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Abstract: In a presentation to the American Economics Association, McCloskey (1998)

argued that "statistical significance is bankrupt" and that economists' time would be

"better spent on finding out How Big Is Big". This brief survey is devoted to methods of

determining "How Big Is Big". It is concerned with a rich body of literature called

selection procedures, which are statistical methods that allow inference on order statistics

and which enable empiricists to attach confidence levels to statements about the relative

magnitudes of population parameters (i.e. How Big Is Big). Despite their prolonged

existence and common use in other fields, selection procedures have gone relatively

unnoticed in the fields of economics, and, perhaps, their use is long overdue. The purpose

of this paper is to provide a brief survey of selection procedures as an introduction to

economists and econometricians and to illustrate their use in economics by discussing a

few potential applications.  Both simulated and empirical examples are provided.
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1. Introduction

In her presentation to the American Economics Association, Deirdre McCloskey

(1998) argued that "statistical significance is bankrupt" and that economists' time would

be "better spent on finding out How Big Is Big".1  Absent a philosophical debate on the

merits of her arguments, one cannot deny that empirical economic research is often

concerned with comparing the size of parameters across various populations or studies.

For instance, economists are concerned with relative growth rates across countries, wage

discrimination across industries, and technical efficiency across production units. Indeed,

the proliferation of panel data sets and the econometrics of panel data, have provided

applied economists with an arsenal of tools to perform these types of comparative studies

easily for large numbers of populations.

For example, Seale (1990) uses panel data and a fixed effect regression

specification to estimate and rank the technical efficiency of twenty-five Egyptian tile

manufacturers.   Interest centers on determining which tileries are most efficient.  Fields

and Wolff (1995) use the Current Population Survey to estimate a cross sectional log-

wage equation. Parameter estimates are used to calculate and rank the gender wage gap

across various industry classifications. Haurin (1989) uses the National Longitudinal

Survey to estimate a women’s leisure demand equation to determine the dynamic effects

of disruptions in spousal income.  The four disruptions explored include: “death of

spouse”, “divorce/separation from spouse”, “spouse becomes unemployed” and “spousal

health worsens”.  It is determined that “divorce/separation from spouse” has the largest

                                                          
1 My apologies to Dr. McCloskey for quoting her out of context. What McCloskey was actually arguing is
that all frequentist notions of hypothesis testing are "bankrupt", and they are bankrupt in the sense that
given a large enough sample size, any parameter can be found statistically significant. In the end, the
inferences presented here are based on these same frequentist notions that McCloskey debunks, and they
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effect on a woman’s leisure demand. Mowery (1983) compares the survival rates of three

classes of firms (large, small, and large with research facilities) during the 1930’s.  He

estimates and ranks several coefficients that determine a firm’s probability of survival.

In these examples an implied goal of the research may be to make statements

about the relative magnitude of the populations, such as "firm j is the most efficient," or

"industry n is more discriminatory than industry q," or "spousal disruptions a and b have

the smallest effect on leisure demand". From a statistical standpoint, however, these

statements are meaningless without an associated confidence level. For example, it is

only meaningful to assert that "industry r has the smallest wage gap with 95%

confidence". There is a body of statistical literature called ranking and selection

procedures devoted to these types of inferences. The purpose of this paper is to describe

some of these procedures that may be of use to economists.2

It is important to distinguish at the outset the difference between ranking

procedures and selection procedures; the latter are likely to be more relevant to

economists and are consequently the focus of this paper. Suppose that there are N

populations, and population i has parameter value αi, and that there are T observations

from each population so that we can calculate unbiased sample estimates for each

parameter, iα̂ . Let the population ordering of the parameters be α[N] ≥ α[N-1] ≥ … ≥ α[1],

and let )(ˆ iα  be the sample mean from the population with mean α [i]. That is, α [N] >

α [N-1] does not necessarily imply that )(ˆ Nα > )1(ˆ −Nα  due to sampling variation, so that the

