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Abstract:

We consider a common components model for multivariate fractional cointegration, in which the
s ≥ 1 components have different memory parameters. The cointegrating rank is allowed to exceed 1. The
true cointegrating vectors can be decomposed into orthogonal fractional cointegrating subspaces such
that vectors from distinct subspaces yield cointegrating errors with distinct memory parameters, denoted
by dk, for k = 1, . . . , s. We estimate each cointegrating subspace separately using appropriate sets of
eigenvectors of an averaged periodogram matrix of tapered, differenced observations. The averaging
uses the first m Fourier frequencies, with m fixed. We will show that any vector in the k’th estimated
cointegrating subspace is, with high probability, close to the k’th true cointegrating subspace, in the sense
that the angle between the estimated cointegrating vector and the true cointegrating subspace converges
in probability to zero. This angle is Op(n−αk), where n is the sample size and αk is the shortest distance
between the memory parameters corresponding to the given and adjacent subspaces. We show that
the cointegrating residuals corresponding to an estimated cointegrating vector can be used to obtain
a consistent and asymptotically normal estimate of the memory parameter for the given cointegrating
subspace, using a univariate Gaussian semiparametric estimator with a bandwidth that tends to ∞ more
slowly than n. We also show how these memory parameter estimates can be used to test for fractional
cointegration and to consistently identify the cointegrating subspaces.

Keywords: Fractional cointegration, long memory, tapering, periodogram.

1 Introduction

Fractional cointegration has been the subject of much recent attention. See, for example, the work of
Robinson (1994), Robinson and Marinucci (2001), Marinucci and Robinson (2002), Chen and Hurvich
(2003a). All of these papers assume either that the observed series is bivariate or that the cointegrating
rank is 1. Arguably the most interesting case from an econometric point of view is the situation where
the series is multivariate and has cointegrating rank which may exceed 1. This situation was covered by
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Robinson and Yajima (2002), who considered methods of determining the cointegrating rank, and also
by Chen and Hurvich (2003b), who focused on estimation of the space of cointegrating vectors.

Chen and Hurvich (2003b) studied the properties of eigenvectors of an averaged periodogram matrix
of differenced, tapered observations, averaging over the first m Fourier frequencies, where m is held fixed
as the sample size grows. They showed that the eigenvectors corresponding to the r smallest eigenvalues
(where r is the cointegrating rank) lie close to the space of true cointegrating vectors with high probability.
They also presented an empirical analysis of fractional cointegration in US interest rates for bonds of
seven different maturities. They found evidence that the cointegrating rank was greater than one, and
furthermore, that the memory parameter of the cointegrating errors may take on a variety of values that
differ substantially if cointegrating vectors corresponding to substantially different eigenvalues are used.
This last finding, while of apparent interest from an econometric point of view, could not be explained
directly from the theoretical results presented in Chen and Hurvich (2003b), since they did not attempt
in their theory to separate the space of cointegrating vectors into subspaces yielding different memory
parameters.

The goals of the present paper are to exhibit a model that allows us to highlight these subspaces, to
show that the subspaces and their corresponding memory parameters can be estimated individually, and
to show how to use the residual-based Gaussian semiparametric estimates of the memory parameters to
consistently identify the cointegrating subspaces and to test for fractional cointegration. By contrast,
Chen and Hurvich (2003b) did not consider either testing for cointegration or estimation of the degree of
cointegration.

We first present in Section 2 a semiparametric common components model in which the components
have different memory parameters, while the entries of the observed multivariate series have just one
common memory parameter. Next, we show that the space of cointegrating vectors can be decomposed
into a direct sum of orthogonal cointegrating subspaces such that vectors from distinct subspaces yield
cointegrating errors with distinct memory parameters.

We show in Section 5 that each of these cointegrating subspaces can be separately estimated using
sets of eigenvectors of the averaged periodogram matrix. Since m is held fixed, we are able to obtain a
rate of convergence for the estimated cointegrating vectors that depends only on the difference between
the memory parameters in the given and adjacent subspaces, and is not hampered by the rate of increase
of m as in other related work (cf. Robinson and Marinucci 2001, in the bivariate case).

To each true cointegrating subspace, there corresponds an estimated cointegrating subspace spanned
by an orthonormal set of eigenvectors of the averaged periodogram matrix, where membership in the set
is determined by a partitioning of the sorted observed eigenvalues into contiguous groups, of sizes that
match the dimensions of the corresponding true cointegrating subspaces. We show in Section 4 that the
eigenvalues for the k’th estimated cointegrating subspace are Op(n2dk), where n is the sample size, and
dk is the memory parameter of the cointegrating error for the k’th true cointegrating subspace. This
result, and further refinements of it, plays a key role in our subsequent theory.

We will show in Theorem 1 that any vector in the k’th estimated cointegrating subspace is, with high
probability, close to the k’th true cointegrating subspace, in the sense that the norm of the sine of the
angle between these two subspaces converges in probability to zero. The norm of the sine of this angle is
Op(n−αk), where αk is the shortest distance between the memory parameters corresponding to the given
and adjacent subspaces. This implies that the sine of the angle between any vector in the k’th estimated
cointegrating subspace and the k’th true cointegrating subspace is Op(n−αk). (We provide more details
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on the notion of the sine of the angle between subspaces, and also the sine of the angle between a vector
and a subspace, in Section 5). This convergence rate, which improves as αk increases, is at least as fast
as the rates obtained for existing semiparametric estimators of cointegrating vectors in the bivariate case
(see, eg., Robinson and Marinucci 2001 and the discussion in Chen and Hurvich (2003a)). Furthermore,
we show in Lemma 29 that the normalized eigenvectors of the averaged periodogram matrix converge in
distribution to random vectors that lie in the corresponding cointegrating subspace.

We then show in Section 6 that the cointegrating residuals corresponding to an estimated cointegrating
vector can be used to obtain a consistent and asymptotically normal estimate of the memory parameter for
the given cointegrating subspace, using a univariate Gaussian semiparametric estimator with a bandwidth
that tends to ∞ more slowly than n.

In Section 7, we propose and justify a test for fractional cointegration in the current context. In Section
8 we provide a procedure for consistently identifying the cointegrating subspaces, i.e., for determining
the number of subspaces and their dimensions.

2 A Fractional Common Components Model

Suppose that the original data are a q × 1 time series such that the p − 1th differences {yt} are weakly
stationary with a common memory parameter d0 ∈ (−p + 1/2, 1/2), where p ≥ 1 is a fixed integer. The
use of p − 1th differences converts any additive polynomial trend of order p − 1 in the original series
into an additive constant. The value of this constant is irrelevant for our purposes since the estimators
considered here are functions of the discrete Fourier transform at nonzero Fourier frequencies. We can
therefore take the mean of {yt} to be zero, without loss of generality, and our estimators are invariant to
polynomial trends of order p− 1 in the original series.

In order to guarantee that the cointegrating relationships in the stochastic component of the levels
are preserved in the differences, we apply a taper to the differences, that is, we multiply the differences
by a sequence of constants prior to Fourier transformation. This prevents detrimental leakage effects
due to potential overdifferencing, and allows us to obtain uniform results over a wide range of memory
parameters. A convenient family of tapers for use on the differences, and which we will use here, was
given in Hurvich and Chen (2000). The exact form of the taper is given below.

The fractional common components model for the (q × 1) series {yt} with cointegrating rank r (1 ≤
r < q), and s cointegrating subspaces (1 ≤ s ≤ r), is given by

yt = A0u
(0)
t + A1u

(1)
t + · · ·+ Asu

(s)
t , (1)

where Ak (0 ≤ k ≤ s) are q × ak full-rank matrices with a0 = q − r and a1 + · · ·+ as = r such that all
columns of A0, . . . ,As are linearly independent, {u(k)

t } k = 0, . . . , s, are (ak × 1) processes with memory
parameters {dk}s

k=0 with −p + 1/2 < ds < · · · < d0 < 1/2. Equation (1) can be written as

yt= Azt, (2)

where zt = vec
(
u

(0)
t , . . . , u

(s)
t

)
and A =

[
A0 · · · As

]
. We will make additional assumptions on {zt}

in Section 3. These assumptions guarantee that {zt} is not cointegrated. The methodology presented in
this paper does not require either r or s to be known.
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Remark 1 Our assumption that all entries of {yt} have memory parameter d implies that all rows of
A0 are nonzero. The model (1), without the assumption that all entries of {yt} have a common memory
parameter, could also be entertained, though we do not pursue this here, and would then include the model
considered by Robinson and Yajima (2002).

Next, we exhibit the cointegrating subspaces. For any matrix A, let M(A) denote the column space
of A, and let M⊥(A) denote the orthogonal complement of A. Note that, for k = 1, . . . , s,

M⊥ (A0, . . . ,Ak) ⊂ M⊥ (A0, . . . ,Ak−1) .

Let B0 = M (A0) , and Bk, k = 1, . . . , s, be the subspace such that

M⊥ (A0, . . . ,Ak−1) = M⊥ (A0, . . . ,Ak)⊕Bk,

and Bk⊥M⊥ (A0, . . . ,Ak) . Hence a vector β ∈ Bk, k ∈ {1, . . . , s}, satisfies β′A` = 0, ` = 0, . . . , k − 1
and β′Ak 6= 0. Also Bj⊥Bk for j 6= k, (j, k) ∈ {0, . . . , s}, and

Rq = B0 ⊕B1 ⊕ · · · ⊕Bs . (3)

It can be seen from (1) and the preceding discussion that any nonzero vector β ∈ Bk with k ∈ {1, . . . , s}
produces a cointegrating error series {β′yt} with memory parameter dk. Thus, B1, . . . , Bs are the cointe-
grating subspaces. The space B0, on the other hand, is the space spanned by the non-cointegrating vectors
in Rq. Equation (3) shows that Rq may be written as a direct sum of the space of non-cointegrating
vectors and the space of cointegrating vectors, and that the latter space may be further decomposed into
a direct sum of cointegrating subspaces.

3 Assumptions

Here, we specify a linear model for the series zt = vec
(
u

(0)
t , . . . , u

(s)
t

)
. As stated in the previous section, we

assume that {u(k)
t } k = 0, . . . , s, are (ak×1) processes with memory parameters {dk}s

k=0 with −p+1/2 <
ds < · · · < d0 < 1/2. Define N0 = {1, . . . , a0} and Nk = {(a0 + · · ·+ ak−1) + 1, . . . , (a0 + · · ·+ ak)} for
k = 1, . . . , s.

Let ψk be a sequence of q × q matrices such that

ψk =
1
2π

∫ π

−π

eikωΨ (ω) dω ,

where for each ω ∈ [−π, π], Ψ(ω) is a complex-valued matrix such that Ψ (−ω) = Ψ (ω) and ψ0 is an
identity matrix.

Define the q × 1 vector process {zt} as

zt =
∞∑

k=−∞
ψkεt−k , (4)
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where
{
εt = (εt,1, . . . , εt,q)

′} ∼ iid (0, 2πΣ) , Σ is a symmetric positive definite matrix with entries σab,
a, b ∈ {1, . . . , q} and E ‖εt‖4 < ∞, where ‖·‖ denotes the Euclidean norm. The spectral density matrix
of {zt} is

f (ω) = Ψ (ω)ΣΨ∗ (ω) , ω ∈ [−π, π] ,

where the superscript ∗ denotes conjugate transposition. We further assume that for ω ∈ [−π, π] , the
(a, b)’th entry of Ψ (ω) is given by

Ψab (ω) =
(
1− e−iω

)−dab
τab (ω) eiφab(ω) (5)

where daa = dk for a ∈ Nk, and dab ≤ min(dk, dh) for a ∈ Nk, b ∈ Nh, b 6= a (k, h = 0, . . . , s), and for all
a, b ∈ {1, . . . , q}, τab (·) are positive even real-valued functions, φab (·) are odd real-valued functions, all
continuously differentiable in an interval containing zero. It follows from (5) that the first derivatives of
Ψab(ω) satisfy

Ψ′ab(ω) = O
(
|Ψaa(ω)Ψbb(ω)|1/2 |ω|−1

)
. (6)

In keeping with (5), we assume that we can write the spectral density matrix of {zt} as

f (ω) = Υ(ω)f†(ω)Υ∗(ω) , (7)

where Υ(ω) = diag
{(

1− e−iω
)−d0

, . . . ,
(
1− e−iω

)−d0
, . . . ,

(
1− e−iω

)−ds
, . . . ,

(
1− e−iω

)−ds
}

, i.e, the

a’th diagonal entry is
(
1− e−iω

)−dk for all a ∈ Nk (k = 0, . . . , s), and

f† (ω) = Ψ†∗ (ω)ΣΨ† (ω) , (8)

is positive definite, Hermitian, continuous at zero frequency, and therefore real-valued at zero frequency.
Thus, {zt} is not fractionally cointegrated. (See Robinson and Marinucci, 1998).

4 The Averaged Periodogram Matrix and its Eigenvalues

For any vector sequence of observations {ξt}n
t=1, define the tapered discrete Fourier transform by

Jξ(ωj) =
1√

2π
∑ ∣∣∣hp−1

t

∣∣∣
2

n∑
t=1

hp−1
t ξte

iωjt ,

where ωj = 2πj/n is the j’th Fourier frequency, and {ht} is the complex-valued taper of Hurvich and
Chen (2000),

ht = 0.5
(
1− ei2πt/n

)
, t = 1, . . . , n .

Note that p = 1 yields the no-tapering case. Next, define the tapered cross-periodogram matrix of two
vector sequences {ξt}n

t=1 and {ζt}n
t=1 by

Iξζ(ωj) = Jξ(ωj)J∗ζ (ωj) .

