Figure 1:WinBUGS output for the electricity data: posterior densities for parameters

[1]
[2] [3] [4] [5] [6] [7]

[8] [9]
[10]

box plot: eff[1:10]

    0.4

    0.6

    0.8

    1.0

Figure 2:WinBUGS output for the electricity data: boxplot of posterior efficiency distributions for the first ten firms

in the sample

distribution using theRank... option from theInference menu. Table 2 shows a summary of the

posterior distribution for the first seven electricity producers in the sample (high rank corresponds to

high efficiencies). The posterior distribution clearly demonstrates a large spread of the rankings.

A simple check of the mixing of the posterior distribution arises from some graphical summary of

the values taken by the chain. For example, a trace plot of all drawn values is available through the

history button or through thetrace button for the previous batch of, say, 1000 drawings.

The autocorrelation function for the chain of each parameter (as shown in Figure 3) can also indicate

dimensions of the posterior distribution that are mixing slowly. Slow mixing is often associated with high
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alpha

lag

0 10 20 30

    0.0

    0.5

    1.0

beta[1]

lag

0 20 40

    0.0

    0.5

    1.0

beta[2]

lag

0 20 40

    0.0

    0.5

    1.0

beta[3]

lag

0 20 40

    0.0

    0.5

    1.0

beta[4]

lag

0 20 40

    0.0

    0.5

    1.0

lambda

lag

0 20 40

    0.0

    0.5

    1.0

sigmasq

lag

0 20 40

    0.0

    0.5

    1.0

Figure 3:WinBUGS output for the electricity data: autocorrelation functions of the chain

posterior correlations between parameters. The plots indicate that all parameters are mixing well with

autocorrelation vanishing before 20 lags in each case. Thecorrelation tool (thecorrelation

option in theinference menu) can produce scatterplots of every parameter against every other pa-

rameter to indicate correlation or a correlation coefficient can be estimated from the current output.

Graphical representations of the posterior distribution can indicate problems with the performance

of the MCMC algorithm. More sophisticated methods for convergence detection are implemented in

the Convergence Diagnostic and Output Analysis (CODA) software which is available for the statistical

packages S-plus and R. WinBUGS produces output that is formatted for direct use with these programs

and allows the behaviour of the chain to be investigated using some popular statistical tests.

Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes
Dbar Dhat pD DIC

y -187.486 -233.447 45.961 -141.525

total -187.486 -233.447 45.961 -141.525

Table 3:WinBUGS output for the electricity data: DIC with normal errors

WinBUGS automatically implements the DIC (Spiegelhalteret al., 2002) model comparison crite-

rion. This is a portable information criterion quantity that trades off goodness-of-fit against a model

complexity penalty. In hierarchical models, deciding the model complexity may be difficult and the

method estimates the “effective number of parameter”, denoted here bypD. D̄ is the posterior mean
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of the deviance (-2× log likelihood) andD̂ is a plug-in estimate of the latter based on the posterior

mean of the parameters. The DIC is computed as DIC=D̄ + pD = D̂ + 2pD.5 Lower values of the

criterion indicate better fitting models. Table 3 records the values computed, in the same format as given

by WinBUGS. For our purposes here, we will focus only on the DIC value. The method was designed to

be easy to implement using a sample from the posterior distribution and the interested reader is directed

to Spiegelhalteret al. (2002) for a lively discussion of its merits.

3.2 Alternative distributional assumptions

Once this model has been fitted successfully, we may want to consider further modelling options. As

already indicated in Section 2, there are alternative choices of the inefficiency distribution. Another

popular choice is the half-normal, which can be implemented in WinBUGS by

u[i] ˜ djl.dnorm.trunc(0,lambda,0,1000).

The prior distribution

lambda ˜ dgamma(1,1/37.5)

leads to a prior median efficiency of approximately 0.875 with a reasonable spread (see van den Broeck

et al., 1994). Yet another possible inefficiency distribution is the gamma distribution, implemented by

u[i] ˜ dgamma(phi,lambda).

A suitable prior distribution, which extends the informative prior for an exponential inefficiency distri-

bution, is discussed in Griffin and Steel (2004) in a more general setting. They define

d1 <- 3

d2 <- d1 + 1

lambda0 <- -log(rstar)

phi <- 1 / invphi

invphi ˜ dgamma(d1, d2)

lambda ˜ dgamma(phi, lambda0)

The prior onphi has mode at one (corresponding to the exponential), so this centres the gamma distri-

bution over the exponential distribution and the parameterd1 controls the variability ofphi (a value of

3 is their suggested setting).