                                                                                                                                                                            
are not strictly immune to her sample size criticism. However, the coinage "How Big Is Big" is just too
tempting to ignore.
2 Per Dudewicz and Koo (1982), as of 1982 there were 1188 known publications, theses and technical
reports on the subject of ranking and selection. Of these only one, Burdick et al. (1967), concerned the field
of economics.
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ordering in the sample may not correspond to the ordering in the population.  Ranking

procedures are techniques for controlling the probability that the ordering of the sample

estimates is indeed the ordering of the population parameters. These are typically

employed in the "design of experiments" literature to allow experimenters to ex ante

select experimental sample sizes which ensure that a pre-selected probability of a correct

sample ordering is attained. For example, if  a bio-statistician is concerned with ranking

three drug treatments in terms of their relative effectiveness in combating a particular

disease, she administers the drug treatments to a sample of patients, measures their

performance on each patient, and calculates a sample average of performance for each

treatment.  Based on these sample averages, she ranks the treatments as “good”, “better”

and “best”. Ranking procedures enable the bio-statistician to pre-select appropriate

sample sizes (numbers of patients to test) to ensure that her sample ranking is true at a

predetermined confidence level. In economics, where “experiments” are typically not

designed, the use of ranking procedures seems dubious. As such, they will not be

addressed.3

Selection procedures, on the other hand, are techniques for identifying a select

group of populations with the largest (smallest) population parameters at a pre-specified

confidence level. To continue our example, suppose that our bio-statistician forgot to

perform an ex ante ranking procedure and was faced with the ex post results of her

experiment: “good”, “better”, “best”.  Suppose further that she recognizes the limitation

of her experiment; she knows that even though “Treatment A” is the best in the sample,

perhaps it is not the best in truth (in the population).  Selection procedures allow her to

                                                          
3 My apologies to Vernon Smith and the Economic Science Lab at the University of Arizona, where
economic experimental design is alive and well.
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attach confidence levels to her ranking results such as, “Treatment A is best with 80%

confidence” or “with 95% confidence Treatments A and C are best and Treatment B is

not”. Complete details of these procedures are discussed in the following section, but,

suffice it to say that an economist might use these techniques to make statements such as

"the countries with the slowest growth rate is either j or r with probability 0.95" or "the

most efficient firm is firm  j with probability 0.85."  That is, an economist might use

selection procedures to determine “How Big Is Big”.

Due to the nature of order statistics, both ranking and selection procedures are

necessarily simultaneous multivariate inference procedures. That is, to make statements

about the relative size of population parameters (as these procedures do), it is necessary

to simultaneously compare each parameter to each of the other parameters while

controlling for the overall confidence level of the statement. That is, for the bio-

statistician to know that Treatment A is the best, she must know simultaneously that

Treatment A is better than Treatment B and that it is also better then Treatment C.  To

make joint probability statements one could use the Bonferroni inequality, but it becomes

too conservative after only a few simultaneous statements. The Bonferroni inequality

might be appropriate for our bio-statistician and her two simultaneous statements, but it

would be much too conservative for an economist who is interested in ranking the

efficiencies of 171 Indonesian rice farms or the growth rates of 50 U.S. states. Due to this

implicit simultaneity, ranking and selection procedures are closely related to a branch of

multivariate decision theory called multiple comparison procedures.

Multiple comparison procedures are techniques for constructing simultaneous

confidence intervals for differences between population parameters and have recently
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been used to perform inference in economic applications. See Horrace and Schmidt

(1996, 1999) and Horrace (1999). For instance, Horrace and Schmidt (1999) employ a

multiple comparison procedure called multiple comparisons with the best (MCB) to

construct simultaneous confidence intervals on parameters, α [N] - α i, i = 1, ..., N, and to

select the populations with the largest α i at a pre-specified confidence level. Horrace and

Schmidt (1999) provide a detailed survey and a few new theorems for MCB. Horrace

(1999) uses MCB to uncover the ranking uncertainty of an order statistic of labor market

wage gaps across various industry classifications. All of these papers are concerned with

performing tests of "bigness" and indirectly use some of the techniques outlined herein.

This paper is a brief survey of selection procedures intended for an audience of

applied economists to encourage their study and application. The next two sections

provide the survey. Section 4 illustrates these procedures with two brief (but informative)

empirical examples. Section 5 provides the summary and conclusions.

2. Selection Procedures: The Independent Case

2.1 Overview

Selection procedures are usually traced back to Bechhofer (1954). However,

because they are only one approach in multiple decision theory, their roots are often

attributed to Abraham Wald in the 1940's. A comprehensive, early survey is provided in

Dudewicz and Koo (1982), and an excellent textbook treatment with extensive references

is given in Gupta and Panchapakesan (1979). Much of the material presented here is

drawn from these last two sources.