We will work with the (real part of the) averaged periodogram matrix of a sample of n observations
{yt}n

t=1,

Im =
m∑

j=1

Re {Iyy (ωj)} ,
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where m is a fixed positive integer, m > q + 3.

Denote Im (ξt, ζt) =
∑m

j=1 Re {Iξζ(ωj)} . We first focus on the asymptotic distribution of Im (zt, zt).
Define the function (for x ∈ R)

∆p(x) =
(

2p− 2
p− 1

)−1/2 p−1∑

k=0

(
p− 1

k

)
(−1)k∆(x + 2πk) ,

where

∆(x) =
1√
2π

eix − 1
ix

.

Now, define

υj (x) =
1
2

[
∆p (−x + 2πj) + ∆p (x + 2πj)

]
,

νj (x) =
i

2

[
∆p (−x + 2πj)−∆p (x + 2πj)

]
.

Define the Hermitian positive definite q × q matrix-valued measure G0 on R by

G0 (dx) = Π (x) f†(0)Π∗ (x) dx (9)

for x > 0 and G0 (−dx) = G0 (dx) where

Π(x) = diag
(
e−iπd0/2 |x|−d0 , . . . , e−iπd0/2 |x|−d0 , . . . , e−iπds/2 |x|−ds , . . . , . . . , e−iπds/2 |x|−ds

)
.

Let Un and Vn be q ×m matrices given by

Un = d−1
n Re (Jz,1, . . . , Jz,m) and Vn = d−1

n Im (Jz,1, . . . , Jz,m) . (10)

Lemma 1 Let dn be a (q × q) diagonal matrix with ith diagonal entry ndk , i ∈ Nk, k = 0, . . . , s and
Qn = d−1

n Im (zt, zt)d−1
n = (Un,Vn) (Un,Vn)′. If m ≥ q, then

Qn
D−→ UU′ + VV′,

where U = (U1, . . . , Um) and V =(V1, . . . , Vm) , Uj , Vk are q× 1 vectors, and vec (U,V) is a 2mq-variate
normal random variable with zero mean, and covariance matrix Ξ determined by

E (UjU
′
k) =

∫

R
υj (x) υk (x)G0 (dx) ,

E (VjV
′
k) =

∫

R
νj (x) νk (x)G0 (dx) ,

E (UjV
′
k) =

∫

R
υj (x) νk (x)G0 (dx) .

Furthermore, UU′ + VV′ is positive definite and has distinct eigenvalues with probability 1.
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Proof. The proof is identical to the proof of Lemma 1, Corollary 1 and 2 of Chen and Hurvich (2003b).¤

We next derive upper and lower bounds for the eigenvalues of Im (yt, yt) . We will use the notation λj (·)
for the j’th eigenvalue of a given Hermitian matrix, λj (·) ≥ λj+1 (·) . Also we let λj = λj (Im (yt, yt)) .
We have the following lemma.

Lemma 2 λj = Op

(
n2dk

)
, for j ∈ Nk, k = 0, . . . , s.

In the case k ≥ 1, the upper bound in Lemma 2 strengthens Lemma 4 of Chen and Hurvich (2003b).

Lemma 3 Let j∗k = max {j : j ∈ Nk} and Q(k)
n be the leading j∗k × j∗k principal submatrix of Qn, for

k = 0, . . . , s. Then
n−2dukλj∗k ≥ ckλj∗k

(
Q(k)

n

)
D−→ η

(k)
j∗k

,

where ck > 0 and η
(k)
j∗k

is a random variable that has no mass at 0.

5 Estimation of the Cointegrating Subspaces

Let X (·) =
[

χ1 (·) . . . χq (·) ]
, an orthogonal matrix such that χj (·) is the eigenvector corresponding

to the j’th largest eigenvalue λj (·) of a given symmetric q × q matrix, and let Xk (·) be a matrix with
columns χj (·) , j ∈ Nk, for k = 0, . . . , s. Also we let χj = χj (Im (yt, yt)) , X = X (Im (yt, yt)) and
Xk= Xk (Im (yt, yt)). For k = 0, 1, . . . , s, let Bk be a q× ak matrix with orthonormal columns such that
M (Bk) = Bk and let B =

[
B0 · · · Bs

]
. Since B′B = I, it follows that for any q×q matrix P, B′PB

is similar to P, i.e., λj (P) = λj (B′PB) and χj (P) = B′χj (B′PB) .

Define
Φ= B′Im (yt, yt)B ,

and partition Φ into (s + 1)2 blocks, such that the (k, `) block Φk` has dimension (ak × a`), for k, ` =
0, . . . , s. Define ΦD = diag [Φ00, . . . ,Φss] , and ∆Φ = Φ−ΦD, so that

Φ = ΦD + ∆Φ .

We have
Im (yt, yt) = BΦB′ = BΦDB′ + B∆ΦB′ =: H+∆H ,

so we can think of Im (yt, yt) as a perturbed version of H. Using results by Barlow and Slapničar (2000)
on perturbation theory for eigenvalues and eigenvectors of nonrandom Hermitian matrices, we will show
in Lemma 4 that the k’th estimated cointegrating subspace M(Xk) is close to M(Xk (H)) in the sense
that the norm of the sine of the angle between the two subspaces converges to 0 in probability.

Let Θ (·, ·) denote the matrix of canonical angles between two subspaces of the same dimension (see,
e.g., Stewart and Sun 1990, p.43). The notion of the sine of the angle between two subspaces of the same
dimension is given in Davis and Kahan (1970). For simplicity, suppose that S and T are both real q × a
matrices (q > a) with orthonormal columns. Then the orthogonal projector into M (T) is given by TT′,
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and the projector into the orthogonal complement M⊥ (T) of M (T) is given by I − TT′, where I is a
q× q identity matrix. The sine of the angle between M (S) and M (T) is an a×a matrix defined in Davis
and Kahan (1970), and denoted by sinΘ (M (S) , M (T)). It follows from Davis and Kahan (1970, page
10) that ‖sinΘ (M (S) , M (T))‖F = ‖(I−TT′)SS′‖F where ‖·‖F is the Frobenius norm. It follows from
Stewart and Sun (1990, Corollary 5.4, p. 43) that

‖sinΘ (M (S) ,M (T))‖F =
∥∥∥
(
T⊥

)′
S
∥∥∥

F
(11)

where T⊥ is a matrix with orthonormal columns spanning M⊥ (T), so that
∥∥∥
(
T⊥

)′
S
∥∥∥

F
is the square

root of the sum of the squared lengths of the residuals from the orthogonal projections of the columns of
S on the space M (T).

For any nonzero vector x ∈ M (S), the sine of the angle between x and the subspace M (T) is a real
number defined as

sin θ (x, M (T)) =
‖(I−TT′) x‖

‖x‖ .

See Wedin (1983, p. 274). It then follows from (11) that

max
x∈M(S)

| sin θ (x, M (T)) | ≤
∥∥∥
(
T⊥

)′
S
∥∥∥

F
.

In Lemma 5, we show that under the additional assumption that the process is Gaussian, M(Xk (H))
is equal to Bk with probability approaching one, for k = 0, . . . , s. Lemmas 4 and 5 taken together imply
our Theorem 1, stating that if the process is Gaussian, the k’th estimated cointegrating subspace M (Xk)
is close to the corresponding true cointegrating subspace Bk, in the sense that ‖ sinΘ {M (Xk) ,Bk} ‖F =
Op(n−αk), where αk is the shortest distance between the memory parameters corresponding to the given
and adjacent subspaces, i.e.,

αk =





d0 − d1 k = 0,
min {(dk−1 − dk) , (dk − dk+1)} k = 1, . . . , s− 1
ds−1 − ds k = s

.

Lemma 4 The sine of the angle between M (Xk) and M (Xk (H)) satisfies

‖sinΘ {M (Xk (H)) , M (Xk)}‖F = Op

(
n−αk

)
.

The following Gaussianity assumption is sufficient for obtaining a rate at which P (M (Xk (H)) 6= Bk)
converges to zero. More specifically, the assumption allows us to bound the inverse second moment of
eigenvalues of Qn. We believe that such bounds, and therefore Lemma 5, hold without the Gaussianity
assumption, but we will not pursue this here.

Assumption 1 The process {εt} in (4) is Gaussian.

Lemma 5 Under Assumption 1, P (M (Xk (H)) 6= Bk) = O
(
n−2αk

)
, k = 0, . . . , s.
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The following theorem is a corollary of Lemmas 4 and 5.

Theorem 1 Under Assumption 1,

‖sinΘ {M (Xk) , Bk}‖F = Op(n−αk) , k = 0, . . . , s.

6 Estimation of the Memory Parameters Using Cointegrating
Residuals

Let b be any q × 1 vector in M (Xk) with length one, where k ∈ {0, . . . , s} is fixed but not necessarily
known. For example, if b is a unit eigenvector of the averaged periodogram matrix corresponding to one
of the sorted eigenvalues of this matrix, then there exists some k ∈ {0, . . . , s} such that b ∈ M (Xk),
though k is unknown since it depends on the unknown s and a0, . . . , as. We then use this vector b to
construct the residual process {vt}, where

vt := b′yt = b′A0u
(0)
t + b′A1u

(1)
t + · · ·+ b′Aku

(k)
t + · · ·+ b′Asu

(s)
t . (12)

The periodogram of {vt} is
Ivv (ωj) = b′AIzz (ωj)A′b.

We consider the Gaussian semiparametric estimator (GSE; see Kunsch, 1987, Robinson, 1995b) for dk

based on {vt},

d̂k = arg min
d∈Θ

R (d) = log Ĝ (d)− 2d


 1

mn

mn∑

j=1

log ωj̃


 , (13)

where Θ = [∆1, ∆2] , −p + 0.5 < ∆1 < ∆2 < 0.5, ωj̃ = 2πj̃/n, j̃ = j + (p− 1)/2, and

Ĝ (d) =
1

mn

mn∑

j=1

Ivv(ωj)
ω−2d

j̃

=
1

mn

mn∑

j=1

b′AIzz(ωj)A′b
ω−2d

j̃

.

Here, we use slightly shifted Fourier frequencies ωj̃ to parallel corresponding shifts inherent in our tapering
scheme and thereby reduce finite-sample bias, as was also done in Hurvich and Chen (2000).

The two theorems below establish the consistency and the limiting distribution of the d̂k, under some
additional conditions on the transfer function , a∗(ω) = τab (ω) eiφab(ω); see (5). Following Hurvich et
al (2002), we define a smoothness class for transfer functions as follows. For µ > 1 and 1 < ρ ≤ 2,
let L∗ (µ, ρ) be the set of continuously differentiable functions u on [−π, π] such that for all x, y with
|x| ∈ (0, π], |y| ∈ (0, π],

max0≤z≤π |u(z)|
min0≤z≤π |u(z)| ≤ µ,

|u(x)− u(y)|
min0≤z≤π |u(z)| ≤ µ

|y − x|
min(|x|, |y|) ,

and
|u′(x)− u′(y)|

min0≤z≤π |u(z)| ≤ µ
|y − x|(ρ−1)

[min(|x|, |y|)]ρ .
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It follows from the discussion in Hurvich, et al (2002) that if a∗ is the transfer function of a stationary
and invertible autoregressive moving average process, or of a stationary and invertible fractional Gaussian
noise, then a∗ ∈ L∗ (µ, ρ) for some µ, with ρ = 2.

We now state an assumption on a∗.

Assumption 2 a∗ ∈ L∗ (µ, ρ) for some µ > 1, and some ρ ∈ (1, 2].

Note that this assumption is global in that it pertains to the behavior of a∗ at all frequencies. By
contrast, our estimation of the d̂k is based on frequencies in a shrinking neighborhood around zero. It
seems plausible, then, that a local version of Assumption 2 would suffice for our purposes, though we do
not pursue this here.

The following standard assumption is needed to establish the consistency of d̂k.

Assumption 3a. As n →∞,
1

mn
+

mn

n
→ 0.

Theorem 2 Under Assumptions 1, 2 and 3a, for k ∈ {0, . . . , s}, d̂k
p→ dk.

The next assumption is used for establishing the asymptotic normality of m
1/2
n

(
d̂k − dk

)
, for the

particular fixed value of k under consideration.

Assumption 3b. (i) If k ∈ {1, . . . , s}, dk−1 − dk > 1/2. (ii) If k ∈ {0, . . . , s− 1}, as n →∞,

1
mn

+
m

1+2(dk−dk+1)
n log2 mn

n2(dk−dk+1)
→ 0.

Note that part (i) is vacuous is k = 0, and part (ii) is vacuous if k = s. Assumption 3b may be compared
with the assumptions in Theorems 2 and 4 of Velasco (2003), which he required for residual-based
estimators of the memory parameters of a bivariate fractionally cointegrated system.

To present the asymptotic variance of d̂k, we define

Φp =
Γ(4p− 3)Γ4(p)

Γ4(2p− 1)
.

Theorem 3 Under Assumptions 1,2 and 3b, for k ∈ {0, . . . , s},

m1/2
n

(
d̂k − dk

)
D−→ N (0, Φp/4) .

Note that in Theorem 3, the limiting distribution of m
1/2
n

(
d̂k − dk

)
has mean zero. This asymptotic

unbiasedness is ensured by Assumption 3b, which places strong restrictions on the separation between
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the memory parameters and also places a potentially stringent upper bound on the bandwidth mn. A
much weaker and indeed more standard assumption involving only mn is the following.

Assumption 3c. As n →∞,
1

mn
+

m1+2ρ
n log2 mn

n2ρ
→ 0.

If we account for the asymptotic bias, which can be determined from Corollary 10, and use Assumption
3c, we obtain the following result.

