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Université Libre de Bruxelles†.

April 8, 2005

Abstract

When dealing with the presence of outliers in a dataset, the problem of
choosing between the classical ordinary least squares and robust regression
methods is sometimes addressed inadequately. In this article, we propose
using a Hausman-type test to determine whether a robust S-estimator is
more appropriate than an ordinary least squares one in a multiple linear
regression framework, on the basis of the trade-off between robustness and
efficiency. An economic example is provided to illustrate the usefulness of
the test.
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1 Introduction

In applied economics and econometrics, it has always been highlighted that

even if a small amount of data behaves differently from the vast majority of the

observations, classical estimations may be affected, leading to results that are

not representative of the population. In other words, the presence of outliers

might bias the results. Various techniques such as standardized residuals, stu-

dentized residuals, Cook distances, etc. have been proposed to identify these

non-standard data. Unfortunately, they all suffer from the fact that they are

based on residuals that are calculated on a non-robust regression line (or hy-

perplane). This led several authors to develop methods to estimate regression

lines which are not sensible to the presence of outliers. Others suggest the

use of graphical tools (based on plotting robust distances against residuals ob-

tained with robust estimation methods) to detect the different types of outliers

(Rousseeuw and van Zomeren, 1990). The advantage of robust methods is that

they yield estimations resistant to outliers but, unfortunately, the price to pay

is a loss of efficiency. An essential question that comes to mind at this point is

whether the gain in unbiasedness is more valuable than the corresponding loss

in efficiency. The answer to this question is not trivial. To decide if it is more

adequate to use a classical regression technique or a robust one, a statistical test

is needed, but unfortunately, to the best of our knowledge, no such test exists.

The aim of this paper is to create one that will help applied econometricians to

decide whether it is more pertinent to use a robust or a standard technique. The
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general idea is simple: if the influence of the outliers is limited, the estimated

regression parameters obtained by ordinary least squares (LS) and by a robust

method should be similar, but LS will be preferred as it is more efficient. In the

opposite case, a robust estimator will be preferred.

Durbin (1954) andWu (1973), introduced the idea that if a model is correctly

specified, two consistent methods should produce estimates that are very close.

Hausman (1978), following a similar reasoning, developed a test that is based

on looking for a statistically significant difference between an estimator that is

consistent whether or not the null is true, and an estimator that is efficient (and

consistent) under the null hypothesis, but inconsistent otherwise. He proves that

asymptotically the test statistic has a chi-square distribution, with a number of

degrees of freedom equal to the number of unknown regression parameters when

no misspecification is present. This type of test is widely used in econometrics

to detect endogeneity or to determine if random effects are appropriate in a

panel data framework. In all these cases, the underlying idea is to test for

misspecification. What we want to bring forward here is different: imagine we

have a well-specified model but a bias appears because of the presence of outliers.

As far as we know, no clear test is available to see if, in this context, a robust

method is more appropriate than a classical one. In this paper, we show that a

Hausman-type test can be used to check for this.

The paper is divided into five sections. After this short introduction, in the

second section we introduce the type of test we propose. In the third section we

present some simulations, in the fourth we apply the test to some real economic
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data, and in the final section, we conclude.

2 A Hausman-type test

Assume we want to estimate a regression model of the type

yi = θ0 + xi1θ1 + ...+ xip−1θp−1 + εi for i = 1, ..., n (1)

where n is the sample size, xi1, ..., xip−1 are the explanatory variables, yi the

dependent variable and εi the error term. We suppose that the errors εi are

independent of the explanatory variables and i.i.d. according to the normal

distribution N(0, σ), where σ is the residual scale parameter. The vector of

regression parameters is θ = [θ0, ..., θp−1]
′. To estimate it, the classical ordinary

least squares methodology is the most commonly used; it minimizes the sum of

the squared residuals. More precisely:

θ̂LS = argmin
θ̂

n∑

i=1

r2i where ri = yi − θ̂0 − xi1θ̂1 − ...− xip−1θ̂p−1 (2)