As eloquently detailed in Dudewicz and Koo (1982, p.12), statistical science has
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historically had a "preoccupation with existence of effects." Questions such as, "does

smoking cause cancer?", or "do seatbelts reduce accident severity?" as well as tests of

hypotheses of the same are often the focus of empirical investigation. However, with the

pioneering work of Bechhofer (1954) statistical techniques were developed to answer

comparative questions concerning the relative magnitudes of populations or treatments.

Responding to such questions as, "a farm may be planted with any of several different

varieties of wheat, which one has the highest yield?" or "heat treated steel may be

produced with several different additives, which such steel is strongest?" became the goal

of certain branches of applied statistical research. It is questions of the latter variety that

selection procedures attempt to answer: questions of "bigness". This section details two

selection methods under the assumption that the populations of interest are independent

and have equal variance; the methods are most readily applicable to controlled

experiments. While independence of populations is unlikely in economic applications,

these methods provide the basis for the dependent case to be discussed in section 3.

Selection procedures can be divided into two types: indifference zone selection

procedures and subset selection procedures. Indifference zone selection procedures were

originally due to Bechhofer (1954) and were later considered by Fabian (1962) and Desu

(1970). Subset selection procedures were due to Gupta (1956, 1965). Both types of

procedures are discussed in this paper.  The basic framework for either type of selection

procedure is as follows.  Let 1κ , ..., Nκ  be N independent populations with cumulative

distribution functions F(y,α 1), ..., F(y, Nα ), respectively.  Typically, α i is a population

parameter such as the population mean.  We assume that F is a normal distribution

function. This assumption can be relaxed but is the most common distributional
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assumption made and, for the purposes of economics, is usually appropriate for inference.

Denoting the ordered parameters as α [N] ≥ α [N-1] ≥…≥ α [1], the purpose of selection

procedures is to use sample estimates of the parameters to make some sort of selection

from the N populations concerning the α i, while controlling the probability of making a

correct selection. Typical selections might be: the one population with the largest

(smallest) α i, a subset of populations with the largest (smallest) α i, or a subset of

populations that includes the k < N populations with the largest (smallest) α i. The

present survey is by no means exhaustive; it therefore only includes the most basic results

in the literature and only those results that make sense in economic or econometric

applications. We therefore restrict attention to the problem of selecting the population or

subset of populations with the largest (smallest) α i. The interested reader is referred to

Gupta and Panchapakesan (1979), for a more complete discussion of the literature.

2.2 Indifference Zone Selection.

Let the α i be the unknown population means, and assume that the populations

have standard variance σ 2. Consider the problem of selecting that population with the

largest mean, α [N]. Given independent random samples of size T from each population,

we can calculate independent unbiased estimates of the population means, 1α̂ , ..., Nα̂ .

Let )(ˆ iα  be the sample mean from the population with mean α [i]. That is, α [N] > α [N-1]

does not necessarily imply that )(ˆ Nα > )1(ˆ −Nα . Selecting the population associated with

maxi iα̂  as our estimate of [N], then

                        Pr{population [N] is selected} = Pr{ )(ˆ Nα  ≥ )1(ˆ −Nα , for i = 1, ..., N-1}
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Tables for various values of N, h and P* are contained in Bechhofer (1954) and

Dudewicz and Koo (1982).  Gupta (1963) and Milton (1963) tabulate 2-1/2h for various

values of N≤25 and P*. For a complete listing of tabulations see Gupta and

Panchapakesan (1979, section 23.2). The threshold δ * partitions the parameter space of

the α  into two zones: the preference zone, where α [N] - α [N-1] ≥ δ *, and the

indifference zone, where α [N] - α [N-1] <δ *, hence the name of the procedure. For

controlled experiments one can select δ * and P* then calculate the necessary sample

size T to ensure that the population associated with maxi iα̂  is [N] with at least

probability P*.  (This is akin to the ranking procedure briefly mentioned in the

introduction.) Conversely, for a given T we might derive an operating characteristic curve

of the procedure as the set of all (δ *, P*) that satisfy equation 1. That is, for a given data

set from the N populations that satisfy the assumptions of the problem, we can make

probability statements such as, "we have selected the population with the largest α i with

probability at least  P* when the difference between the largest and second-largest α i is

at least δ *."  As an example, if the bio-statistician’s criterion for effectiveness is “days

until cured”, then she might use the subset selection procedure to state “treatment A is the

best treatment with at least 90% probability when the difference between the best and
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second best treatment is 5 days”  or “treatment A is the best treatment with at least 95%

probability when the difference between the best and second best treatment is 10 days”.