Corollary 1 Under Assumptions 1, 2, and 3c, for k ∈ {0, . . . , s},

m1/2
n

(
d̂k − dk − µn

)
D−→ N (0,Φp/4) ,

where µn = Op

(
m

dk−dk−1
n + ω

dk−dk+1
mn

)
, the Op

(
m

dk−dk−1
n

)
term is vacuous if k = 0, and the Op

(
ω

dk−dk+1
mn

)

term is vacuous if k = s.

Theorems 2, 3, and Corollary 1 pertain to a GSE estimator based on the residual series {b′yt}, where
b is any vector in M (Xk). In practice, b will typically be an eigenvector of the averaged periodogram
matrix corresponding to one of the sorted eigenvalues of this matrix, so that b is indeed in M (Xk)
for some k, but k is unknown. See the discussion at the beginning of this section. Here, we present
some results on estimators of memory parameters based on the residual series constructed from an
eigenvector corresponding to a particular sorted eigenvalue of the averaged periodogram matrix. Let wt

be a q×1 residual series, wt = X′yt, and d̂ =
(
d̂11, . . . , d̂qq

)′
be the vector of univariate GSE estimates of

d = (d11, . . . , dqq)
′ based on wt. First note that by Lemma 29 and the remark that follows it, X D−→X̊(H),

where X̊(H) is a continuous function of U and V in Lemma 1. We will need the following assumption
for our results.

Assumption 3d. (i) For all k ∈ {0, . . . , s}, αk > 1/2 . (ii) As n →∞,

1
mn

+
m1+2ξ

n log2 mn

n2ξ
→ 0

where ξ = min{mink αk, ρ}.

Theorem 4 Under Assumptions 1, 2 and 3d,

m1/2
n

(
d̂− d

)
D−→ N

(
0,

Φp

4
(diagΩ)−1 ◦Ω ◦Ω◦ (diagΩ)−1

)
,

where
Ω = E

(
X̊′Af† (0)A′X̊

)
.

Remark 2 Simulation results not shown here reveal that the small-sample bias is reduced and the variance
is stabilized if the GSE estimators omit the first m + p− 1 frequencies. This does not affect the validity
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of Theorem 4. The proof of Lemma 28 provides some motivation for this omission. Note that if no
frequencies are omitted, then the first m + p − 1 frequencies are used twice: once for estimating the
cointegrating vector, and once for estimating the memory parameter. If the frequencies are omitted, the
finite-sample approximation to the variance in Hurvich and Chen (2000) is quite accurate.

Theorem 4 yields the following result on the asymptotic distribution of m
1/2
n

(
d̂aa − d̂bb − (daa − dbb)

)

under conditions that ensure asymptotic unbiasedness.

Corollary 2 Under the assumptions of Theorem 4, for a, b ∈ {1, . . . , q}, a 6= b,

m1/2
n

(
d̂aa − d̂bb − (daa − dbb)

)
D−→ N

(
0,

Φp

2

(
1− Ω2

ab

ΩaaΩbb

))
.

Next, we modify Corollary 2 to include a bias term, thereby allowing for weaker assumptions.

Corollary 3 If a ∈ Nk, b ∈ Nh, for k, h ∈ {0, . . . , s} then under the assumptions of Corollary 1,

m1/2
n

(
d̂aa − d̂bb − (daa − dbb)− µ̃n

)
D−→ N

(
0,

Φp

2

(
1− Ω2

ab

ΩaaΩbb

))

where
µ̃n = Op

(
mdk−dk−1

n + mdh−dh−1
n + ωdk−dk+1

mn
+ ωdh−dh+1

mn

)
.

7 Testing for Fractional Cointegration

In model (1), used throughout the paper thus far, we have assumed that s ≥ 1, so that cointegration
exists. Here, we expand model (1) to include the case of no cointegration (s = 0, or equivalently, r = 0),
that is,

yt = A0u
(0)
t (14)

where A0 is q × q with linearly independent columns, and all entries of u
(0)
t have memory parameter d0.

In practice, it is of interest to test for the presence of fractional cointegration. Such a test was proposed
by Marinucci and Robinson (2001, pp. 236-237), following from an idea originally suggested in a different
context by Hausman (1978), using a comparison of two estimates of d0, one based on a multivariate
Gaussian semiparametric estimator (see Lobato 1999) using {yt}n

t=1 with an imposed restriction that
all entries have the same memory parameter, and the other estimator based on a univariate Gaussian
semiparametric estimator of d0 using (say) the first entry {y1,t} of {yt}. It seems possible to use this idea
together with differencing and tapering to yield a test for fractional integration in the current context,
though we do not pursue this here. We focus instead on residual based methods, in which estimated
memory parameters based on the various cointegrating residual series are compared. In a bivariate
context, Velasco (2003) has considered properties of semiparametric memory parameter estimates based
on cointegrating residuals under certain assumptions on the rate of convergence of the semiparametric
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estimator of the cointegrating parameters. However, he did not present a test for cointegration since his
assumptions ruled out the no-cointegration case.

For our GSE estimators d̂ based on cointegrating residuals, we have the following extensions of The-
orem 4 and Corollary 2 to the no-cointegration case (14).

Corollary 4 Under Assumptions 1, 2 and 3c, if there is no cointegration,

m1/2
n

(
d̂− d

)
D−→ N

(
0,

Φp

4
(diagΩ)−1 ◦Ω ◦Ω◦ (diagΩ)−1

)
,

where
Ω = E

(
X̊′Af† (0)A′X̊

)
.

Corollary 5 Under Assumptions 1, 2 and 3c, if there is no cointegration, for a, b ∈ {1, . . . , q},

m1/2
n

(
d̂aa − d̂bb

)
D−→ N

(
0,

Φp

2

(
1− Ω2

ab

ΩaaΩbb

))
.

Corollary 5 and Corollary 3 justify a conservative hypothesis test for the null hypothesis of no coin-
tegration based on the test statistic Tn = m

1/2
n (d̂11 − d̂qq), whereby for a nominal level α test the null

hypothesis is rejected in favor of the cointegration alternative hypothesis if and only if Tn > (Φp/2)1/2zα/2.
Here, a bandwidth mn satisfying Assumption 3c should be used. The test is conservative since (Φp/2) is
an upper bound for the asymptotic variance of Tn.

In the next section, we provide a procedure for consistently identifying the cointegrating subspaces,
assuming that there is cointegration, i.e., we will assume model (1) with s > 0. In practice, before applying
the procedure, we recommend pre-testing for cointegration using the test we have just described.

8 Identification of the Cointegrating Subspaces

Given data from model (1), assumed to possess fractional cointegration, the number s > 0 of cointegrating
subspaces and their dimensions a1, . . . , as as well as the dimension a0 of the non-cointegrating space will
be unknown in general. Here, we provide a procedure for consistently identifying s, a0, . . . , as, under
Assumption 1, which we make throughout this section. The procedure is based on the GSE estimates
d̂11, . . . , d̂qq formed from cointegrating residuals described in Section 6. The primary drawback of the
procedure is that it requires the user to specify a lower bound on the minimum separation between
the memory parameters. This minimum separation will typically also be unknown in practice, so the
procedure we will describe here is not completely satisfactory. However, we note that such lower bounds
on the minimum separation arise implicitly or explicitly in other works on semiparametric fractional
cointegration. (See Robinson and Yajima 2002 Assumption D, and Velasco 2003, Theorems 2 and 4). In
the current context, the need for such a lower bound is due to the nonstandard term µ̃n appearing in
Corollary 3. This term increases as the separation of the relevant memory parameters decreases.

Now, suppose that s > 0 and let δ∗ > 0 be the minimum separation between the memory parameters,
δ∗ = min(d0 − d1, . . . , ds−1 − ds). If δ∗ > 1/2, the procedure is straightforward, as we will explain later.
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If 0 < δ∗ < 1/2, fix values of δ ∈ (0, δ∗) and ε ∈ (1/2− δ, 1/2). This can be done provided that we have
(or can correctly guess) a lower bound δ ∈ (0, 1/2) for δ∗. We now work with the pairs of GSE estimators
d̂jj , d̂j+1,j+1, j = 1, . . . , q − 1, where the bandwidth mn satisfies Assumption 3c. Fix a value of C > 0.
For each j ∈ {1, . . . , q − 1}, we declare that djj − dj+1,j+1 6= 0 if and only if

d̂jj − d̂j+1,j+1 > Cm−1/2+ε
n .

We show here that for each j this procedure makes the correct decision as to whether or not djj = dj+1,j+1

with a probability that tends to 1 as n increases. Our assumptions imply that for each k ∈ {0, . . . , s}
dk − dk+1 > δ and dk − dk−1 < −δ whenever the left hand sides of these inequalities are well-defined, so
the remainder term in Corollary 3 may be written as

µ̃n = Op[m−δ
n + (mn/n)δ] ,

and Corollary 3 implies that for all j ∈ {1, . . . , q − 1},

d̂jj − d̂j+1,j+1 = djj − dj+1,j+1 + Op[m−1/2
n + m−δ

n + (mn/n)δ] .

Thus,
P{d̂jj − d̂j+1,j+1 > Cm−1/2+ε

n } = P{m1/2−ε
n d̂jj − d̂j+1,j+1 > C}

= P{m1/2−ε
n (djj − dj+1,j+1) + Op[m−ε

n + m1/2−ε−δ
n + (mn/n)1/2−ε+δ] > C} .

Our assumptions imply that 1/2− ε− δ < 0 and 1/2− ε + δ > 0. It follows that if djj = dj+1,j+1 then

P{d̂jj − d̂j+1,j+1 > Cm−1/2+ε
n } → 0 .

On the other hand, if djj 6= dj+1,j+1 then

P{d̂jj − d̂j+1,j+1 > Cm−1/2+ε
n } = P{m1/2−ε

n (djj − dj+1,j+1) + op(m1/2−ε
n ) > C} → 1 .

In view of the above discussion, we have the following procedure for identifying the cointegrating sub-
spaces. The procedure is a formalization of the simple idea that we can set the group boundaries at
the points where the estimates of the memory parameters differ by a sufficient amount. First, we es-
timate s by ŝ, the number values of j ∈ {1, . . . , q − 1} such that d̂jj − d̂j+1,j+1 > Cm

−1/2+ε
n . Then

ŝ → s almost surely, as long as s > 0, as we are assuming here. If ŝ = 0 then the procedure termi-
nates without identifying any of the cointegrating spaces, but we will not dwell on this scenario since
our assumptions imply that P{ŝ = 0} → 0. Henceforth, we assume that ŝ ≥ 1. We estimate a0 by
â0 = min{j ∈ {1, . . . , q − 1} : d̂jj − d̂j+1,j+1 > Cm

−1/2+ε
n }. Then â0 → a0 almost surely. If ŝ = 1 we set

â1 = q − â0 and the procedure terminates. If ŝ > 1 then for each k ∈ {1, . . . , ŝ− 1} we estimate ak by

âk = min {j ∈ {1, . . . , q − (â0 + · · ·+ âk−1)− 1} :

d̂j+â0+···+âk−1,j+â0+···+âk−1 − d̂j+â0+···+âk−1+1,j+â0+···+âk−1+1 > Cm−1/2+ε
n

}

and we set âs = q−(â0+ . . .+ âs−1). From the discussion above, it follows that ŝ, â0, . . . , âŝ are consistent
estimators of s, a0, . . . , as, respectively.

Finally, we discuss a modified version of the above procedure for the case δ∗ > 1/2. In this case,
we compare the GSE estimators d̂jj and d̂j+1,j+1 for j = 1, . . . , q, using a bandwidth mn satisfying
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Assumption 3d, part (ii), with ξ = min{δ∗, ρ}. Fix an ε ∈ (0, 1/2) and a C > 0. Then, proceeding as
above, for each j ∈ {1, . . . , q − 1}, we declare that djj − dj+1,j+1 6= 0 if and only if d̂jj − d̂j+1,j+1 >

Cm
−1/2+ε
n . The justification for this procedure follows a simplified version of the argument given for

the case δ∗ < 1/2, but here we can use Corollary 2, which contains no bias term, instead of the more
complicated Corollary 3.

9 Appendix

9.1 Proofs For Section 4

Proof of Lemma 2: For k = 0, 1, . . . , s, let Bk be a q× ak matrix with orthonormal columns such that
M (Bk) = Bk and let B =

[
B0 · · · Bs

]
. Let Φ= B′Im (yt, yt)B. Since B′B = I, we have λj (Φ) =

λj . Let z
(k)
t =

(
u

(k)
t , . . . , u

(s)
t

)
, k = 1, . . . s, and z

(0)
t = zt. Let A(k) =

[
Ak · · · As

]
, k = 0, 1, . . . , s.

We first partition Φ into (s + 1) × (s + 1) blocks, such that the (k, `) block has dimension (ak×a`). Note
that

Φ = B′AIm (zt, zt)A′B,

where B′A is an upper triangular block matrix. We have

Φk` = B′
kA

(k)Im

(
z
(k)
t , z

(`)
t

)
A(`)′B`, for k ≤ `, k, ` = 0, 1, . . . , s , (15)

Φ`k = Φ′
k`.

Fix a value of k ∈ {0, . . . , s}. Note that by Lemma 1, all the elements in the kth block, Φkk, are
Op

(
n2dk

)
. Now

∑

j∈Nk

λj ≤
∑

j∈Nk∪···∪Ns

λj ≤
s∑

v=k

tr {Φvv} = Op

(
n2dk

)
.