LS estimators are notorious for their sensitivity to outliers. Results can be

strongly influenced by the presence of just one “bad” outlier. Several estima-

tion techniques have been developed to reduce the effects of “abnormal” points:

Least Median of Squares (LMS), Least Trimmed Squares (LTS), S-estimators

(S), MM-estimators (MM), etc. (see Rousseeuw and Leroy, 1987, for a thorough
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review of the robust techniques literature). All these estimation techniques have

very high breakdown points (roughly speaking, the breakdown point represents

the smallest fraction of contaminated data that causes the estimator to take

on values arbitrarily far from the “true” unknown parameter) but are less effi-

cient1. The class of MM estimators (Yohai, 1987) is very interesting since these

estimators combine high breakdown points and high efficiency. However, an

estimator with high efficiency will be less robust, more sensitive to outliers than

an estimator with lower efficiency, even if its breakdown point is 50%.

This is the reason why we propose to use the very robust S-estimator in-

troduced by Rousseeuw and Yohai (1984). S-estimators form a class of high-

breakdown affine equivariant estimators. They are defined as minimizing a scale

M-estimator of the residuals. Let {r1, . . . , rn} be a sample of residuals. The

M-scale estimate s(r1, . . . , rn) is defined as the solution of:

1

n

n∑

i=1

ρ(
ri

s
) = b (3)

where b is a constant, chosen as EΦ[ρ] (Φ is the standard Normal cumulative

function) to ensure consistent estimation of σ at normal distribution. Function

ρ is assumed to be even and continuously differentiable, with ρ(0) = 0 and such

that there exists some strictly positive value c for which ρ is strictly increasing

on [0, c] and constant on [c,∞).

1For example, LMS has the disadvantage of converging at a rate of n−1/3, or the 50%

breakdown LTS estimator has a Gaussian efficiency of only 7.1%.
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The regression S-estimator is then defined as

θ̂S = argmin
θ̂

s(r1(θ̂), ..., rn(θ̂)) (4)

and the final scale estimator is

σ̂S = s(r1(θ̂S), . . . , rn(θ̂S)). (5)

Taking ρ as Tukey’s Biweight Function

ρ(x) =






1
6c4
x6 − 1

2c2
x4 + 1

2
x2 if |x| ≤ c

c2

6
if |x| > c

(6)

it can be shown that at a breakdown point of 50% (c = 1.547), the Gaussian

efficiency of S is 28.7%. Rousseeuw and Yohai (1984) also proved the consistency

and the asymptotic normality of the S-estimator, using the fact that it satisfies

the first-order necessary conditions of M-estimators defined in Huber (1981).

We have just put forward the key issue underlying the question we want to

address in this paper: LS is efficient but not robust while S is robust but ineffi-

cient. It is sometimes extremely difficult to determine if the gain in consistency

attained using the robust estimator is more valuable than the loss of efficiency

due to not using LS. A rule of thumb is that, if the values obtained by the robust

and classical estimators are similar, it is better to use the classical one and if

they are very different, it is better to use the robust one. This is unfortunately

not necessarily pertinent. What we show is that a Hausman-type test may be

used to determine if the gain in consistency coming from the use of a robust
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estimator overrules the corresponding loss of efficiency (obviously, only if the

model is well specified).

The Hausman test (1978) is based on comparing an estimator which is effi-

cient under H0 of no endogeneity with an estimator that is consistent under the

alternative that endogeneity is present. Here, we are interested in comparing

the classical efficient LS estimator θ̂LS under H0 of no inconsistency due to out-

liers to the robust S-estimator θ̂S that is always consistent. Clearly, if more than

50% percent of the data are contaminated, the robust S-estimator will also break

(breakdown point of 50%) but then, can they still really be considered as out-

liers? Since we are interested in a specific test aimed at discriminating between

a robust method and a classical one, we assume that the model is well-specified

and that all the Gauss Markov hypotheses are respected (linear functional form,

zero mean of disturbance, homoscedasticity, no serial correlation, normality of

errors and exogeneity).