Of course, the "independence of the populations" and "known variance"

assumptions are unlikely to hold in economics applications, and the usefulness of the

aforementioned probability statement is suspect, because we must arbitrarily select δ *.4

However, the present discussion is merely pedagogical, and more "realistic" discussions

are presented in the sequel.  This is the fundamental indifference zone procedure due to

Bechhofer (1954), also considered by Tamhane and Bechhofer (1977, 1979).

Modifications to the fundamental procedure are too numerous to detail here, but include

procedures for 2σ  unknown due to Bechhofer et al. (1954) and Dunnett and Sobel

(1954); differing unknown variances: 2
iσ due to Dudewicz and Dalal (1975); selecting

α [N-r] through α [N-k] populations N > k > r due to Bechhofer (1954); and selection based

on smallest 
i
2σ  due to Bechhofer and Sobel (1954), to name but a few. For a complete

bibliographic listing see Dudewicz and Koo (1982) or Gibbons (1982). We now discuss

subset selection procedures which are more naturally applicable to economic analysis.

Here, we maintain the independence assumption, but relax it in section 3.

2.3 Subset selection.

                                                          
4 In most of economics sample data are pooled and a single regression equation is estimated for all
populations.  Population distributions are implicitly assumed to be correlated in some fashion, and pooling
the data improves estimation efficiency. Consequently, the population specific parameter estimates are
usually correlated. It is in this sense that an independence assumption seems dubious.  However, certain
branches of economics (such as the labor market discrimination literature) actually split the sampled data
into several populations and run separate regressions (e.g. into males and females or into whites and
blacks).  In these instances, an independence assumption across parameter estimates may be reasonable,
and this procedure applicable.



11

Now assume that σ2 is unknown, but can be estimated by s2 based on ν degrees of

freedom.  Gupta (1956, 1965) showed that if one selects a subset of the N populations, S,

according to the rule:
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Fv is the c.d.f of a v2χ random variable, and ρ = 0.5. λ
ρ,,vNT is the upper- λ  percentage

point of a multivariate Student t distribution with common correlation coefficient ρρρρ.

Tables for λ
ρ,,vNT are contained in Dunnett and Sobel (1954, 1955), Cornish (1954) and

most recently in Bechhofer and Dunnett (1986). For tabulations of critical points of the

limiting multivariate normal distribution (i.e. ∞→v ) see Odeh (1982) and Horrace

(1998).

Equation (2) allows us to make inference statements such as, “the subset S

contains the largest population with probability at least 1 - λ ”.  If our bio-statistician

selected λ = 0.05, she might find that S={A, C} and could make the statement,

“Treatments A and C are best with 95% probability”, or if she selected λ = 0.10, she

might find that S={A} and could make the statement, “Treatments A is best with 90%

probability”.  This type of confidence statement seems to make more sense for economic

analysis than does the indifference zone statement, because we are not required to select

the threshold δ *. For instance, in the estimation of stochastic frontier models, where α i

could represent the technical efficiency of the ith firm, the subset S would contain all firms
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that are technically efficient at the (1-λ )×100% confidence level.  For example, in the

empirical section we estimate the technical efficiency of ten Texas electric utilities, and

find that the utility with the highest efficiency estimate is firm 5 and that with the second-

highest is firm 3.  The estimation results might lead us to erroneously conclude that firm

3 is inefficient relative to firm 5. However, using a selection procedure (to be described

in the next section), it is asserted that “firms 5 and 3 are the efficient with 95%

confidence, the other eight are not”.5   This is a very powerful probability statement

which precludes us from jumping to conclusions about the results of the analysis.

As was the case with the indifference zone procedure, modifications to the basic

subset selection result are too numerous to list here, but include a procedure for unequal

sample sizes due to Gupta and Huang (1974); a procedure for selection based on |α i| due

to Rizvi (1971); a procedure for selection in terms of variance due to Gupta and Sobel

(1962) and myriad other procedures for non-normal distributions. Again the interested

reader is referred to Dudewicz and Koo (1982) or Gibbons (1982).

2.4 The Complications of Economic Data

The foregoing procedures suffer from assumptions that will generally preclude their use

in economic empirical analyses and that manifest directly in the calculation of the

appropriate critical values for the inference. Specifically, the calculability and relative

simplicity of equations (1) and (3) hinge directly upon the assumption of independence of

populations and on N being small; requirements which may not hold in economic

applications. These features are discussed below and in subsequent sections.