See, for example, Theorem 14 of Magnus and Neudecker (1999, p. 211). We have λj = Op

(
n2dk

)
, for

j ∈ Nk.¤

Proof of Lemma 3: We construct another similar matrix for Im (yt, yt). Let Cs = M (As) , and Ck,
k = 0, . . . , s− 1, be the subspaces such that

M⊥ (Ak+1, . . . ,As) = M⊥ (Ak, . . . ,As)⊕ Ck,

and Ck⊥M⊥ (Ak, . . . ,As) . Hence a vector α ∈ Ck satisfies α′A` = 0, ` = k + 1, . . . , s and α′Ak 6= 0.
Also Cj⊥Ck for j 6= k. For k ∈ {0, . . . , s}, let Ck be a q× ak matrix with orthonormal columns such that
M (Ck) = Ck and let C =

[
C0 · · · Cs

]
. Since C′C = I, Ω = C′Im (yt, yt)C is similar to Im (yt, yt) .

From Lemma 1, Q(k)
n converges in distribution to a matrix that is positive definite with probability

one. Since an eigenvalue of a matrix is a continuous function of the entries of the matrix, we conclude
that λj∗k

(
Q(k)

n

)
, the smallest eigenvalue of Q(k)

n , converges in distribution to a random variable that

has no mass at zero. The proof can be completed by showing that n−2dukλj∗k ≥ ckλj∗k

(
Q(k)

n

)
. Let

15



z̃
(k)
t =

(
xt, u

(1)
t , . . . , u

(k)
t

)
, k = 1, . . . s, and z̃

(0)
t = xt. Let d̃(k)

n be the leading j∗k × j∗k principal submatrix
of dn. By Corollary 2.2.1 of Anderson and Das Gupta (1963),

λj∗k

(
Im

(
z̃
(k)
t , z̃

(k)
t

))
= λj∗k

(
d̃(k)

n Q(k)
n d̃(k)

n

)
≥ λj∗k

(
d̃(k)

n

)
λj∗k

(
Q(k)

n

)
λj∗k

(
d̃(k)

n

)
= n2dkλj∗k

(
Q(k)

n

)
. (16)

We have λj (Ω) = λj . Note that
Ω = C′AIm (zt, zt)A′C,

where C′A is a lower triangular block matrix. Let P(k) = C̃(k)′Ã(k) where Ã(k) =
[

A0 · · · Ak

]
,

k = 0, 1, . . . , s and C̃(k) is defined similarly. Let Ω(k) denote the leading j∗k × j∗k principal submatrix of
Ω. We have

Ω(k) = P(k)Im

(
z̃
(k)
t , z̃

(k)
t

)
P(k)′ .

Notice that P(k) and Im

(
z̃
(k)
t , z̃

(k)
t

)
are square matrices with the same dimension. Since λj∗k

(
Ω(k)

)
and

λj∗k

(
Im

(
z̃
(k)
t , z̃

(k)
t

))
are the smallest eigenvalues of Ω(k) and Im

(
z̃
(k)
t , z̃

(k)
t

)
respectively,

λj∗k

(
Ω(k)

)
= min

α

α′Ω(k)α

α′α
= min

α





α′P(k)Im

(
z̃
(k)
t , z̃

(k)
t

)
P(k)′α

α′P(k)P(k)′α

α′P(k)P(k)′α

α′α





≥ min
α





α′P(k)Im

(
z̃
(k)
t , z̃

(k)
t

)
P(k)′α

α′P(k)P(k)′α



min

α

{
α′P(k)P(k)′α

α′α

}

≥ λj∗k

(
Im

(
z̃
(k)
t , z̃

(k)
t

))
λj∗k

(
P(k)P(k)′

)

= ckλj∗k

(
Im

(
z̃
(k)
t , z̃

(k)
t

))
.

By the Sturmian Separation Theorem (Rao 1973, p. 64, or Theorem 12, Magnus and Neudecker 1999, p.
210), the above equation and Equation (16),

λj∗k ≥ λj∗k

(
Ω(k)

)
≥ ck λj∗k

(
Im

(
z̃
(k)
t , z̃

(k)
t

))
≥ ckn2dkλj∗k

(
Q(k)

n

)
.

Hence n−2dukλj∗k ≥ ckλj∗k

(
Q(k)

n

)
. ¤

9.2 Proofs For Section 5

Proof of Lemma 4: Since X⊥
k (H) =

[
X0 (H) · · · Xk−1 (H) Xk+1 (H) · · · Xq (H)

]
, we

have

‖sin Θ {M (Xk (H)) , M (Xk)}‖F ≤
∥∥∥
(
X⊥

k (H)
)∗

Xk

∥∥∥
F
≤

s∑

`=0,` 6=k

∥∥(X` (H))∗Xk

∥∥
F

= Op

(
max
6̀=k

n−|dk−d`|
)

= Op

(
n−αk

)
,

by Lemma 7.¤
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Proof of Lemma 5: For k = 1, . . . , s− 1, we have

P (M (Xk (H)) = Bk) = P ({MXk (H) ∩ ⊕`≤k−1B` = 0} ∩ {MXk (H) ∩ ⊕`≥k+1B` = 0}) .

Hence

P (M (Xk (H)) 6= Bk) = P ({MXk (H) ∩ ⊕`≤k−1B` 6= 0} ∪ {MXk (H) ∩ ⊕`≥k+1B` 6= 0})
≤ P (MXk (H) ∩ ⊕`≤k−1B` 6= 0) + P (MXk (H) ∩ ⊕`≥k+1B` 6= 0)

= O
(
n−2dk−1+2dk + n−2dk+2dk+1

)
,

by Lemma 11. Similarly,
P (M (X0 (H)) 6= B0) = Op

(
n−2d0+2d1

)

and
P (M (Xs (H)) 6= Bs) = Op

(
n−2ds−1+2ds

)
.

We have completed the proof.¤

We will need the following lemma for the proof of Lemma 7.

Lemma 6 Let K =diag (B′
0A0, . . . ,B′

sAs) , then

d−1
n Φd−1

n
D−→ K

(
UU′ + VV′)K′,

where dn,U and V are defined as in Lemma 1.

Proof. We write Φ = KIm (zt, zt)K + R, where R is a symmetric matrix with its (k, `)th entry

Rk` = B′
kAkIm

(
u

(k)
t , z

(`+1)
t

)
A(`+1)′B` + B′

kA
(k+1)Im

(
z
(k+1)
t , u

(`)
t

)
A′

`B`

+ B′
kA

(k+1)Im

(
z
(k+1)
t , z

(`+1)
t

)
A(`+1)′B`,

for k ≤ `, ` = 0, 1, . . . , (s− 1),

Rks = B′
kA

(k+1)Im

(
z
(k+1)
t , z

(s)
t

)
A(s)′Bs,

for k < s, and Rss = 0. Now

d−1
n Φd−1

n = d−1
n KIm (zt, zt)K′d−1

n + d−1
n Rd−1

n .

Since d−1
n K =diag

(
n−du0B′

0A0, . . . , n
−dus B′

sAs

)
, we have

d−1
n KIm (zt, zt)K′d−1

n
D−→ K

(
UU′ + VV′)K′,

by Lemma 1. We complete the proof by showing
∥∥d−1

n Rd−1
n

∥∥ = op (1) .Note that

Rk` = Op

(
ndk+d`+1 + ndk+1+d`

)
, for k ≤ `,

and the (k, `)th entry of d−1
n Rd−1

n is

n−dk−d`Rk` = op(1), for k ≤ `.

Since d−1
n Rd−1

n is symmetric, we have completed the proof.¤
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Corollary 6 For k = 0, 1, . . . , s, the limiting distribution of n−2dkΦkk is positive definite and has distinct
eigenvalues with probability 1. Furthermore,

n−2dkλj (Φkk) D−→ Ω(k)
j ,

where Ω(k)
j is a random variable that has no mass at 0.

Proof. By Lemma 6,

n−2dkΦkk
D−→ B′

kAk

(
U(k)U(k)′ + V(k)V(k)′

)
A′

kBk,

where U(k)=
(
U

(k)
1 , . . . , U

(k)
m

)
and V(k)=

(
V

(k)
1 , . . . , V

(k)
m

)
, U

(k)
i , V

(k)
j are ak×1 vectors, and vec

{
U

(k)
i , V

(k)
j

}m

j,k=1

is a 2mak-variate normal random variable with zero mean, and covariance determined by

E
(
U

(k)
i U

(k)′

j

)
=

∫

R
υi (x) υj (x)G0,kk (dx) ,

E
(
V

(k)
i V

(k)′

j

)
=

∫

R
νi (x) νj (x)G0,kk (dx) ,

E
(
U

(k)
i V

(k)′

j

)
=

∫

R
υi (x) νj (x)G0,kk (dx) .

Here G0,kk (dx) is the kth diagonal block G0 (dx) . We see that the limiting distribution of n−2dkΦkk is
positive definite and has distinct eigenvalues with probability 1. Hence all of its eigenvalues converge in
distribution to random variables with no mass at 0.¤

Corollary 7 For i ∈ Nk, k = 0, . . . , s, n−2dkλi (ΦD) D−→ ξ
(k)
i ,where ξ

(k)
i is a random variable that has

no mass at zero.

Lemma 7 ‖X∗
` (H)Xk‖F = Op

(
n−|dk−d`|) , for all `, k ∈ {0, 1, . . . , s} with ` 6= k.

Proof: Since ‖X∗
` (H)Xk‖F = ‖X∗

` (ΦD)B′BXk (Φ)‖F = ‖X∗
` (ΦD)Xk (Φ)‖F , we prove this lemma

by showing that
‖X∗

` (ΦD)Xk (Φ)‖F = Op

(
n−|dk−d`|

)
.

Let Λ = diag {λj , j = 1, . . . , q} and Λ(k) = {λj , j ∈ Nk} . We define Λ (ΦD) and Λ(k) (ΦD) similarly for
ΦD. We will use the bound for the error in two subspaces within the nonzero space form Theorem 4.1,
Barlow and Slapničar (2000) (which can be shown to apply in our context with probability one), that is,

‖X∗
` (ΦD)Xk (Φ)‖F ≤

∥∥Λ−1/2 (ΦD)X∗ (ΦD)∆ΦX (Φ)Λ−1/2
∥∥

F

relgap
(
Λ(`) (ΦD) , Λ(k)

) ,

where

relgap
(
Λ(`) (ΦD) ,Λ(k)

)
= min

i∈Nk,j∈N`

∣∣∣∣∣
λi (Φ)− λj (ΦD)

λ
1/2
i (ΦD)λ

1/2
j (Φ)

∣∣∣∣∣ .
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We will prove this lemma by showing that
∥∥∥Λ−1/2 (ΦD)X∗ (ΦD)∆ΦX (Φ)Λ−1/2

∥∥∥
F

= Op (1) (17)

and
1

relgap
(
Λ(`) (ΦD) ,Λ(k)

) = Op

(
n−|dk−d`|

)
. (18)

By Lemmas 2, 3 and Corollary 7, relgap
(
Λ(`) (ΦD) , Λ(k)

)
= Op

(
n|dk−d`|) and n−|dk−d`| relgap

(
Λ(`) (ΦD) , Λ(k)

) ≥
ς`,k, where ς`,k is a random variable that has no mass at 0. We have (18). We next prove (17). Note that
by Lemmas 1 and 6,

dnΦ−1dn
D−→ K′−1

(
UU′ + VV′)−1

K−1.

Hence
dnX (Φ)Λ−1/2 = Op (1) ,

since dnΦ−1dn = dnX (Φ)Λ−1/2Λ−1/2X′ (Φ)dn = Op (1) . Similarly,

Λ−1/2 (ΦD)X∗ (ΦD)dn = Op (1) .

We have
∥∥∥Λ−1/2 (ΦD)X∗ (ΦD)∆ΦX (Φ)Λ−1/2

∥∥∥
F

=
∥∥∥Λ−1/2 (ΦD)X∗ (ΦD)dnd−1

n ∆Φd−1
n dnX (Φ)Λ−1/2

∥∥∥
F

≤
∥∥∥Λ−1/2 (ΦD)X∗ (ΦD)dn

∥∥∥
F

∥∥d−1
n ∆Φd−1

n

∥∥
F

∥∥∥dnX (Φ)Λ−1/2
∥∥∥

F

= Op (1) ,

by Lemma 6. Hence ‖X∗
` (ΦD)Xk (Φ)‖F = Op

(
n−|dk−d`|) .¤

We need the following two lemmas for the proof of Lemma 10.

Lemma 8 Under Assumption 1, there exists a finite constant C not depending on n such that for all
sufficiently large n,

E
[
λ2

1

(
Q−1

n

)]
< C.

Proof: Note that
Qn = (Un,Vn) (Un,Vn)′ ,

where Un and Vn are defined in Equation (10). Let

T (Wn) = λ2
1

(
Q−1

n

)
,

where Wn= vec (Un,Vn) . By Assumption 1, Wn ∼ N (0,Ξn) , where Ξn = cov (Wn) and Ξn −→ Ξ,
the covariance matrix of vec (U,V) in Lemma 1. It was shown in Chen and Hurvich (2003b) that Ξ is
positive definite. Thus for all sufficiently large n, Ξn is invertible and λ1 (Ξn) → λ1 (Ξ) > 0.

For all sufficiently large n,

EΞn [T (Wn)] = (2π)−mq |Ξn|−1/2
∫

R2mq

T (x) e−x′Ξ−1
n x/2dx.
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Since x′Ξ−1
n x′ ≥ x′x/λ1 (Ξn) , we have

e−x′Ξ−1
n x/2 ≤ e−x′x/2λ1(Ξn).