From the results of Rousseeuw and Yohai given above2, it is clear that θ̂LS

and θ̂S are both asymptotically normal under H0. Let q̂ denote the difference

between the two estimators i.e. q̂ = θ̂S − θ̂LS. The probability limit of the

difference between the two estimators is zero if and only if no outlier is present.

Hausman (1978) proved that, when two estimators (one which is always con-

sistent but inefficient, the other efficient but not necessarily consistent) are

correlated, the asymptotic variance of their difference is given by the difference

of their respective variances.

2Asymptotic normality with a convergence rate of n−1/2 just as LS.
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It is well known that for the classical estimator

θ̂LS
a

˜N(θ, σ2(X ′X)−1) (7)

where X is the design matrix i.e. X = (xij) for i = 1, ..., n and j = 1, ..., p− 1.

Similarly, for the robust S-estimator, we have

θ̂S
a

˜N(θ,
σ2(X ′X)−1

e
) (8)

where e is the efficiency of the S-estimator. Using Tukey’s Biweight Function

with a 50% breakdown point, the efficiency is e = 28.7%. Denoting the asymp-

totic variance of q̂ by V (q̂), we get

V (q̂) = V (θ̂S)− V (θ̂LS) =
σ2(X ′X)−1

e
− σ2(X′X)−1 (9)

where the nuisance parameter σ must be estimated3. It is obvious that the

estimator of the standard error should be robust itself, otherwise the test might

lead to incorrect results under the alternative hypothesis. A first natural choice

is the scale estimator obtained by the optimization problem of the S-estimator

i.e. σ̂s. Its efficiency at Gaussian distributions is equal to 50.59%. We also tried

other candidates such as the Median Absolute Deviation estimator (MAD),

but it has low efficiency for normal distributions (36.75%), thereby leading to

rather unsatisfactory results. Rousseeuw and Croux (1993) introduced an al-

ternative statistic more efficient than the MAD4 . They propose to use σ̂RC =

1.1926 med
i
(med

j
|xi − xj |) where the outer median (taken over i) is the median

of the n medians of |xi − xj | , j = 1, 2, ..., n. The efficiency of σ̂RC at Gaussian

3The estimated variance will be denoted by V̂ (q̂).
4Which the authors call Sn.
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distributions is 58% which is better than the natural scale estimator obtained

when using the S-procedure. We decided to try both to determine which is the

best in the variance formula.

The Hausman test statistic is defined as

H = q̂′
[
V̂ (q̂)

]−1
q̂ (10)

where V̂ (q̂) is a consistent estimator of V (q̂). Hausman (1978) shows that

under the null, H is distributed asymptotically as a central χ2p where p is

the number of unknown parameters. If the latter statistic is higher than the

tabulated value of a χ2p at a given level of confidence, we reject the hypothesis

that the difference between the estimators is not systematic and thus reject the

LS estimator. Otherwise, we conclude that the efficiency loss resulting from the

use of the S-estimator is more costly than the bias produced by the use of LS.

Note that in (10), V̂ (q̂) is assumed to be non singular, but, as stated by

Chmelarova and Hill (2004) this will almost never hold in practice due to linear

restrictions between the elements of q̂. To solve this problem, in case of singu-

larity, Hausman and Taylor (1981) and Holly (1982) suggest replacing
[
V̂ (q̂)

]−1

by some generalized inverse5
[
V̂ (q̂)

]−
.

5If A is an m × n matrix, a generalized inverse of A is an n ×m matrix A− such that

AA−A = A (see Rao and Rao (1998), for example). To ensure uniqueness, Krämer and

Sonnberger (1986) propose using the Moore-Penrose pseudo-inverse.
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3 Simulations

We will consider two aspects in this section using simulations. First, we look

at the finite-sample behavior of the simulated statistics under the null, to check

if the approximation of the χ2 distribution for a small sample is good enough.