Table 4 contrasts some results on the parameters for exponential, half-normal and gamma assump-

tions. Differences on common parameters are fairly small6, and the credible interval forφ, the shape

parameter of the gamma, includes1, which corresponds to the exponential model.

In addition, a heavier tailed error distribution could be considered for the measurement error. Simply

specifying

5Thus,pD is computed as̄D − D̂.
6Note thatλ does not share a common interpretation across models.
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inefficiency distribution exponential half-normal gamma

α -7.5 (-8.1, -6.8) -7.4 (-8.0, -6.7) -7.5 (-8.1, -6.8)

β1 0.43 (0.34, 0.51) 0.41 (0.33, 0.48) 0.42 (0.33, 0.50)

β2 0.25 (0.12, 0.38) 0.24 (0.11, 0.37) 0.25 (0.12, 0.38)

β3 0.05 (-0.07, 0.17) 0.06 (-0.06, 0.19) 0.05 (-0.07, 0.18)

β4 0.030 (0.024, 0.035) 0.031 (0.025, 0.036) 0.030 (0.024, 0.036)

φ 1.65 (0.58, 6.15)

λ 10.8 (7.0, 27.2) 44.5 (20.8, 140.6) 14.5 (6.9, 52.1)

σ2 0.013 (0.007, 0.022) 0.013 (0.006, 0.021) 0.013 (0.006, 0.013)

Table 4: Parameter results (posterior medians and 95% credible intervals) for various efficiency distributions with

normal errors for the electricity data

y[k] ˜ dt(mu[k], prec, degfree)

changes the form of the error distribution in (1) to at-distribution withdegfree degrees of freedom.

The prior distribution for the degrees of freedom was chosen to be exponential with mean and standard

deviation equal to3:

degfree ˜ dexp(0.333),

which puts a considerable amount of prior mass on distributions with much heavier tails than the normal

distribution.

inefficiency distribution exponential half-normal gamma

α -7.8 (-8.4, -7.1) -7.7 (-8.4, -7.0) -7.8 (-8.4,-7.1)

β1 0.45 (0.36, 0.52) 0.44 (0.35, 0.52) 0.44 (0.35, 0.52)

β2 0.29 (0.16, 0.42) 0.28 (0.16, 0.41) 0.29 (0.16, 0.42)

β3 0.04 (-0.07, 0.16) 0.05 (-0.06, 0.17) 0.04 (-0.07, 0.16)

β4 0.028 (0.023, 0.034) 0.029 (0.023, 0.034) 0.023 (0.028, 0.034)

ν 4.4 (2.0, 11.8) 3.5 (1.6, 10.3) 4.0 (1.7, 11.1)

φ 1.9 (0.7, 6.9)

λ 11.3 (7.1, 29.4) 43.8 (20.8, 141.1) 16.0 (7.5, 56.1)

σ2 0.008 (0.003, 0.016) 0.006 (0.001, 0.014) 0.002 (0.0004, 0.0073)

Table 5:Parameter results (posterior medians and 95% credible intervals) for the two alternative efficiency distribu-

tions witht errors for the electricity data

Table 5 records some results and illustrates that the prior assumption about the degrees of freedom,

indicated byν, is quite important since the data provide little information about its value. We can use

the DIC criterion to compare the different models. Table 6 compares the DIC scores for the possible

combinations of error distribution and inefficiency distribution. Smaller values of the DIC suggest better
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error distribution inefficiency distribution D̄ D̂ pD DIC

normal exponential -187.5 -233.4 46.0 -141.5

half-normal -189.3 -239.5 50.2 -139.1

gamma -187.7 -234.0 46.4 -141.3

t exponential -190.7 -238.8 48.1 -142.6

half-normal -209.7 -263.3 53.6 -156.1

gamma -198.7 -247.7 49.0 -149.7

Table 6:Comparison of models with different distributional assumptions using the DIC criterion

eff[124] sample: 200000

    0.2     0.4     0.6     0.8     1.0

    0.0

    2.0

    4.0

    6.0

Figure 4: WinBUGS output for the electricity data: kernel density estimate of the posterior predictive efficiency

distribution for the Student-t model with half-normal efficiencies

models and so the Student-t errors tend to fit the data better than the normal measurement errors. Overall,

the results favour the half-normal distribution witht-distributed errors. The posterior distribution of the

mean of the predictive (i.e. out-of-sample) efficiency is a useful measure for comparing our inference

about the parameters of the inefficiency distributionsλ andφ (presented in Table 5). Ift-distributed errors

are assumed, the posterior mean of predictive efficiency has a 95% credibility interval of (0.88,0.97) for

the exponential distribution, (0.80,0.96) for the gamma and (0.85,0.94) for the half-normal distribution.