Since λ1 (Ξn) → λ1 (Ξ) > 0 and since |Ξn|−1/2 → |Ξ|−1/2
> 0, there exist constants C1 > 0 and C2 > 0

such that for all sufficiently large n,

EΞn [T (Wn)] ≤ C1

∫

R2mq

T (x) e−C2x′x/2dx = C,

a finite constant which does not depend on n. The above integral is the second moment of the largest
eigenvalue of an inverse Wishart matrix and hence is bounded by a finite constant (Siskind,1972), in view
of our assumption that m > q + 3.¤

Lemma 9 Let d(k)
n = diag

(
ndk , . . . , ndk , . . . , ndus , . . . , ndus

)′
. Then, under Assumption 1, there exists a

positive constant C such that for all sufficiently large n,

E1/2
[
λ2

1

(
n2dkΦ−1

kk

)]
< C , k = 0, . . . , s .

Proof: We have

Φkk = B′
kA

(k)Im

(
z
(k)
t , z

(k)
t

)
A(k)′Bk

= B′
kA

(k)d(k)
n

(
d(k)

n

)−1

Im

(
z
(k)
t , z

(k)
t

)(
d(k)

n

)−1

d(k)
n A(k)′Bk

= J
{(

d(k)
n

)−1

Im

(
z
(k)
t , z

(k)
t

)(
d(k)

n

)−1
}

J′

where
J = B′

kA
(k)d(k)

n .

We will use the inequality of Exercise 19 on page 238 of Magnus and Neudecker (1999). That is,

Φ−1
kk =

[
J

{(
d(k)

n

)−1

Im

(
z
(k)
t , z

(k)
t

)(
d(k)

n

)−1
}

J′
]−1

≤ (
JJ′

)−1
J

{(
d(k)

n

)−1

Im

(
z
(k)
t , z

(k)
t

) (
d(k)

n

)−1
}−1

J′
(
JJ′

)−1
.

It follows that

traceΦ−1
kk ≤ trace

(
JJ′

)−1
J

{(
d(k)

n

)−1

Im

(
z
(k)
t , z

(k)
t

)(
d(k)

n

)−1
}−1

J′
(
JJ′

)−1

≤ λ1

{(
d(k)

n

)−1

Im

(
z
(k)
t , z

(k)
t

)(
d(k)

n

)−1
}−1

trace
{(

JJ′
)−1

JJ′
(
JJ′

)−1
}

= λ1

{(
d(k)

n

)−1

Im

(
z
(k)
t , z

(k)
t

)(
d(k)

n

)−1
}−1

trace
(
JJ′

)−1
.

Since there exists a finite constant C such that E

[
λ2

1

{(
d(k)

n

)−1

Im

(
z
(k)
t , z

(k)
t

)(
d(k)

n

)−1
}−1

]
< C for

all sufficiently large n by Lemma 8, the proof will be completed by showing that

trace
(
JJ′

)−1 = O
(
n−2dk

)
.
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For k < s, we write

J= B′
kA

(k)d(k)
n

= B′
k

[
Ak A(k+1)

] [
ndkIk 0

0 d(k+1)
n

]
,

then
JJ′ = n2dkB′

kAkA′
kBk + B′

kA
(k+1)d(k+1)

n d(k+1)
n A(k+1)Bk.

For k = s, the second term on the RHS is 0. Since both matrices on the RHS are symmetric and positive
definite,

λak
JJ′ ≥ λak

[
n2dkB′

kAkA′
kBk

]
,

(see, for example, Exercise 1 on page 204 of Magnus and Neudecker 1999.) We have

λ1

(
JJ′

)−1 ≤ n−2dkλ1 [B′
kAkA′

kBk]−1 = O
(
n−2dk

)
.

¤

Lemma 10 Define Ek` to be an event, Ek` = {λak
(Φkk) > λ1 (Φ``)} , 0 ≤ k < ` ≤ s. Then, under

Assumption 1,
P (Ec

k`) = O
(
n−2dk+2d`

)
.

Proof: For ` > k, ` = 1, . . . , s, we have, by Chebyshev’s inequality and the Cauchy-Schwartz inequality,

P (Ec
k`) = P {λak

(Φkk) ≤ λ1 (Φ``)}

= P

{
n−2dk+2d`

(
n−2d`λ1 (Φ``)
n−dkλak

(Φkk)

)
≥ 1

}

≤ n−2dk+2d`E
[

n−2d`λ1 (Φ``)
n−2dkλak

(Φkk)

]

≤ n−2dk+2d`E1/2
[
λ2

1

(
n−2d`Φ``

)]
E1/2

[
λ2

1

(
n−2dkΦkk

)−1
]

≤ n−2dk+2d`E1/2
[
trace2

(
n−2d`Φ``

)]
E1/2

[
λ2

1

(
n−2dkΦkk

)−1
]

= O
(
n−2dk+2d`

)
,

since E
[
trace2

(
n−2d`Φ``

)]
< C by Assumption 1 and Lemma 1 and E

[
λ2

1

(
n−2dkΦkk

)−1
]

< C by
Lemma 9. ¤

Lemma 11 Under Assumption 1,

P {MXk (H) ∩ ⊕`≤h1Bj 6= 0} = O
(
n−2dh1+2dk

)
(19)

for h1 < k, k = 1, . . . , s and

P {MXk (H) ∩ ⊕`≥h2Bj 6= 0} = O
(
n−2dk+2dh2

)
(20)

for h2 > k, k = 0, . . . , s− 1.
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Proof: Since H = BΦDB′, we have X` (H) = BX` (ΦD) . Since ΦD is a block diagonal matrix,

λi (ΦD) ∈ {λj (Φkk) |k = 0, . . . , s, j = 1, . . . , ak}
and for λi (ΦD) such that λi (ΦD) = λj (Φkk) ,

χi (ΦD) =
(
0, . . . , 0, χ′j (Φkk) , 0, . . . 0

)′
,

i.e., the first j∗k−1 entries are all zero. Define Eh` to be an event, Eh` = {λah
(Φhh) > λ1 (Φ``)} , 0 ≤ h <

` ≤ s. We first prove (19).

P {MXk (H) ∩ ⊕`≤h1B` 6= 0} = P
(
Xk (ΦD) 6= [

0 Y
]′)

,

where the 0 in
[

0 Y
]′ has dimension j∗h1

× ak, and Y has full rank. We have for h1 < k, k = 1, . . . , s

P
(
Xk (ΦD) 6= [

0 Y
]′) = P


 ⋃

`:`≤h1

Ec
`k


 ≤

∑

`:`≤h1

P (Ec
`k) = O


 ∑

`:`≤h1

n−2d
`
+2dk


 = O

(
n−2dh1+2dk

)

by Lemma 10. Similarly, for (20),

P {MXk (H) ∩ ⊕`≥h2B` 6= 0} = P
(
Xk (ΦD) 6= [

Z 0
]′)

,

where the 0 in
[

Z 0
]′ has dimension

(
q − j∗h2

) × ak, and Z has full rank. We have for h2 > k, k =
0, . . . , s− 1,

P
(
Xk (ΦD) 6= [

Z 0
]′) = P


 ⋃

`:`≥h2

Ec
k`


 ≤

∑

`:`≥h2

P (Ec
k`) = O


 ∑

`:`≥h2

n−2dk+2d`


 = O

(
n−2dk+2dh2

)
.

¤

9.3 Proofs For Section 6

In this section, we will use the following decomposition and notation for the proofs. We write

b′AIzz (ωj)A′b− b′Af
(
ωj̃

)
A′b = b′AR (ωj)A′b + b′AS (ωj)A′b, (21)

where
R (ωj) = Izz (ωj)−Ψ

(
ωj̃

)
Iεε (ωj)Ψ∗

(
ωj̃

)

and
S (ωj) = Ψ

(
ωj̃

)
Iεε (ωj)Ψ∗

(
ωj̃

)
− f

(
ωj̃

)
.

We will also use the following notation:

Lmn (d) =
1

mn

mn∑

j=1

ω2d
j̃

b′AR (ωj)A′b,

Mmn (d) =
1

mn

mn∑

j=1

ω2d
j̃

b′AS (ωj)A′b,

Fmn (d) =
1

mn

mn∑

j=1

ω2d
j̃

b′Af (ωj)A′b. (22)
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Proof of Theorem 2. For 1/4 > δ > 0, let Nδ = {d : |d− dk| < δ} . Then for S (d) = R (d)−R (dk) ,

P
(∣∣∣d̂k − dk

∣∣∣ ≥ δ
)

= P
(
d̂k ∈ N c

δ ∩Θ
)

= P

(
inf

Nc
δ∩Θ

R (d) ≤ inf
Nδ∩Θ

R (d)
)
≤ P

(
inf

Nc
δ∩Θ

S (d) ≤ 0
)

,

where Define Θ1 = {d : ∆ ≤ d ≤ ∆2} , where ∆ = ∆1 when dk < 1/2 + ∆1 and dk ≥ ∆ > dk − 1/2
otherwise. Note that d− dk > −1/2 for all d ∈ Θ1. When dk ≥ 1/2+∆1, define Θ2 = {d : ∆1 ≤ d < ∆} ,
and otherwise take Θ2 to be empty. Hence

P
(∣∣∣d̂k − dk

∣∣∣ ≥ δ
)
≤ P

(
inf

Nc
δ∩Θ1

S (d) ≤ 0
)

+ P

(
inf
Θ2

S (d) ≤ 0
)

= o (1)

by Lemmas 14 and 15.¤

Proof of Theorem 3. By Theorem 2, d̂k satisfies

0 =
∂R

(
d̂k

)

∂d
=

∂R (dk)
∂d

+
∂2R

(
d̃
)

∂d2

(
d̂k − dk

)
, (23)

where
∣∣∣d̃− dk

∣∣∣ ≤
∣∣∣d̂k − dk

∣∣∣ . Let

Zn = 2m−1/2
n

mn∑

j=1

νj (Iεε (ωj)−Σ) , νj = log j̃ − 1
mn

mn∑

j=1

log j̃,

and let
Zn =

1
G b′AkΨ

†′
k (0)ZnΨ†

k (0)A′
kb,

where
G = b′Akf† (0)A′

kb = b′AkΨ
†′
k (0)ΣΨ†

k (0)A′
kb

and Ψ†
k (ω) is a q × ak sub-matrix of Ψ† (ω) =

[
Ψ†

0 (ω) · · · Ψ†
s (ω)

]
in (8). By Lemmas 24 and 25,

∂2R
(
d̃
)

∂d2

p→ 4 (24)

and

m1/2
n

∂R (dk)
∂d

= Zn + op (1) . (25)

Following from Lemmas 0 and 8 of Hurvich and Chen (2000), the (u, v)th entry of Zn,

Zn,uv
D→ N

(
0, 4Φpσ

2
uv

)
.

With a similar computation for the variance above and equation (46) in the proof of Lemma 17, we obtain

E (Zn,u1v1Zn,u2v2) → 4Φpσu1v2σu2v1

Following from the Cramer-Wold device, we have

vecZn
D→ Z ∼N (0, 4ΦpΣ⊗Σ) . (26)
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By Corollary 15 , b
D→ b̊,

Zn
D→ b̊′AkΨ

†′
k (0)ZA′

kΨ
†
k (0) b̊

b̊′AkΨ
†′
k (0)ΣA′

kΨ
†
k (0) b̊

:= Z, (27)

where b̊ is independent of Z by Lemma 26. Let

ϕ = (ϕ1, . . . , ϕq)
′ = Ψ†′

k (0)A′
k̊b,

we have for ` = 1, 2, . . . ,

E
(
Z2`

)
= E

[
E

(
Z2` |̊b

)]

= E

[
1

(ϕ′Σϕ)2`

q∑
u1,v1,··· ,u2`,v2`=1

ϕu1ϕv1 · · ·ϕu2`
ϕv2`

E
(
Zu1v1 . . . Zu2`v2`

|̊b
)]

= E

[
1

(ϕ′Σϕ)2`

q∑
u1,v1,··· ,u2`,v2`=1

ϕu1ϕv1 · · ·ϕu2`
ϕv2`

E (Zu1v1 . . . Zu2`v2`
)

]

= E

[
(2`)! (4Φp)

`

2``!
1

(ϕ′Σϕ)2`

q∑
u1,v1,··· ,u2`,v2`=1

ϕu1ϕv1 · · ·ϕu2`
ϕv2`

σu1v1 · · ·σu2`v2`

]

=
(2`)! (4Φp)

`

2``!

and
E

(
Z2`−1

)
= 0,

since for a zero mean multivariate normal (Y1, . . . , Y2`) with cov (YaYb) = ρa,b, E (Y1, . . . , Y2`−1) = 0 and

E (Y1, . . . , Y2`) =
∑
$

ρ$1 · · · ρ$`
,

where ($1, . . . , $`) is a partition of (1, . . . , 2`) with all |$u| = 2 and $ consists all these partitions (a
total of 2−` (2`)!/`! partitions). Since all the moments of Z match those of a N (0, 4Φp) , we have

Z ∼N (0, 4Φp) .

Together with (23), (24), (25), and (27), we have proved the Theorem.¤

We will need the following two lemmas.

Lemma 12 If b ∈ M (Xk) and ‖b‖ = 1, then under Assumption 1,

b′Ah = Op

(
n−dh+dk

)

for h < k, k = 1, . . . , s, and
b′Ak = Op (1) ,

for k = 0, . . . , s.
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Lemma 13 If b ∈ M (Xk) , k = 0, . . . , s, and ‖b‖ = 1, then under Assumption 1,

‖b′Ak‖ ≥ c (1− εk) ,

where c > 0 and εk = Op (n−αk) .