Secondly, we study the power of the test when different types of outliers are

introduced.

The experimental design for the first part of this section is the following: a

total of m = 2000 samples for each of the sizes n = 100, 200, 500 and 700 were

generated using the following linear regression

yi = θ0 + xi1 + . . .+ xip−1 + εi i ∈ {1, . . . , 2000} (11)

where each explanatory variable is standard normal, ε ∼ N(0, 1) and θ0 = 1.

For each sample, the test statistic is calculated using the two candidates for

the estimation of σ introduced in Section 2. Then, the empirical quantiles of a

χ2p,0.95 are computed. The results of the simulations are given in Table 1.

[INSERT TABLE 1 HERE]

Especially for small sample sizes (n = 100, 200), it appears that the approx-

imations using the σ̂RC scale estimator are better than those using σ̂s provided

by the S-estimator. These results also show that the test is more appropriate if

the sample size n is large enough relatively to p the number of parameters. For

example, with p = 5 and n = 100 the difference between the theoretical and the

simulated quantiles is quite substantial.
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To compare the empirical and theoretical distributions more thoroughly, we

use a classical graphical tool: the Quantile Quantile Plot (QQ-Plot). It allows

to compare simulated quantiles with the quantiles of the χ2 distribution with

p degrees of freedom. The order of the quantiles chosen are 0.05× i where i ∈

{1, . . . , 19}. For the graphs of Figure 1, the number of regression parameters is

3 (p = 3) and σ̂RC was used as the scale estimator (with σ̂s the correspondences

are not as good). As can be seen in Figure 1, the empirical quantiles are rather

larger than the theoretical ones for n = 100. Therefore, with small sample sizes,

the use of theoretical quantiles leads to rejecting the null more often than the

chosen level α. For n = 200, the situation is better and from n = 500 on, the

match between the two sets of quantiles is rather good.

[INSERT FIGURE 1 HERE]

The second part of the simulations is devoted to the behavior of the test

under contamination (H1). In linear regressions, outliers are classified into three

categories: bad leverage points, good leverage points and vertical outliers (see

Figure 2 (a)). We will study the power of the test under these three types of

contamination. Using σ̂s or σ̂RC for the estimation of the nuisance parameter

yields very similar results. We report only those obtained with σ̂RC .

For the simulations, observations were generated according to the model

yi = θ0 + xi + εi (12)

where x ∼ N(0, 1), ε ∼ N(0, 1) and θ0 = 1. The sample sizes are again 100,

200, 500 and 700. For all simulations under the alternative, we introduce a very
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small percentage of contamination: 1%. Clearly, if the percentage increases, the

test will become more powerful.

In a first experiment we replace 1% of the x-values by a constant value

C in every data set, hereby creating leverage points. Constant C is assigned

each integer value between 0 (corresponding to the null hypothesis) and 9. To

calculate the empirical size and power of the test, we generated 400 samples

according to the model and computed the percentage of times that the critical

value was exceeded. In Table 2, we report the frequency of rejection of the null

hypothesis for the simulated data sets and for each value of C. In parentheses,

we give the absolute value of the bias of the LS estimator for parameter θ1.

[INSERT TABLE 2 HERE]

Since the independent variable is computed as x ∼ N(0, 1), the C values

0 and 1 are not considered as outliers and, consequently, the percentage of

rejection is close to 5% (the confidence level of the test). From values 2 to

9, the percentage of rejection progressively increases (as does the bias of the

LS-estimator) to reach 100% rejection. Quite naturally, the power of test also

increases with the sample size due to the variance precision. Figure 2 (b) shows

how rapidly the percentage of rejection increases as the bad leverage points get

further away from the majority of the observations.

[INSERT FIGURE 2 HERE]
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The second type of contamination involves replacing 1% of the x-values in

the same way as for the first contamination (C values between 0 and 9). But

in order to create good leverage points, we simulate the y values using the

contaminated x values. Just as in the case of bad leverage points, we compute

the empirical size and power of the test with 400 samples according to the

model. In Table 3, we report the frequency of rejection of the null hypothesis

for the simulated data sets and for each value of C. In parentheses, we give the

absolute value of the bias of the LS estimator for parameter θ1.