First, the assumption of independence of populations is typically not relevant in

economic analysis. In economic applications, where covariates are commonly employed

                                                          
5 McCloskey might say that, “utilities 5 and 3 are Big, and the rest are not with 95% probability”.
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and where experiments are not “controlled” orthogonality is the exception.  For instance

if the αi were N slope parameters from a cross sectional regression analysis, then

estimates iα̂  are typically correlated through the exogenous variables, so that equations

(1) and (3) would not apply.6 As we shall see, these simple probability integrals will be

replaced with N-dimensional probability integrals with intractable covariance structures.

Second, economic field data sets can have extremely large values of N. When N is greater

than 50, the probability integrals of equations (1) and (3) become difficult to calculate

numerically. Therefore, even in the presence of orthogonality populations, these selection

procedures may be difficult to perform because critical value tables may not exist.

Both of the preceding complications can be overcome, if we are willing to forego

numerical solution of the probability integrals and replace it with simulation. Using

simple computer algorithms it is a straight-forward task to artificially generate critical

values that satisfy the probability statements regardless of whether independence is

violated or the number of populations is large. For example, using simulation techniques

Horrace (1998) generates critical values, λ
ρ,,∞NT , for values of N as high as 500. Notice

that these critical values are for the equicorrelated case (e.g. when populations are

orthogonal). We detail this simulation technique for finite v and a general correlation

structure for the populations in the following section.

3. Selection Procedures: The General Case

3.1. Preliminaries.

If the populations, κ i, are correlated with some unknown covariance structure,

these correlations will manifest themselves as correlations among the estimates of the α i.

                                                          
6 An example of this particular situation is provided in the sequel.
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Again let α̂ i be an unbiased estimate of the α i. Let the covariance matrix of the α̂ i be

the (N×N) matrix Ω̂ , based on v degrees of freedom. Let ω̂ sr represent the element in

the sth row in the rth column of Ω̂ , s = 1, ..., N, r = 1, ..., N. Given this specification we

generalize the subset selection procedure of equations (2) and (3). However, before

embarking on a discussion of this generalization we first develop the distributional theory

that allows generalization of the probability statements of equation (1) and (3) to the case

where covariance structures are non-spherical and unknown.

Let the random vector Z = (Z1, ..., Zp) have a p-variate standard normal

distribution, i.e. E(Zi) = 0 and Var(Zi) = 1. Let the covariance matrix of Z equal Ω  and its

correlation matrix equal R. Let U be distributed independently of Z as a χ 2 random

variable with v degrees of freedom. Let Ti  = Zi(U/v)-1/2. Then T = (T1, ..., Tp) has a p-

variate Student t distribution with correlation matrix R and v degrees of freedom. The

joint density of T is given by

.)/'1()(det
)2/()(

)2/)((),,,....( 2/)(12/1
2/1

vp
pp vTRTR

vv
vpvRttf +−−− +
Γ
+Γ=
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Define the critical value λ
RvpT ,,  as the solution in t of the equation

P { } � �
− −

−==≤
t

t

t

t
ppii dtdtvRttftT λ1),(...max ,...,1,,....,1 (5)

When the Zi are independent, the correlation matrix is the identity matrix and the

probability integral of equation (5) reduces to that of equation (3) with p = N, and for

moderate values of N, equation (3) can be solved numerically. In this case the variates are

said to be equicorrelated and solutions to equation (5) are commonly tabulated as λ
ρ,,vpT .

Of course, economic data rarely admit independent structure of variates and tabulations



15

of λ
RvpT ,,  would be clearly impractical. Without the equicorrelated structure, numerical

solution of equation (5) is cumbersome, particularly when p is large. However,

simulation of λ
RvpT ,,  is rather straight-forward:

1. Perform a Choleski decomposition of Ω  into Q, such that Q'Q = Ω .

2. Generate p independent standard normal variates: Zm' = [Z1m, ..., Zpm].

3. Generate an independent chi-squared random variable, U, with v degrees of

freedom.

4. Calculate Tm = Q’Zm(U/v)-1/2, a p-dimensional t variate with correlation

matrix R.

5. Find Ym = max | Tm |, the maximum element of Tm.

6. Perform steps 2, 3, 4 and 5 for m = 1, ..., M.

7. Calculate a (1-λ ) · 100 percentile from Ym, m = 1, ..., M. This simulated value

serves as a consistent estimate of  λ
RvpT ,, .