Proof of Lemma 12: Since X (H) is an orthogonal matrix and MX (H) = Rq,

b =
s∑

`=0

X` (H) c`, (28)

where
c` = X′

` (H) b = Op

(
n−|dk−d`|

)

by Lemma 7. Furthermore, for ` > h,

E [‖X′
` (H)Ah‖] = E

[‖X′
` (H)Ah‖1{MX`(H)⊂⊕j>hBj}

]
+ E

[
‖X′

` (H)Ah‖1{MX`(H)∩⊕j≤hBj 6=0}
]

≤ 0 + E
[
‖X′

` (H)Ah‖1{MX`(H)∩⊕j≤hBj 6=0}
]

= E
[
trace1/2 (A′

hX` (H)X′
` (H)Ah)1{MX`(H)∩⊕j≤hBj 6=0}

]

≤ E
[
trace1/2(A′

hAh) trace1/2 (X` (H)X′
` (H))1{MX`(H)∩⊕j≤hBj 6=0}

]

= ‖Ah‖ |P {MX` (H) ∩ ⊕j≤hBj 6= 0}|1/2

= O
(
n−dh+d`

)
(29)

by exercise 12 (iii) of Chapter 11 in Magnus and Neudecker (1999) and Lemma 11. For ` ≤ h,

E [‖X′
` (H)Ah‖] = O (1) . (30)

We have for h < k,

b′Ah =
s∑

`=0

c′`X
′
` (H)Ah

=
∑

`:`≤h

c′`X
′
` (H)Ah +

∑

`:`>h

c′`X
′
` (H)Ah

= Op


 ∑

`:`≤h

n−d`+dk +
∑

`:h<`≤k

n−dh+d`−d`+dk +
∑

`:`>k

n−dh+d`−dk+d`




= Op

(
n−dh+dk

)
.

For h = k, the above equation is of Op (1) since ck = Op (1) and E [‖X′
k (H)Ak‖] = O (1) .¤

Proof of Lemma 13: Note that

‖b′Ak‖2 =

∥∥∥∥∥∥
c′kX

′
k (H)Ak +

s∑

`=0,` 6=k

c′`X
′
` (H)Ak

∥∥∥∥∥∥

≥
∣∣∣∣∣∣
‖c′kX′

k (H)Ak‖ −
∥∥∥∥∥∥

s∑

`=0,` 6=k

c′`X
′
` (H)Ak

∥∥∥∥∥∥

∣∣∣∣∣∣
. (31)
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Using (28), we have

1 = ‖b‖2 =
s∑

`=0

‖X` (H) c`‖2 =
s∑

`=0

‖c`‖2 = ‖ck‖2 +
s∑

`=0, 6̀=k

‖c`‖2 ,

and
s∑

`=0,` 6=k

‖c`‖2 = Op

(
n−2αk

)
. (32)

by Lemma 4. Thus,
‖ck‖2 = 1−Op

(
n−2αk

)
. (33)

By (32), (29) and (30),
∥∥∥∥∥∥

s∑

`=0,` 6=k

c′`X
′
` (H)Ak

∥∥∥∥∥∥
≤




s∑

`=0,` 6=k

‖c`‖2
s∑

`=0,` 6=k

‖X′
` (H)Ak‖2




1/2

= Op

(
n−αk

)
. (34)

Furthermore, if MXk (H) = Bk, then there exists an ak × ak orthogonal matrix D such that

Xk (H) = BkD

since both Xk (H) and Bk are matrices with orthonormal columns. We have

‖ck‖2 = trace
{

c′kDB′
kAk (B′

kAk)−1 (A′
kBk)−1 A′

kBkD′ck

}

≤
∥∥∥(B′

kAk)−1
∥∥∥

2 ∥∥c′kDB′
kAk

∥∥2

=
∥∥∥(B′

kAk)−1
∥∥∥

2

‖c′kX′
k (H)Ak‖2 .

It follows that
‖c′kX′

k (H)Ak‖2 ≥
∥∥∥(B′

kAk)−1
∥∥∥
−2

‖ck‖2 = C (1− δk)

where δk = Op

(
n−2αk

)
by (33). By (31), (34) and the above equation, ‖b′Ak‖ ≥ C (1− δk − ε̃k) , where

ε̃k = Op (n−αk) . We have completed the proof.¤

Lemma 14 Under the assumptions of Theorem 2, P
(
infNc

δ∩Θ1 S (d) ≤ 0
)

= o (1) .

Proof. Let
U (d) = 2 (d− dk)− log {2 (d− dk) + 1}

and

T (d) = log
Ĝ (dk)
G − log

Ĝ (d)
G (d)

− log





2 (d− dk) + 1
mn

mn∑

j=1

(
j̃

mn

)2(d−dk)




+ 2 (d− dk)





1
mn

mn∑

j=1

log j̃ − (log mn − 1)



 ,
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where

G (d) = G 1
mn

mn∑

j=1

ω
2(d−dk)

j̃

and
G = b′Akf† (0)A′

kb.

Then
S (d) = U (d)− T (d) .

We have

P

(
inf

Nc
δ∩Θ1

S (d) ≤ 0
)
≤ P

(
inf

Nc
δ∩Θ1

U (d) ≤ sup
Θ1

|T (d)|
)

.

Following the same arguments as in page 1635 of Robinson (1995b), it is sufficient to show that

sup
Θ1

∣∣∣∣∣
Ĝ (d)−G (d)

G (d)

∣∣∣∣∣ = op (1) . (35)

Note that, by Corollary 11,

G (d) = CGω2(d−dk)
mn

≥ C (1− εk) ω2(d−dk)
mn

. (36)

where εk = Op (n−αk) . By Lemmas 18, 19 and 22, for d ∈ Θ1,

∣∣∣Ĝ (d)−G (d)
∣∣∣ = Lmn (d) +Mmn (d) + Fmn (d)− G 1

mn

mn∑

j=1

ω
2(d−dk)

j̃
= op

(
ω2d−2dk

mn
m−ε

n

)
, (37)

where Lmn , Mmn and Fmn are defined in (22). We have completed the proof.¤

Lemma 15 Under the assumptions of Theorem 2, P (infΘ2 S (d) ≤ 0) = op (1) .

Proof. Following from the proof on page 1638-39 of Robinson (1995b), we write

S (d) = log
{

D̂ (d) /D̂ (dk)
}

,

where

D̂ (d) =
1

mn

mn∑

j=1

(
j̃

eν

)2(d−dk)

j̃−2dkIvv,j and ν =
1

mn

mn∑

j=1

log j̃.

Let

αj =





(
j̃
eν

)2(∆−dk)

, 1 ≤ j ≤ eν

(
j̃
eν

)2(∆1−dk)

eν ≤ j ≤ mn

.

Note that eν ∼ mn/e, thus

αj ∼





(
ej
mn

)2(∆−dk)

1 ≤ j ≤ eν

(
ej
mn

)2(∆1−dk)

eν < j < mn

. (38)
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By choosing ∆ < dk − 1
2 + 1

4e , so that m−1
n

∑mn

j=1 (αj − 1) ≥ 1 for all sufficiently large mn, we have

P

(
inf
Θ2

S (d) ≤ 0
)
≤ P


 1

mn

mn∑

j=1

(αj − 1) j̃−2dkIvv (ωj) ≤ 0


 = P


 1

mn

mn∑

j=1

(αj − 1)
Ivv (ωj)
Gω−2dk

j̃

≤ 0




≤ P




∣∣∣∣∣∣
1

mn

mn∑

j=1

(αj − 1)

(
Ivv (ωj)
Gω−2dk

j̃

− 1

)∣∣∣∣∣∣
≥ 1


 .

Now by (21),

1
mn

mn∑

j=1

(αj − 1)

(
Ivv (ωj)
Gω−2dk

j̃

− 1

)
=

1
mn

mn∑

j=1

(αj − 1)


Ivv (ωj)
Gω−2dk

j̃

− Ivv (ωj)

b′Af
(
ωj̃

)
A′b




+
1

mn

mn∑

j=1

(αj − 1)
b′AR (ωj)A′b

b′Af
(
ωj̃

)
A′b

+
1

mn

mn∑

j=1

(αj − 1)
b′AS (ωj)A′b

b′Af
(
ωj̃

)
A′b

. (39)

We will first show that the second and the third terms of (39) are op (1) . By (48) in the proof of Lemma

18, b′AR (ωj)A′b = Op

(
ω−2dk

j j−ρ/2
)

. Thus by Corollary 11, the second term is of

Op


 1

mn

mn∑

j=1

(αj + 1) j−ρ/2


 = Op


 1

mn




mn∑

j=1

α2
j




1/2

+ m−ρ/2
n


 = op (1) (40)

since
∑mn

j=1 α2
j = O

(
m

4(dk−∆)
n + m log m

)
by equation 3.24 of Robinson (1995b). The third term of (39)

is bounded by
∣∣∣∣∣∣

1
mn

[ev]∑

j=1

(αj − 1)
b′AS (ωj)A′b

b′Af
(
ωj̃

)
A′b

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

mn

mn∑

j=[ev]+1

(αj − 1)
b′AS (ωj)A′b

b′Af
(
ωj̃

)
A′b

∣∣∣∣∣∣
.

Following from Corollary 11 and (38), the first term of the above equation is of

Op


ω2(dk−∆)

mn

1
mn

[ev]∑

j=1

ω2∆
j̃

b′AS (ωj)A′b


 = Op

(
ω2(dk−∆)

mn
Mmn (∆)

)
= op

(
ω2(dk−∆)

mn
ω2(∆−dk)

mn

)
= op (1) .

by Lemma 19 since 0 ≥ ∆− dk > −1/2, and since eν ∼ mn/e, the second term is

Op


 1

mn

mn∑

j=[ev]+1

(
j

mn

)2(∆1−dk)
b′AS (ωj)A′b

ω−2dk
j


 = op (1)

by Lemma 20. The lemma will follow if the first term of (39) is also op (1). By Lemma 21 and Corollary
12,

Ivv (ωj)
Gω−2dk

j̃

= Op (1)
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and

1−
Gω−2dk

j̃

b′Af
(
ωj̃

)
A′b

= Op


ω−2dk

j̃

(
jdk−dk−1 + ω

dk−dk+1

j̃
+ ωρ

j̃

)

ω−2dk

j̃


 = Op

(
jdk−dk−1

)
.

Thus, the first term of (39) is

1
mn

mn∑

j=1

(αj − 1)


1−

Gω−2dk

j̃

b′Af
(
ωj̃

)
A′b


 Ivv (ωj)
Gω−2dk

j̃

= Op


 1

mn

mn∑

j=1

(αj + 1) jdk−dk−1




= Op


 1

mn




mn∑

j=1

α2
j




1/2

+ mdk−dk−1
n




= op (1)

by the same argument for (40). We have completed the proof. ¤

Lemma 16 Let Rab (ωj) be the (a, b)th entry of R (ωj),

E |Rab (ωj)| ≤ C
∣∣1− e−iωj̃

∣∣−(daa+dbb)
j−ρ/2, a, b = 1, . . . , q and 1 ≤ j ≤ [n/2]

under Assumption 2.

Proof. Let Jza (ωj) be the jth element of Jz (ωj) , the DFT of zt. By (4),

Jza (ωj) =
q∑

b=1

Jzab
(ωj) (41)

where

Jzab
(ωj) =

1√
2π

∑ ∣∣∣hp−1
t

∣∣∣
2

n∑
t=1

hp−1
t

( ∞∑

k=∞
ψk,abεt−k,b

)
eiωjt.

Hence

Rab (ωj) = Jza (ωj)Jzb
(ωj)−

q∑
u=1

Ψau

(
ωj̃

)
Jεu (ωj)

q∑
v=1

Ψbv

(
ωj̃

)
Jεv (ωj)

=
q∑

u=1

q∑
v=1

(
Jzau

(ωj)Jzbv
(ωj)−Ψau

(
ωj̃

)
Jεu (ωj)Ψbv

(
ωj̃

)
Jεv

)

=
q∑

u=1

q∑
v=1

(
Ψau

(
ωj̃

)
Ψbv

(
ωj̃

) (
Aau,jAbv,j −Bu,jBv,j

))
, (42)

where

Aau,j =
Jzau

(ωj)

Ψau

(
ωj̃

) and Bu,j = Jεu (ωj) . (43)
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From Lemmas 9 and 10 of Hurvich et. al (2002),

E |Aau,j −Bu,j |2` ≤ C




∫ π

−π

∣∣∣∣∣∣
Ψau (ω)

Ψau

(
ωj̃

) − 1

∣∣∣∣∣∣

2

|Dp,n (ωj − ω)|2 dω




`

≤ Cj−`ρ, (44)

Now

Aau,jAbv,j −Bu,jBv,j = (Aau,j −Bu,j)
(
Abv,j −Bv,j

)
+ Bu,j

(
Abv,j −Bv,j

)
+ Bv,j (Aau,j −Bu,j) .