[INSERT TABLE 3 HERE]

As predicted, the percentage of rejection for good leverage points is small

compared to that of bad leverage points (Figures 2 (b) and 2 (c)). The former

type of points generally increase the stability of regression lines implying that

the variances of the regression estimators decrease. But as mentioned in Croux

et al. (2003) good leverage points can still influence the classical estimator and

attract the regression line towards them even if they are not so distant from

the “true” regression line. It is therefore not surprising to see that the null

hypothesis is sometimes rejected (percentage of rejection close to 15% when

C = 9).

The last configuration for outliers we look into is the case of vertical outliers

(Figure 2 (d)). In fact this kind of contamination is not as “dangerous” as that

of bad leverage points. It is well-known for example, that the Least Absolute

estimator (L1) is robust with respect to vertical points, but not robust with

respect to bad leverage outliers. Nevertheless, if we use LS and a vertical outlier
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is far enough, the estimator might be attracted by it and give erroneous results.

In this situation, the bias is often more important for the intercept. For the

simulations, we contaminated 1% of the y data by replacing them with constant

value D = 3C for each integer value of C between 0 and 9. The results are given

in Table 4 (in parentheses, the absolute value of the bias of the LS estimator

for parameter θ1, even if the large bias is generally on the intercept in these

situations).

[INSERT TABLE 4 HERE]

When comparing Tables 2 and 4, we see that the percentage of rejection of

the null is smaller in the case of vertical outliers than in that of bad leverage

points. More precisely, the results for C = 9 in Table 2 show 100% of rejects

(bad leverage points) while those obtained for D = 9 or 3∗3 in Table 4 (vertical

outliers), correspond to a percentage of rejection between 10% and 37%. This

is logical since the LS estimator is less sensitive to this type of contamination.

The bias increases as the vertical outliers move further away but becomes strong

only for rather big distances.

4 Economic application

To illustrate the usefulness of the test we presented above6, we use a real dataset

on an interesting economic topic: DeLong and Summers (1993) present striking

6The Matlab code is available from the authors upon request.
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results showing that there is a strong relationship between equipment invest-

ment and growth. Similarly to what Zaman, Rousseeuw and Orhan (2001) did,

we check if the results of DeLong and Summers are robust to the presence of

outliers. To find out if there is a strong relation between growth and equipment

investments, the authors propose to run a regression of the type:

GDPi = θ0 + θ1LFGi + θ2GAPi + θ3EQPi + θ4NEQi + εi (13)

where GDP represents GDP growth per worker over the period 1960-1985, LFG

is the labor force growth during the same period, GAP is the relative GDP

gap with respect to the United States, EQP and NEQ represent respectively

the share of GDP devoted to equipment and non equipment investment over

the period 1960-1985. The authors estimated the equation by ordinary least

squares. The first thing we want to check is if this technique is appropriate

here, or if the eventual presence of outliers might bias the estimation. To do

so, we estimate the same equation, but instead of estimating it using ordinary

least squares, we estimate it with the S-estimator that we described above. We

present the results of the regressions by LS and S, and the differences between

the estimated parameters in Table 5.

[INSERT TABLE 5 HERE]

It is hard to tell if the differences between the estimated parameters are

significant. To decide if the gain in robustness from the S-estimator is more
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valuable than the resulting loss in efficiency, we run our test. We obtain test

statistic H = 2.1163 associated to a p − value of 0.8328. It is thus clear that

the LS estimator is the most appropriate.

Now imagine that for some unexplained reason, a mistake has been made in

the GAP variable for Canada, for example a −16 value has been coded instead

of the correct value of −0.169. Rerunning the LS and the S estimations, we

obtain the results given in Table 6.