As M ∞→ , the simulated value approaches the solution in t of equation (5).  Horrace

(1998) provides an algorithm for determining confidence intervals for the coverage

probability, (1-λ ). Since the limiting distribution of a multivariate Student t variate is a

normal variate, for large values of v one can skip steps 3 and 4 and let Tm = Q’Zm in steps

5 through 7.7

3.2 Multiple Comparisons with a Control.

The first step toward generalizing the subset selection procedure of equation 2 is to

discuss a multiple comparison procedure called multiple comparisons with a control,

(MCC), initially due to Dunnett (1955). Let the kth population be regarded as a control.
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We construct simultaneous (1-λ )×100% confidence intervals on α k  - α i, i = 1, ..., k-1,

k+1, ..., N. These intervals are given by:
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The interpretation of these intervals is straight-forward. To construct confidence intervals

around a population parameter (in this case a set of population parameters) use the

sample estimate of the parameter )ˆˆ( ik αα −  plus or minus an allowance term consisting

of the product of a critical value ( λ
RvNT ,,1− ) and a standard error 2/1)ˆ2ˆˆ( ikiikk ωωω −+ . The

critical value is based on the correlation matrix of the α i. It should be noted, however,

that the parameters of interest here are not theα i, rather the α k - α i, i ≠  k. Therefore,

the critical value, ( λ
RvNT ,,1− ), should not come from the estimated covariance matrix of the

α̂ i (i.e. Ω̂ ), but instead from the estimated covariance matrix of the α̂ k - α̂ i (i.e. L Ω̂ L'),

where L is a N-1 negative identity matrix with a column of ones inserted between the (k-

1)th  and k th columns. That is, if α ' = [α 1, ..., α N] and kα ′ = [α k  - α 1, …, α k  - α k-1,

α k  - α k+1,…,α k  - α N], then L is a (N-1)×N matrix such that Lα  = kα . Hence, to

implement this technique the Choleski decomposition in step 1 of the critical value

simulation algorithm should be Q'Q = L Ω̂ L'. For the purposes of a generalized subset

selection procedure, the salient feature of these intervals is the upper bound, k
iU , which

provides information on the relative magnitude of the kth population parameter.

3.3 Generalized Subset Selection.

                                                                                                                                                                            
7 GAUSS code is available from the author to generate both the normal and Student t critical values.  Visit:
www.u.arizona.edu/~whorrace/mcresources.html for the code.



17

Edwards and Hsu (1983) developed a subset selection technique that generalizes

equation 2 to the case where the populations are not independent.  The technique hinges

on the existence of MCC intervals of equation 6.  Edwards and Hsu (1983) show that if

one selects a subset of the N populations, S, according to the rule:

S = {k: k
iU ≥  0 for i =1, ..., k-1, k+1, ..., N } (7)

then Pr{[N] ∈  S} ≥  1 - λ . The interpretation of equation (7) is simple. If k
iU are the

MCC upper bounds with population k as the control and if all the i ≠  k upper bounds are

large (non-negative), then the kth population is one of the largest at the (1- λ )×100%

confidence level. The subset, S, consists of all populations, k, that meet this criterion. To

perform this inference one must construct (N-1) confidence intervals for each of the N

populations. Therefore, for large N the number of confidence intervals become

prohibitively large for hand-calculations.8  Fortunately, for each of the N populations, the

population can be eliminated from the subset, S, once any single MCC upper bound fails

the upper bound criterion.  Consequently, most analyses will not require strict calculation

of N(N-1) upper bounds, but some number less than this.

When, does a population fall into the subset, S? As described above, when its

MCC upper bounds are all non-negative. This occurs when either a) the parameter

estimate of the control, α̂ k, is large relative to the rest, b) the variance of the control

estimate is large compared to its covariance with the rest of the populations (i.e.

ikkk ωω ˆ2ˆ − ) or c) the covariance structure of the (α̂ k - α̂ i) or the values of N or λ  are

such that λ
RvNT ,,1−  is large. Case a is obvious: ignoring sampling error, large α i tend to

                                                          
8 GAUSS code is available from the author to perform this procedure.  Visit:
www.u.arizona.edu/~whorrace/mcresources.html for the code.
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produce large α̂ i. Cases b and c illustrate that even though α̂ k is small, this does not

mean that its population equivalent must also be small. Sampling variability and the

covariance structure of the parameter estimates can cause a large α k to produce a small

α̂ k, and this anomaly can only be detected with a properly constructed inference

procedure. Case c also embodies the multiplicity of the inference statement. When N is

large we are making many individual comparisons simultaneously, so the rejection region

of the multivariate sampling distribution must decrease and the critical values must

increase to control for the overall error rate of the statement.  Some examples follow.