By Cauchy Schwarz inequality,

E
∣∣Aau,jAbv,j −Bu,jBv,j

∣∣2

≤ 3E |Aau,j −Bu,j |2
∣∣Abv,j −Bv,j

∣∣2 + E |Bu,j |2
∣∣Abv,j −Bv,j

∣∣2 + E
∣∣Bv,j

∣∣2 |Aau,j −Bu,j |2

≤ 3
(
E |Aau,j −Bu,j |4 E |Abv,j −Bv,j |4

)1/2

+
(
E |Bu,j |4 E |Abv,j −Bv,j |4

)1/2

+
(
E |Bv,j |4 E |Aau,j −Bu,j |4

)1/2

≤ C
[(

j−2ρj−2ρ
)1/2

+
(
j−2ρ

)1/2
]

= Cj−ρ. (45)

We have from (42),

E |Rab| ≤
q∑

u=1

q∑
v=1

∣∣∣Ψau

(
ωj̃

)
Ψbv

(
ωj̃

)∣∣∣
(
E

∣∣Aau,jAbv,j −Bu,jBv,j

∣∣2
)1/2

≤ C

q∑
u=1

q∑
v=1

∣∣1− e−iωj̃

∣∣−(dau+dbv)
τau (ωj) τav (ωj) j−ρ/2

≤ C sup
ω∈(0,ωmn ]
a,b=1,...,q

τab (ω) ·
∣∣1− e−iωj̃

∣∣−(daa+dbb)
q∑

u=1

q∑
v=1

j−ρ/2

= C
∣∣1− e−iωj̃

∣∣−(daa+dbb)
j−ρ/2

where the constant C does not depend on n. ¤

Lemma 17 Let Sab (ω) be the (a, b)th entry of S (ωj) . Then, for 1 ≤ j, k ≤ [n/2]

E |Sab (ωj)Sab (ωk)| ≤
{

C
∣∣(1− e−iωj̃

) (
1− e−iωk̃

)∣∣−(daa+dbb)
, |j − k| < p

C/n, otherwise
.

Proof: Note that

EIεε (ωj) = Σ,

and

Sab (ωj) =
q∑

u=1

q∑
v=1

Ψau

(
ωj̃

)
Ψbv

(
ωj̃

)
(Iεε,uv (ωj)− σuv) .
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Now

E |Sab (ωj)Sab (ωk)| =
q∑

u1,u2=1

q∑
v1,v2=1

Ψau1

(
ωk̃

)
Ψau2 (ω̃k)Ψbv1

(
ωj̃

)
Ψbv2

(
ωk̃

)

× E [(Iεε,u1v1 (ωj)− σu1v1) (Iεε,u2v2 (ωk)− σu2v2)] .

Note that E (Jεu (ωj)Jεv (ωk)) = 0, 1 ≤ j, k ≤ n/2 and E
(
Jεu (ωj)Jεv (ωk)

)
= 0 if |j − k| ≥ p and

E
(
Jεu (ωj)Jεv

(ωk)
)

=
σuv

cp
(−1)j−k

(
2p− 2

p− 1 + j − k

)
1{|j−k|<p}, (46)

where

cp =
(

2p− 2
p− 1

)
,

see Hurvich et. al (2002). Hence

E [(Iεε,u1v1 (ωj)− σu1v1) (Iεε,u2v2 (ωk)− σu2v2)]
= E [Iεε,u1v1 (ωj) Iεε,u2v2 (ωk)]− σu1v1σu2v2

= cum
(
Jεu1

(ωj) , Jεu2
(ωk) , Jεv1

(ωj) , Jεv2
(ωk)

)
+ E

(
Jεu1

(ωj) Jεv2
(ωk)

)
E

(
Jεu2

(ωj)Jεv1
(ωk)

)
.

(47)

The second term is nonzero only if |j − k| < p. We now show that the cumulant is of O
(
n−1

)
. Let

κ4 = cum (εt,u1 , εt,u2 , εt,v1 , εt,v2) , 1 ≤ u1, u2, v1, v2 ≤ q.

Then

cum
(
Jεu1

(ωj) , Jεu2
(ωk) , Jεv1

(ωj) , Jεv2
(ωk)

)

= κ4

(
1

cpn

)2 ∫ ∫ ∫
Dn,p (ωj − x1)Dn,p (ωk − x2)Dn,p (ωj + x3)Dn,p (ωk − x1 − x2 − x3) dx1dx2dx3

= κ4

(
1

cpn

)2 n∑
t1,t2,t3,t4=1

p−1∑

`1,`2,`3`4=0

(
p− 1

`1

)(
p− 1

`2

)(
p− 1

`3

)(
p− 1

`4

)
(−1)`1+`2+`3+`4

× ei(ωj+`1 t1+ωk+`2 t2−ωj+`3 t3−ωk+`4 t4)
∫ ∫ ∫

eix1(t1−t4)eix2(t2−t4)eix3(t3−t4)dx1dx2dx3

= κ4

(
1

cpn

)2 p−1∑

`1,`2,`3`4=0

(
p− 1

`1

)(
p− 1

`2

)(
p− 1

`3

)(
p− 1

`4

)
(−1)`1+`2+`3+`4

n∑
t=1

eiω`1+`2−`3−`4 t

≤ κ4

ncp

∣∣∣∣∣
p−1∑

`=0

(
p− 1

`

)∣∣∣∣∣

4

.

Combining the above bound and equation (46) and (47), we have

E [(Iεε,u1v1 (ωj)− σu1v1) (Iεε,u2v2 (ωk)− σu2v2)] = c (j, k, p, u1, v1, u2, v2)1{|j−k|<p} + O
(
n−1

)
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and

E |Sab (ωj) Sab (ωk)| ≤ C

q∑
u1,u2=1

q∑
v1,v2=1

(∣∣∣Ψau1

(
ωj̃

)∣∣∣
∣∣Ψau2

(
ωk̃

)∣∣
∣∣∣Ψbv1

(
ωj̃

)∣∣∣
∣∣Ψbv2

(
ωk̃

)∣∣
)
1{|j−k|<p} + O

(
n−1

)

≤ C sup
ω∈(0,ωmn ]
a,b=1,...,q

τab (ω) ·
∣∣1− e−iωj̃

∣∣−(daa+dbb)
∣∣∣1− e−ieωk

∣∣∣
−(daa+dbb)

1{|j−k|<p} + O
(
n−1

)

= C
∣∣1− e−iωj̃

∣∣−(daa+dbb) ∣∣1− e−iωk̃

∣∣−(daa+dbb) 1{|j−k|<p} + O
(
n−1

)

¤

Lemma 18 Let Lmn
(d) be defined in (22). Then for d− dk > − 1

2 , there exists an ε > 0 such that

Lmn (d) = op

(
ω2d−2dk

mn
m−ε

n

)

under Assumptions 1 and 2.

Proof. Let Rh` (ωj) be the (h, `)th block matrix of R (ωj) . By Lemmas 12 and 16,

b′AhRh` (ωj)A′
`b =





Op

(
n2dk−dh−d`ω−dh−d`

j j−ρ/2
)

, h, ` < k

Op

(
ω−dh−d`

j j−ρ/2
)

h, ` ≥ k

Op

(
ndk−dhω−dh−d`

j j−ρ/2
)

h < k, ` ≥ k

(48)

for 0 ≤ h, ` ≤ s and 1 ≤ j ≤ mn. We have

Lmn (d) =
1

mn

mn∑

j=1

s∑

h=0

s∑

`=0

ω2d
j̃

b′AhRh` (ωj)A′
`b

= Op


 1

mn

mn∑

j=1

ω2d
j̃

(
n2dk−2dk−1ω

−2dk−1
j j−ρ/2 + ω−2dk

j j−ρ/2 + ndk−dk−1ω
−dk−1−dk

j j−ρ/2
)



= Op


 1

mn

mn∑

j=1

ω2d−2dk

j̃
j−ρ/2

(
j2dk−2dk−1 + 1 + jdk−dk−1

)



=

{
Op

(
ω2d−2dk

mn
m2dk−2d−1

n log mn

)
, 2d− 2dk − ρ/2 ≤ 1

Op

(
ω2d−2dk

mn
m
−ρ/2
n

)
, 2d− 2dk − ρ/2 > 1 .

¤

Corollary 8 For d− dk > − 1
4 ,

Lmn (d) = op

(
ω2d−2dk

mn
m−1/2−ε

n

)

under the assumptions of Theorem 2.
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Lemma 19 Let Mmn(d) be defined in (22). Then for d− dk > − 1
2 , there exists an ε > 0 such that

Mmn (d) = op

(
ω2d−2dk

mn
m−ε

n

)

under Assumptions 1 and 2.

Proof. Let Sh` (d) be the (h, `)th block matrix of S (d) . Following from Lemma 17,

E

∥∥∥∥∥∥
1

mn

mn∑

j=1

ω2d
j̃

Sh` (ωj)

∥∥∥∥∥∥

2

= O


 1

m2
n

mn∑

j=1

p+j∑

k=j

ω2d−dh−d`

j̃
ω2d−dh−d`

k̃




= O


 1

m2
n

mn∑

j=1

p+j∑

k=j

ω4d−2dh−2d`

j̃




=
{

O
(
n2dh+2d`−4dm−2

n log mn

)
, 4d− 2dh − 2d` ≤ −1

O
(
ω4d−2dh−2d`

mn
m−1

n

)
, 4d− 2dh − 2d` > −1 .

Hence we have
∥∥∥∥∥∥

1
mn

mn∑

j=1

ω2d
j̃

Sh` (ωj)

∥∥∥∥∥∥
=





Op

(
ndh+d`−2dm−1

n log1/2 mn

)
, 2d− dh − d` ≤ −1/2

Op

(
ω2d−dh−d`

mn
m
−1/2
n

)
, 2d− dh − d` > −1/2

. (49)

Let

M(h,`)
mn

(d) = b′Ah


 1

mn

mn∑

j=1

ω2d
j̃

Sh` (ωj)


A′

`b.

By Lemma 13 (subCointe2) and (49), we have, for h, ` < k,

M(h,`)
mn

(d) =





Op

(
n−dh−d`+2dkndh+d`−2dm−1

n log1/2 mn

)
, 2d− dh − d` ≤ −1/2

Op

(
ω2d−dh−d`

mn
n−dh−d`+2dkm

−1/2
n

)
, 2d− dh − d` > −1/2

=





Op

(
ω2d−2dk

mn
m−1−2d+2dk

n log1/2 mn

)
, 2d− dh − d` ≤ −1/2

op

(
ω2d−2dk

mn
m
−1/2+ε
n

)
, 2d− dh − d` > −1/2

, (50)

where ε > 0. By the same lemma and (49), we have, for h, ` ≥ k,

M(h,`)
mn

(d) = Op

(
ω2d−dh−d`

mn
m−1/2

n

)
= Op

(
ω2d−2dk

mn
ω2dk−dh−d`

mn
m−1/2

n

)
, (51)

and for h < k, ` ≥ k,

M(h,`)
mn

(d) =





Op

(
n−dh+dkndh+d`−2dm−1

n log1/2 mn

)
, 2d− dh − d` ≤ −1/2

Op

(
ω2d−dh−d`

mn
n−dh+dkm

−1/2
n

)
, 2d− dh − d` > −1/2

=





op

(
ω2d−2dk

mn
m−1−2d+2dk

n log1/2 mn

)
, 2d− dh − d` ≤ −1/2

op

(
ω2d−2dk

mn
ωdk−d`

mn
m
−1/2+dk−dh
n

)
, 2d− dh − d` > −1/2

. (52)
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Hence,

Mmn (d) =
s∑

h=0

s∑

`=0

M(h,`)
mn

(d) = op

(
ω2d−2dk

mn
m−ε

n

)
,

since 2dk − dh − d` > 0 in (51) and −1− 2d + 2dk < 0 in (50) and (52). ¤

Corollary 9 For d− dk > − 1
4 ,

M(h,`)
mn

(d) =





Op

(
ω2d−2dk

mn
m
−1/2
n

)
, h = ` = k

op

(
ω2d−2dk

mn
m
−1/2−ε
n

)
, otherwise

,

under the assumptions of Theorem 2.

Proof. The corollary follows by the fact that −1− 2d + 2dk < −1/2 for d− dk > − 1
4 in (50) and (52).¤

Lemma 20 Let δ be a positive constant, δ < 1, then

1
mn

mn∑

j=δmn

(
j

mn

)2(∆1−dk)
b′AS (ωj)A′b

ω−2dk
j

= op (1)

under the assumptions of Theorem 2.

Proof. Following the similar computation for (49)

E

∥∥∥∥∥∥
1

mn

mn∑

j=δmn

(
j

mn

)2(∆1−dk) Sh` (ωj)
ω−2dk

j

∥∥∥∥∥∥

2

= O


n−4dk+2dh+2d`m2(2dk−2∆1−1)

n

mn∑

j=δmn

j4∆1−2dh−2d`




= O
(
ω4dk−2dh−2d`

mn
m−1

n

)
.

Hence, ∥∥∥∥∥∥
1

mn

mn∑

j=δmn

(
j

mn

)2(∆1−dk) Sh` (ωj)
ω−2dk

j

∥∥∥∥∥∥
= Op

(
ω2dk−dh−d`

mn
m−1/2

n

)
.

By Lemma 12, we have

b′Ah


 1

mn

mn∑

j=δmn

(
j

mn

)2(∆1−dk) Sh` (ωj)
ω−2dk

j


A′

`b =





Op

(
m

2dk−dh−d`−1/2
n

)
, h, ` < k

Op

(
ω2dk−dh−d`

mn
m
−1/2
n

)
h, ` ≥ k

Op

(
ωdk−d`

mn
m
−1/2+dk−dh
n

)
h < k, ` ≥ k

= op (1) .

The Lemma follows from the fact that∣∣∣∣∣∣
1

mn

mn∑

j=δmn

(
j

mn

)2(∆1−dk)
b′AS (ωj)A′b

ω−2dk
j

∣∣∣∣∣∣
≤

s∑

h,`=0

∣∣∣∣∣∣
1

mn

mn∑

j=δmn

(
j

mn

)2(∆1−dk)
b′AhSh` (ωj)A′

`b

ω−2dk
j

∣∣∣∣∣∣
.

¤
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Lemma 21 Under Assumptions 1 and 2,

b′Af (ωj)A′b− b′Akfkk (ωj)A′
kb = Op

(
ω−2dk

j

(
jdk−dk−1 + ω

dk−dk+1
j

))
,

for 1 ≤ j ≤ mn, and
b′Akfkk (ωj)A′

kb− Gω−2dk
j = Op

(
ω−2dk+ρ

j

)
.