[INSERT TABLE 6 HERE]

The differences between the estimated parameters, are of similar magnitude

to those in the case presented before. It is thus extremely difficult to decide

which technique is the most appropriate, so it may be of interest to run our

test. The test statistic here is H = 41.20 associated to a p − value of 0.0000.

Consequently, our test strongly suggests to reject the use of LS and instead use

the S-estimator7. Consequently, even if a gross mistake is made, such as the

one presented here, we might still find estimated parameters similar to those

obtained in the case where no outliers are present.

It may be argued that, instead of using our test, we could have used outlier

diagnosis tools. A very interesting one is the display of robust standardized

regression residuals versus robust distances. Robust distances on explanatory

7Given the relatively small size of the sample, it is more appropriate to compare the

calculated statistic H with the empirical quantile provided in Table 1 for n = 100 and p = 5,

i.e. 14.79. The conclusion of the test is the same.
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variables allow to identify leverage points, but do not discriminate between good

and bad ones (in our case we calculate robust distances using the Minimum Co-

variance Determinant estimator with a breakdown point of 25%). On the other

hand, the robust standardized residuals allow to identify large residuals. All

points corresponding to distances higher than the quantile
√
χ2p−1,0.975 (as taken

by Rousseeuw and van Zomeren, 1990) will be considered as leverage points. For

the standardized residuals, we consider, as do the above-mentioned authors, all

the robust standardized residuals that lie outside the tolerance band [−2.5, 2.5]

as regression outliers. The graphic representation will allow to discriminate

between bad leverage points (to the right of the cutoff point and outside the

confidence band) from good leverage points (to the right of the cutoff point but

within the confidence band), vertical outliers (to the left of the cutoff point but

outside the confidence band) and regular observations (to the left of the cutoff

point and within the confidence band). In our example, if we use the original

data, we obtain the graph of Figure 3 (a). In this case, Cameroon appears to

be a mild vertical outlier, while Zambia is a bad leverage point. Looking only

at this graph we might conclude that to minimize the influence of the outliers,

a robust methodology should be used, but as stated previously, the gain in

robustness is clearly overruled by the loss in efficiency. This is a result that

could not be deduced by only observing the graph. Now, when we use the ar-

tificially contaminated data, the graph (Figure 3 (b)) clearly shows that there

is one very bad leverage point i.e. Canada and, in accordance with the results

of our test, we find that a robust method is better suited here rather than a
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standard linear regression. To conclude, using these graphs to identify outliers

is an interesting diagnosis tool, but can by no means solve the problem of the

robustness-efficiency trade-off which is tackled by the test we propose.

[INSERT FIGURE 3 HERE]

5 Conclusion

In this article, we propose using a Hausman-type test to determine whether a

robust S-estimator is more appropriate than an ordinary least squares one in a

multiple linear regression framework, considering the trade-off between robust-

ness and efficiency. Indeed, a very common belief is that, as soon as outliers

are detected in the data (at least “bad” outliers), a robust method should be

preferred to a classical least squares one. But robustness has a cost: efficiency

could be severely reduced. Traditionally, to identify outliers, robust distances

are calculated and plotted against robust standardized residuals. When this

brings forward bad leverage points or vertical outliers, the typical decision is

to reject least squares and turn to a robust method. We show, with a simple

economic example, that this is not always the most appropriate choice, since

it by no means takes the loss in efficiency into account. The Hausman-type

test we propose can be considered as a powerful complementary tool to exist-

ing methods. An interesting extension to this paper might be the use of this

18



robust-to-outliers test to detect other problems that the standard Hausman test

already tackles.
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Table 1: Comparisons between empirical and theoretical quantiles at level
α = 5% using σ̂S and σ̂RC as scale estimators.