4. Examples

To illustrate the utility of the subset selection procedure for economic

applications, two analyses are provided: one based on simulated data and the other based

on actual data.

4.1 Simulation Example.

A simulated data study was performed to highlight various features of the selection

procedures that an empirical study could not. Consider the econometric specification:

.,...154321 Nizxwvy iiiiii =+++++= εααααα (8)

where u, v, w, x, y, and z are data, αi are parameters for estimation and iε  is iid N(0,σ2).

Interest centers on estimating the model’s slope parameters and  performing inference on

their relative magnitudes. An example of such a specification in economics is a labor

market wage regression where y = ln(wage) and the right-hand-side (RHS) variables are

configured such that certain slope parameters represent wage gap estimates across

various industries. An example of such an application is found in Fields and Wolf (1995).

We are interested in knowing in a statistical sense which of the 5 slope parameters (wage
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gaps) are the biggest. To this end, data on the RHS variables of equation 8 were

simulated using a GAUSS uniform random number generator on the unit interval. Slope

parameter values were selected as α1 = 1, α2 = 2, α3 = 3, α4 = 4, α5 = 5.  Data on the iy

were then generated using the slope parameter values, the RHS data and iε  "data"

simulated from a GAUSS N(0,1) random number generator. Three data sets were

generated in this fashion with sample sizes N = 25, 50 and 100. Least-squares estimates

of the parameter values were calculated for each of the three sample sizes and are

reported in the second column of Tables 1, 2, and 3. Corresponding standard errors on the

slope parameters are shown in column 3. The slope parameters estimates were correlated

in the sample so the generalized subset selection procedure of equation (7) was

performed to draw inferences on the slope estimates. First, critical values, λ
RvT ,,4 , were

simulated for each sample size and for each parameter, using   λ =0.05, v = N-5 and the

particular covariance matrix generated by each data set.9  For each critical value

simulation the simulation sample size, M, was set to 10,000. Individual critical values for

λ = 0.05 are tabulated in column 4 of each table.

These critical values were used to construct the MCC upper bounds of equation

(6) and ultimately the subset, S, of equation (7). The elements of the subset, S, are

contained in Table 4 for each N. For N = 25 the subset consisted of indices 3, 4 and 5,

implying that with at least 95% confidence the slope parameters α3, α4 and α5 are the

largest parameters. For N = 50 and N =100 the subset consisted of indices 3 and 4,

                                                          
9 One critical value was need for each parameter estimate, because the generalized subset selection
procedure requires calculation of a set of MCC upper bounds, k

iU ,  for each parameter (in turn) as the

control parameter.  The covariance structure of the estimates is Ω̂  = Var(α̂ ),  ]ˆ,...,ˆ[ˆ 1 Nααα =′ .  The
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implying that α4 and α5 are the largest parameters at the 95% level or better. We do not

know which index in the subsets is the largest, because sampling error confounds this

determination. However, we can say that the slope parameters of the indices contained in

the subsets are bigger than those not in the subsets. It should also be clear that as N

increases the precision of the inference increases, since the cardinality of S decreases.10

As an additional experiment, critical values for the N = 100 data and λ = 0.10 were also

simulated. The larger value of λ  resulted in smaller critical values. These are tabulated in

the fifth column of Table 3. The subset was again calculated based on the new, smaller

critical values, and this time it was a singleton, S = {5}. (See the last row of table 4). The

implication is that for N = 100, α4 and α5 are the largest parameters with probability 0.95,

but α5  is the largest with probability 0.90.

A few additional comments are in order. First, note that in Table 1 the ordering of

the estimates of 3α̂  and 4α̂  are reversed in terms of their magnitudes. This illustrates how

sampling variability can distort sample rankings of parameter estimates. However, the

selection procedure captures this by selecting S = {3, 4, 5}.  That is, the estimation might

erroneously infer that α3 > α4, but the inference suggests otherwise: at the 95% level we

cannot distinguish between α3 and α4, and that they (along with α5) might all be the

largest parameters.  Second, the critical values in each table vary across the slope

parameters. Had the parameter estimates admitted an equicorrelated structure the critical

values all would have been identical. It is the difference in the variance and the

                                                                                                                                                                            
covariance structure for each critical value is then L Ω̂ L’, with L being different for each of the five
parameter estimates.
10 This clearly demonstrates that as sample size increases, the differences among the population parameters
become simultaneously "statistically different from zero". It is in this sense that these procedures can be
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covariances of the estimates (lack of equicorrelation) that induces the different critical

values. Third, in Table 3 the difference between the estimates  4α̂   and 5α̂   is large

relative to the difference between estimates  3α̂   and 4α̂ . It was not large enough,

however to make 4α̂   significantly different from 5α̂   when λ = 0.05 (i.e. S = {4,5}).