In other words, for this data, the half-normal and gamma distributions are associated with slightly lower

estimates of efficiency than the exponential distribution.

Finally, we estimate the posterior predictive distribution of efficiency for our preferred model with

t-distributed measurement errors and a half-normal efficiency distribution. This corresponds to the effi-

ciency of an unobserved firm in this sector. An extra inefficiency node (u[N+1] ) and efficiency node

(eff[N+1] ) are added to the model by defining

for (i in 1:(N+1)) {

u[i] ˜ djl.dnorm.trunc(0,lambda,0,1000)

eff[i] <- exp(- u[i])

}

A kernel density estimate of the distribution is shown in Figure 4. Posterior predictive median efficiency

is 0.91 and the 95% credible interval is (0.69,0.996).
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3.3 Imposing regularity conditions

The fitted frontier should obey certain economic constraints (seee.g.Kumbhakar and Lovell 2000). For

example, a cost frontier should imply positive elasticities of cost with respect to output and prices. In

other word, we need to check
d ln C

d ln Xi
> 0.

If a Cobb-Douglas frontier is fitted the condition reduces to positive coefficients in the frontier. This

change can be easily implemented in the prior distribution ofβi by replacing the normal prior

beta[i] ˜ dnorm(0.0, 1.0E-06)

with its truncated counterpart

beta[i] ˜ djl.dnorm.trunc(0.0, 1.0E-0.6,0,1000).

However, a more complicated frontier such as a translog will lead to more complicated expressions for

d ln C/d lnXi. In this example, a quadratic output term is included in the frontier and the elasticity of

cost with respect to output has the form

d ln C

d lnQ
= β1 + 2β4 ln Q.

Ideally, we would want this relationship to be true for all values ofln Q. However, since this is only

a local approximation to the frontier, it is usual to check the condition for a plausible set of values of

lnQ. A pragmatic approach restricts attention to the value of the elasticity for the observed output. This

approach will be used in this case. Imposing these properties in alternative sets of values as in Terrell

(1996) can easily be implemented. The restrictions are imposed onp(y|X, β) leading to a non-standard

likelihood function, which is implemented using the “ones-trick” described in the WinBUGS manual.

This introduces a new variablecheck , which will be zero for all cases where regularity conditions are

violated and one elsewhere. The data is now a set of ones assumed to be the result of Bernoulli sampling

with probabilities proportional to the likelihood values of those observations for which regularity holds

and zero for which it is violated. As soon as a violation occurs for one of the observations, the likelihood

value associated with that draw will, thus, be zero.C is a constant such that all values inprob are

smaller than one. In particular, we replace

for ( k in 1:K ) {

firm[k] <- data[k, p + 1]

mu[k] <- alpha + u[firm[k]] + inprod(beta[],data[k,1:p])

y[k] ˜ dnorm(mu[k], prec)

}

by

C<- 10000

for ( k in 1:K ) {
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ones[k] <- 1

firm[k] <- data[k, p + 1]

mu[k] <- alpha + u[firm[k]] + inprod(beta[1:p], data[k, 1:p])\

+ beta[p + 1] * data[k, 1] * data[k, 1]

check[k] <- step(beta[1] + 2 * beta[4] * data[k, 3])\

* step(beta[2]) * step(beta[3])

prob[k] <- check[k] * sqrt(prec) * exp(- 0.5 * prec * (y[k] - \

mu[k]) * (y[k] - mu[k]))/C

ones[k] ˜ dbern(prob[k])

}

where the more general form ofmu is used throughout this section and is simply a consequence of the

specific cost frontier in (3) and\ indicates that the following line is the continuation of the current line

and both should be entered as a single line.

inefficiency distribution exponential half-normal

α -7.7 (-8.2, -7.0) -7.7 (-8.3, -7.0)

β1 0.44 (0.35, 0.52) 0.44 (0.35, 0.52)

β2 0.27 (0.16, 0.37) 0.27 (0.15, 0.39)

β3 0.06 (0.00, 0.16) 0.06 (0.00, 0.17)

β4 0.028 (0.023, 0.034) 0.028 (0.023, 0.034)

ν 4.4 (2.1, 11.8) 3.6 (1.6, 10.4)

λ 11.3 (7.1, 29.4) 43.6 (20.6, 140.9)

σ2 0.008 (0.003, 0.016) 0.006 (0.001, 0.014)

Table 7: Parameter results (posterior medians and 95% credible intervals) for two inefficiency distributions witht

errors for the electricity data with economic restrictions

It should be noted that the non-standard likelihood function can lead to a severe deterioration in the

performance of the Gibbs sampler that WinBUGS implements, which can lead to slow convergence and

mixing. In this example, we used a thinning of 100 which lead to good autocorrelation properties in

the chain. Table 7 presents results for two possible choice of inefficiency distribution. Comparison with

Table 5 shows that the economic constraints are rarely violated for these data and the implementation

of economic constraints in this example has little effect on the analysis. Only the inference onβ3 is

moderately affected.