n=100 n=200 n=500 n=700 χ2p;0.95
p=2 σ̂S 6.48 6.58 6.07 5.79

σ̂RC 6.25 6.39 5.95 5.73 5.99
p=3 σ̂S 9.88 9.10 8.29 7.75

σ̂RC 9.30 8.69 8.05 7.65 7.81
p=4 σ̂S 13.57 11.72 10.49 9.85

σ̂RC 12.62 10.60 9.92 10.18 9.49
p=5 σ̂S 16.77 13.46 12.04 11.51

σ̂RC 14.79 12.50 11.63 11.25 11.07
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Table 2: Power of the test under 1% bad leverage point contamination.

n\C 0 1 2 3 4 5 6 7 8 9

100 3.75 4.75 7.25 13.25 23.00 40.00 51.50 69.25 82.50 90.00
(0.01) (0.02) (0.06) (0.13) (0.19) (0.27) (0.35) (0.42) (0.49) (0.55)

200 7.75 5.25 8.00 16.75 30.75 54.75 73.00 92.50 97.50 99.25
(0.00) (0.01) (0.06) (0.11) (0.17) (0.24) (0.30) (0.37) (0.44) (0.49)

500 4.50 9.00 16.25 34.25 71.75 92.00 98.00 99.75 100 100
(0.00) (0.02) (0.06) (0.12) (0.19) (0.26) (0.33) (0.40) (0.46) (0.52)

700 3.25 8.00 8.00 29.75 63.50 90.50 99.50 99.75 100 100
(0.00) (0.00) (0.04) (0.09) (0.14) (0.21) (0.27) (0.34) (0.40) (0.45)
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Table 3: Power of the test under 1% good leverage points contamination

n\C 0 1 2 3 4 5 6 7 8 9

100 4.25 3.50 6.75 7.25 7.00 8.50 10.00 10.00 17.25 16.50
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

200 7.00 4.50 4.00 7.50 5.25 8.00 11.50 8.75 14.25 14.00
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

500 4.50 6.50 6.25 4.50 6.25 7.00 12.25 12.50 9.00 17.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

700 3.25 6.00 4.50 6.25 4.25 8.25 8.75 13.50 10.25 13.75
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 4: Power of the test under 1% vertical outliers contamination

n\3C 0 3*1 3*2 3*3 3*4 3*5 3*6 3*7 3*8 3*9

100 4.50 3.50 7.25 9.25 12.00 17.25 18.75 23.50 34.00 41.75
(0.01) (0.02) (0.04) (0.06) (0.07) (0.10) (0.12) (0.13) (0.16) (0.18)

200 6.00 5.50 8.50 15.50 22.25 33.75 44.50 62.25 76.75 83.75
(0.00) (0.03) (0.06) (0.09) (0.11) (0.14) (0.17) (0.20) (0.22) (0.25)

500 3.25 10.75 19.75 37.00 61.50 76.25 89.25 97.25 99.75 100
(0.02) (0.05) (0.08) (0.11) (0.14) (0.17) (0.20) (0.22) (0.25) (0.29)

700 4.25 5.50 11.25 24.25 47.25 72.25 89.00 96.00 98.75 99.75
(0.02) (0.00) (0.02) (0.04) (0.06) (0.07) (0.09) (0.11) (0.14) (0.16)
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Table 5: Estimated coefficients on real data

LS S Difference

Constant −0.0180 −0.0215 −0.0035
EQP 0.3052 0.2387 −0.0665
NEQ 0.0916 0.1392 0.0476
GAP −0.0066 −0.0062 0.0004
LFG 0.0849 0.0871 0.0022
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Table 6: Estimated coefficients on artificially contaminated data

LS S Difference

Constant −0.0013 −0.0216 0.0203
EQP 0.2396 0.2536 −0.0140
NEQ 0.0635 0.1343 −0.0708
GAP −0.0001 −0.0061 0.0060
LFG 0.1580 0.1197 0.0382
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Figure 1: Quantile Quantile Plot when the dimension is p = 3 and using σ̂RC
as the scale estimator
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(d) Vertical outliers
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Figure 2: Power of the test under three types of contamination with p=2.
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Figure 3: Robust distances versus robust standardized regression residuals
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