This was probably due to a high degree of noise in the simulated data as evidenced by the

relatively large value of the estimate s2 = 1.2263 compared to the true value σ2 = 1. When

the subset selection was performed with λ  = 0.10, the difference between the two

estimates was significant, as S = {5}.

4.2 Empirical Example.

Consider the Cobb-Douglas specification of the fixed-effects stochastic frontier model for

a panel of ten privately owned Texas electric utilities, observed annually from 1966 to

1985:

,ititFitkitLiit FKLE εβββα ++++= i = 1, .., 10; t = 1, …, 18;

where E = electrical output, L = labor, K = capital and F = fuel. This data set was

originally analyzed by Kumbhakar (1994). Interest centers on estimating each α i (a

proxy for technical efficiency of the ith firm) and ranking them to determine the most

efficient firm in the sample. The model was estimated with the so-called "within"

estimation technique. Slope estimates were Lβ  = -0.1291, kβ  = 0.6275 and Fβ  =

0.5652. Estimates of the α i for each firm are contained in Table 5. Based on the

covariance structure of the α̂ i, the generalized subset selection procedure of equation (7)

was performed at the 90% confidence level (λ = 0.10), producing a subset, S = {5, 3}.

                                                                                                                                                                            
considered tests of significance and are not immune to strict interpretation of McCloskey's criticism.
However, our purpose is not to debate McCloskey on the merits of Neyman-Pearson testing procedures.
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That is, with probability at least 0.90 the utilities 5 and 3 are the most efficient in the

sample, and the rest of the firms are relatively inefficient.  This is a powerful inference

result.

5. Conclusions

This paper has introduced economists to ways of determining "How Big is Big". It has

argued that questions of size may be relevant to economists and that these questions are

usually not answered with any statistical rigor. Selection procedures have always

provided a tool to answer these questions; they have just never been embraced by

economists. It is clear from the empirical exercise that the solutions are now within reach.

All that remains is to encourage their use within the discipline. As mentioned, studies

have already been done that select the most efficient firm and the largest wage gaps

across industries. It is interesting to speculate on other potential economic applications of

the procedures. Selection of the countries with the largest growth rate, selection of the

largest elasticities and selection of the most effective healthcare delivery system are all

potentially interesting problems.
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Table 1. N = 25
Parameter Estimate Standard Error 05.

,20,4 RT
α1 = 1 -0.7865 0.6085 2.677
α2 = 2  2.1434 0.8833 2.624
α3 = 3  4.5912 0.7196 2.682
α4 = 4  4.5030 0.6680 2.683
α5 = 5 5.6561 0.7609 2.627
σ2 = 1 0.8833

Table 2. N = 50
Parameter Estimate Standard Error 05.

,45,4 RT
α1 = 1 1.4389 0.4951 2.484
α2 = 2 1.6398 0.4881 2.551
α3 = 3 2.8878 0.4614 2.557
α4 = 4 3.2522 0.5166 2.560
α5 = 5 5.0651 0.4916 2.539
σ2 = 1 0.9172

Table 3. N = 100
Parameter Estimate Standard Error 05.

,95,4 RT 10.
,95,4 RT

α1 = 1 0.0889 0.4230 2.440 2.119
α2 = 2 3.2059 0.4135 2.482 2.195
α3 = 3 3.4010 0.4076 2.460 2.188
α4 = 4 3.7447 0.3991 2.523 2.205
α5 = 5 5.1070 0.3828 2.497 2.190
σ2 = 1 1.2263

Table 4. Subset, S
Sample Size λ Subset, S
N = 25 0.05 {3, 4, 5}
N = 50 0.05 {4, 5}
N = 100 0.05 {4, 5}
N = 100 0.10 {5}

Table 5. Texas Utility Order Statistic
Firm i = 5 i = 3 i = 10 i = 1 i = 8 i = 9 i = 2 i = 6 i = 7 i = 4

iα̂ -4.995 -5.083 -5.145 -5.176 -5.194 -5.211 -5.218 -5.236 -5.237 -5.267
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