4 A Panel of US Hospital data

Our second example reanalyses data on costs of US hospitals initially conducted in Koop, Osiewalski

and Steel (1997), and we refer to the latter paper for further details and background of hospital cost
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estimation, the data and the particular frontier used. The data correspond toN = 382 nonteaching

U.S. hospitals over the years 1987-1991 (T = 5), selected so as to constitute a relatively homogeneous

sample. The frontier describing cost involves five different outputsY1, . . . , Y5: number of cases, number

of inpatient days, number of beds, number of outpatient visits and a case mix index. We also include

a measure of capital stock,C, an aggregate wage index,P , and a time trendt to capture any missing

dynamics. We choose a flexible translog specification and impose linear homogeneity in prices, which

allows us to normalize with respect to the price of materials. Thus, in the notation of (1) and dropping

observational subscripts for ease of notation,y = ln(cost) andx′β becomes:

x′β =
5∑

i=1

βi ln Yi + β6 lnP + β7(lnP )2 +
5∑

i=1

β7+i ln Yi lnP + β13 lnC

+
5∑

i=1

β13+i lnYi ln C + β19 ln P ln C + β20(lnC)2 + β21t + β22t
2

+
5∑

i=1

5∑

j=i

β22+5(i−1)+j ln Yi ln Yj .

Throughout this section, we will use the normal sampling in (1) combined with an exponential ineffi-

ciency distribution.

4.1 Including covariates in the inefficiency distribution

Koop, Osiewalski and Steel (1997) consider a method for extending the stochastic frontier to allow

exponentially distributed inefficiencies to depend upon covariates. Their model assumes that each firm

has a vector of binary covariates,wi for thei-th firm. That firm’s inefficiency is modelled as

ui ∼ Exp(exp{wiγ}). (4)

whereγ is a vector of regression coefficients. In the current example, there are 3 possible ownership

categories for each firm and sow contains dummy variables to represent category membership. Ac-

tually, since WinBUGS does not rely on known forms for the conditionals, the covariateswi can also

include non-binary variables. It seems reasonable to assumea priori that our belief about the efficiency

distribution for each category should be the same,i.e.

exp{γj} ∼ Exp(− log r?).

This model can be coded by defininglambda[i] , the inverse of mean inefficiency for thei-th firm and

data2 a matrix containing each firm’s characteristicsw.

for (i in 1:N) {

lambda[i] <- exp(inprod(gamma[], data2[i, 1:p2]))

u[i] ˜ dexp(lambda[i])

eff[i] <- exp(- u[i])

}
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It is easier to define a prior distribution forexp{γj} and WinBUGS allows us to define the relationship

gamma[j] <- log(expgamma[j]) using a logical node. The WinBUGS code for this prior is:

lambda0 <- -log(rstar)

for ( j in 1:p2 ) {

gamma[j] <- log(expgamma[j])

expgamma[j] ˜ dexp(lambda0)

}

Using ownership dummies (indicating non-profit, for-profit or government-run hospitals) as covari-

ates for the inefficiency distribution, Table 9 compares the DIC values for the basic model with that of

the model including these covariates. There seems to be little support for this model extension. Never-

theless, Table 8 does indicate some evidence for lower efficiencies in the for-profit sector (corresponding

to γ2). The latter is in line with the results in Koop, Osiewalski and Steel (1997).

basic model exogeneous variables time-varying efficiencies

λ 5.75 (5.07, 6.51) 6.00 (5.22, 6.87)

exp{γ1} 6.25 (5.38, 7.29)

exp{γ2} 4.04 (3.12, 5.16)

exp{γ3} 6.89 (5.11, 9.16)

η -0.026 (-0.047, -0.0041)

σ2 0.0042 (0.0039, 0.0045)0.0042 (0.0039, 0.0045) 0.0042 (0.0039, 0.0045)

Table 8:Selected parameter results (posterior medians and 95% credible intervals) for the hospital data

D̄ D̂ pD DIC

basic model -5033 -5413 379.7 -4654

exogeneous variables-5025 -5403 378.0 -4647

time-varying -5041 -5423 381.5 -4660

Table 9:DIC results for the hospital data with various model specifications

4.2 Time-varying efficiency

The assumption made in equation (2) that firm-specific technical efficiency is constant over time may

not always be tenable. An alternative model that allows time-varying efficiencies usesuit to represent

the inefficiency of firmi at time t. A simplifying assumption proposed in Lee and Schmidt (1993)

definesuit = β(t)ui.This specification is parsimonious but makes a strong assumption about the form of

time-dependence. Several forms have been considered forβ(t), in particular Battese and Coelli (1992)

propose

β(t) = exp{η(t− T )}
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where positiveη indicates increasing efficiency over time. We choose the prior distribution ofη to

be a zero-mean normal distribution with variance 0.25 which represents our prior indifference between

increasing and decreasing efficiency and, forT = 5, supports reasonable predictive distributions of

efficiency at each time point. This new model can be implemented in WinBUGS by changing the mean

of the log costs to

t <- data[k, p+2]

mu[k] <- alpha + exp(eta*(t-T)) * u[firm[k]] + inprod(beta[],data[k,1:p])

and the prior is represented by the statement

eta ˜ dnorm(0.0,4).

Table 9 indicates some support for this time-varying model over the basic model. From the posterior

results onη in Table 8, we conclude that efficiencies tend to decrease somewhat over time.

4.3 Model comparison of the form of the frontier

The stochastic frontier represents an approximation to the best-practice output for a set of inputs or

lowest cost for producing a set of outputs. The common forms of the function have usually been log-

linear but there may be uncertainty in the frontier specification. For example, a Cobb-Douglas functional

form is fairly restricted. A translog is much more flexible, using a second order approximation to the

unknown function, but at the expense of introducing many parameters which can lead to a poor fit.

An improvement in fit may arise through careful selection of the higher order terms and interactions

or of various other covariates. In the example above, we might wish to allow for the possibility of no

time trend, a linear time trend or a quadratic time trend. In the Bayesian approach these questions of

model choice can be answered through model comparison tools such as the DIC. We restrict attention to

deciding on the type of time trend to include in the model. Table 10 shows the results of running three

separate chains incorporating no time trend, a linear trend and a quadratic time trend in the basic model

with a common efficiency distribution for all hospital types and constant efficiencies over time. The

models with a time trend far outperform the model without time trend. The results indicate a preference

for the model with a quadratic time effect, as used in the previous subsections.

D̄ D̂ pD DIC

quadratic time trend -5033 -5413 379.7 -4654

linear time trend -5026 -5405 379.2 -4647

no time trend -2581 -2914 333.4 -2248

Table 10:DIC results for the hospital data with the basic model
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5 Conclusions

This paper demonstrates that WinBUGS provides a useful framework for the Bayesian analysis of

stochastic frontier models. We provide code to implement a standard model for cross-sectional, bal-

anced and unbalanced panel data with a time-invariant exponential inefficiency distribution. Many other,

more complicated, models can be analysed using simple extensions of this code, for example to include

covariates in the efficiency distribution and time-varying efficiencies. We also illustrate ways to impose

economic regularity conditions and deal with model uncertainty. We emphasize that we have merely

shown a few possible model specifications and extensions7 and it should also be fairly straightforward

to implement many other Bayesian models such as random coefficient frontiers (see Tsionas, 2002 and

Huang, 2004) or models developed in the literature for dealing with multiple-output analysis or the mod-

elling of undesirable outputs (see Fernández, Koop and Steel, 2002). We also stress that priors can be

specified in line with genuine prior beliefs, as WinBUGS does not require priors to be conjugate in any

sense. Modelling, both of the sampling model and the prior assumptions, can be conducted creatively

and in accordance with the particular problem at hand, without worrying about having to develop and

modify complicated computer code.

WinBUGS immediately leads to full posterior distributions of the model parameters and interest-

ing functions of these parameters, such as firm-specific efficiencies and the rankings of firm-specific

efficiencies. Many graphical and other summaries of the posterior distributions and the behaviour of the

MCMC sampler are built-in. The availability of CODA-compatible output allows a range of convergence

diagnostics to be produced very easily.

We would certainly recommend the applied user of stochastic frontier models to experiment with

WinBUGS and we hope that the availability of WinBUGS code will allow these users to add Bayesian

methods to their modelling and inference toolbox.
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