Furthermore, there exist two constants, C1 and C2 such that

C1 > G ≥ C2 (1− εk)

where εk = Op (n−αk) .

Proof. Since by Lemma 12,

b′Ahfh` (ωj)A′
`b =





Op

(
ω−2dk

j j2dk−dh−d`

)
, h < k, ` ≤ k

Op

(
ω−dh−d`

j

)
, h, ` > k

Op

(
ω−dk−d`

j jdk−dh

)
h ≤ k, ` > k

, (53)

we have

b′Af (ωj)A′b = b′Akfkk (ωj)A′
kb +

s∑

h=0

s∑

`=06̀=k

b′Ahfh` (ωj)A′
`b

= b′Akfkk (ωj)A′
kb + Op

(
ω−2dk

j jdk−dk−1 + ω
−2dk+1
j + ω

−dk−dk+1
j

)

= b′Akfkk (ωj)A′
kb + Op

(
ω−2dk

j

(
jdk−dk−1 + ω

dk−dk+1
j

))
.

Since (7) and Assumption 2 imply that

fkk (ω) = f†kk (0)ω−2dk + O
(
ω−2dk+ρ

)
as ω → 0,

we have by Lemma 12,

b′Afkk (ωj)Akb′ = b′Akf
†
kk (0)A′

kbω−2dk
j + Op

(
‖b′Ak‖2 ω−2dk+ρ

j

)

= Gω−2dk
j + Op

(
ω−2dk+ρ

j

)
.

Furthermore,

b′Akf
†
kk (0)A′

kbω−2dk
j ≥ ω−2dk

j λmin

(
f†kk (0)

)
‖b′Ak‖2 ≥ Cω−2dk

j (1− εk)

by Lemma 13. The upper bound for G is due to the fact that

G ≤λmax

(
f†kk (0)

)
‖Ak‖ ‖b‖ = λmax

(
f†kk (0)

)
‖Ak‖ .

¤
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Lemma 22 Let Fmn(d) be defined in (22). Then for d− dk > − 1
2 , there exists an ε > 0 such that

Fmn
(d)− Gω2d−2dk

mn
= op

(
ω2d−2dk

mn
m−ε

n

)

under the assumptions of Theorem 2.

Proof. Let the ah × a` matrix fh` (ω) be the (h, `) block matrix of f (ω), then

Fmn
(d) =

1
mn

mn∑

j=1

s∑

h,`=0

ω2d
j b′Ahfh` (ωj)A′

`b

=
1

mn

mn∑

j=1

ω2d
j b′Akfkk (ωj) b′Ak +

1
mn

mn∑

j=1

s∑

h=0

s∑

`=06̀=k

ω2d
j b′Ahfh` (ωj)A′

`b. (54)

By Lemma 21,

1
mn

mn∑

j=1

ω2d
j b′Akfkk (ωj) b′Ak =

G
mn

mn∑

j=1

ω2d−dk
j + Op


 1

mn

mn∑

j=1

ω2d−2dk+ρ
j




= Gω2d−2dk
mn

+ Op

(
ω2d−2dk+ρ

mn

)

the second term of (54) is

Op


 1

mn

mn∑

j=1

ω2d−2dk
j

(
jdk−dk−1 + ω

dk−dk+1
j

)



=





Op

(
ω2d−2dk

mn

(
m−1−2d+2dk

n + ω
dk−dk+1
mn

))
2d− dk − dk−1 ≤ −1

Op

(
ω2d−2dk

mn

(
m

dk−dk−1
n + ω

dk−dk+1
mn

))
2d− dk − dk−1 > −1

.

¤

Corollary 10 Under the assumptions of Theorem 2,

Fmn (dk)− G = Op

(
mdk−dk−1

n + ωdk−dk+1
mn

)
,

the Op

(
m

dk−dk−1
n

)
term is vacuous if k = 0, and the Op

(
ω

dk−dk+1
mn

)
term is vacuous if k = s.

Corollary 11 Under Assumptions 1 and 2, b′Af (ωj)A′b ≥ Cω−2dk
j (1− εk)

Proof. By (53),

b′Af
(
ωj̃

)
A′b = b′




k∑

h,`=0

Ahfh`

(
ωj̃

)
A′

`


 b + Op

(
ω
−dk−dk+1
j

)
.
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By Assumption and Lemmas 12 and 13,

b′




k∑

h,`=0

Ahfh`

(
ωj̃

)
A′

`


 b = b′




k∑

h,`=0

ω−dh−d`
j Ahf

†
h` (0)A′

`


 b + Op


ω−ρ

j

k∑

h,`=0

b′AhA′
`b




≥ ω−2dk
j λmin

{
f† (0)

} k∑

h,`=0

b′AhA′
`bAh + Op

(
ω−ρ

j

)

≥ Cω−2dk
j (1− εk) + Op

(
ω−ρ

j

)
.

The corollary follows.¤

Corollary 12 Under Assumptions 1 and 2, Ivv (ωj) = Op

(
ω−2dk

j

)
.

Proof. By (21), (48) and (53),

Ivv (ωj) = b′AR (ωj)A′b + b′AS (ωj)A′b + b′Af (ωj)A′b

= b′AS (ωj)A′b + Op

(
ω−2dk

j

)
.

By Lemmas 12 and 17,

b′AS (ωj)A′b = Op




k−1∑

h,`=0

ω−dh−d`
j nd2k−dh−d` +

s∑

h,`=k

ω−dh−d`
j +

∑

h<k,`≥k

ω−dh−d`
j ndk−dh




= Op

(
ω−2dk

j

(
j2dk−2dk−1 + 1 + jdk−dk−1

))
.

¤

Lemma 23 Define

F̂a (d) =
1

mn

mn∑

j=c

(
log j̃

)a Ivv (ωj)
ω−2d

j̃

,

then for any d̃ such that |d̃− dk| ≤ |d̂k − dk|,

F̂a

(
d̃
)

= F̂a (dk) + op (1) ,

for a = 0, 1, 2, under the assumptions of Theorem 2.

Proof. Let

Êa (d) =
1

mn

mn∑

j=c

(
log j̃

)a
j̃2dIvv (ωj) .

It is sufficient to show that
Êa

(
d̃
)

= Êa (dk) + op

(
n2dk

)
,
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for a = 0, 1, 2. Let M = {d : log3 mn × |d− dk| ≤ ε}, where ε > 0, is fixed to be such that 2ε < log2 mn

with a proper n. Following the same lines of the proof on page 1642 in Robinson (1995b), for η > 0,

P

(∣∣∣Êa

(
d̃
)
− Êa (dk)

∣∣∣ > η

(
2π

n

)−2dk
)

≤ P
(
Ĝ (dk) >

η

2eε
(log mn)2−a

)
+ P

(
log3 mn

∣∣∣d̃− dk

∣∣∣ > ε
)

. (55)

The first probability is bounded by

P
(∣∣∣Ĝ (dk)− G

∣∣∣ >
η

4eε
(log mn)2−a

)
+ P

(
G >

η

4eε
(log mn)2−a

)
.

Both probabilities tend to 0 for ε sufficiently small since
∣∣∣Ĝ (dk)− G

∣∣∣ = op (1) and G < C by Lemma 21.

To show the second probability of (55) tending to 0, we only have to verify that

sup
Θ1∩Nδ

∣∣∣∣∣
Ĝ (d)−G (d)

G (d)

∣∣∣∣∣ = op

(
log−6 mn

)
.

Following from (36) and (37) in the proof of Lemma 14,

sup
Θ1∩Nδ

∣∣∣∣∣
Ĝ (d)−G (d)

G (d)

∣∣∣∣∣ ≤ sup
Θ1

∣∣∣∣∣
Ĝ (d)−G (d)

G (d)

∣∣∣∣∣ = op

(
m−ε

n

)
.

¤

Lemma 24 Let d̃ be such that
∣∣∣d̃− dk

∣∣∣ ≤
∣∣∣d̂k − dk

∣∣∣ , then under the assumptions of Theorem 2,

∂2R (dk)
∂d2

p→ 4.

Proof. By Lemma 23, we have

∂2R
(
d̃
)

∂d2
=

4
{

Ĝ2

(
d̃
)

Ĝ
(
d̃
)
− Ĝ2

1

(
d̃
)}

Ĝ2 (d)

=
4

{(
F̂2 (dk) + op (1)

) (
F̂0 (dk) + op (1)

)
−

(
F̂1 (dk) + op (1)

)2
}

(
F̂0 (dk) + op (1)

)2

=
4

{
F̂2 (dk) F̂0 (dk)− F̂ 2

1 (dk)
}

F̂ 2
0 (dk)

+ op (1) as n →∞.

By Lemmas 18, 19 and 22,
∣∣∣∣∣∣
F̂a (dk)− G 1

mn

mn∑

j=1

loga j̃

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

mn

mn∑

j=1

loga j̃

(
Ivv (ωj)
ω−2dk

j̃

− G
)∣∣∣∣∣∣

≤ loga mn |Lmn (dk) +Mmn (dk) + Fmn (dk)− G|
= Op

(
m−ε

n loga mn

)
.
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By the same reasoning as (4.10) in Robinson (1995b),

∂2R
(
d̃
)

∂d2
= 4





1
mn

mn∑

j=1

log2 j̃ −

 1

mn

mn∑

j=1

log j̃




2




(1 + op (1)) + op (1)
p→ 4.

¤

Lemma 25 Under the assumptions of Theorem 3,

m1/2
n

∂R (dk)
∂d

− 1
G b′AkΨ

†∗
k (0)ZnΨ†

k (0)A′
kb = op (1) ,

where

Zn = 2m−1/2
n

mn∑

j=1

νj (Iεε (ωj)−Σ) and νj = log j̃ − 1
mn

mn∑

j=1

log j̃.

Proof. Note that
∂R (d)

∂d
=

2
mn

mn∑

j=1

vjIvv (ωj)

ω−2d

j̃
Ĝ (d)

.

Since Ĝ (dk)− G = op (1) by (37) and
∑mn

j=1 νj = 0,

m1/2
n

∂R (dk)
∂d

= 2m−1/2
n

mn∑

j=1

νj

(
Ivv (ωj)
Gω−2dk

j̃

− 1

)
(1 + op (1)) .

and

m1/2
n

∂R (dk)
∂d

− 1
G b′AkΨ

†∗
k (0)ZnΨ†

k (0)A′
kb

= 2m−1/2
n





mn∑

j=1

νj

(
Ivv (ωj)
Gω−2dk

j̃

− 1

)
−

mn∑

j=1

νj

Gω−2dk

j̃

b′AkSkk (ωj)A′
kb





+ 2m−1/2
n





mn∑

j=1

νj

G
(
ω2dk

j̃
b′AkSkk (ωj)A′

kb
)
− b′AkΨ

†∗
k (0)ZnΨ†

k (0)A′
kb



 + op(1), (56)

where Sh`(ωj) is the (h, `)th block of S(ωj) defined in (21). Let

M(h,`)
mn

(d) =
1

mn

mn∑

j=1

ω2d
j̃

b′AhSh` (ωj)A′
`b,
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the first term of (56) is
∣∣∣∣∣∣∣∣
2m−1/2

n

mn∑

j=1

νj

Gω−2dk

j̃





Ivv (ωj)− Gω−2dk

j̃
+

q∑
u,v=0
v 6=k

b′AhSh` (ωj)A′
`b





∣∣∣∣∣∣∣∣

≤ 2m
1/2
n log mn

G

∣∣∣∣∣∣∣∣
Lmn

(dk) + Fmn
(dk)− G+

q∑
u,v=0
v 6=k

M(h,`)
mn

(dk)

∣∣∣∣∣∣∣∣
= op (1) ,

by (21), (22), Corollaries 8, 9, 10 and Assumption 3b. Since

Skk (ωj) =
∣∣1− eiωj

∣∣−2dk Ψ†∗
k (ωj) [I (ωj)−Σ]Ψ†

k (ωj)

= ω−2dk

j̃
Ψ†∗

k (0) [I (ωj)−Σ]Ψ†
k (0) + Op

(
ω−2dk+ρ

j̃

)
,

the second term in (56) is

Op


m−1/2

n

mn∑

j=1

νjω
ρ

j̃


 = Op

(
m

ρ+1/2
n log m

nρ

)
= op (1)

by Lemma 12 and Assumption 3b. We have shown that both terms on the RHS of (56) are op (1) hence
completed the proof.¤

Lemma 26 Let Un and Vn be defined as in Equation (10), Un, Vn and Ξ as in Lemma 1, and Zn as
in Lemma 25. Under Assumptions 1 and 2,

vec (Zn,Un,Vn) D→ vec (Z,U,V)

where
vec (Z,U,V) ∼ N (0,∆)

and

∆ =
[

2πΦpΣ⊗Σ 0
0 Ξ

]
,

hence vec(Z) and vec (U,V) are independent.

Proof. Note that
E

[
vec (Zn) vec (Un,Vn)′

]
= 0,

for every n since by Assumption 1, each element of the LHS is the product of three zero mean normal
random variables. By Lemma 28 and the corollary of Theorem 25.12 of Billingsley (1995),

E
[
vec (Z) vec (U,V)′

]
= 0.

The lemma follows from the Cramer-Wold device. ¤

40



Lemma 28 gives the uniform integrability of vec (Zn) vec (Un,Vn)′ so that the previous lemma will
follow. The proof of Lemma 28 requires a bound for the covariance of the normalized DFTs at ωk and
ωj , k < j. Although Lemma 12 of Hurvich et. al (2002) provides such a bound for all d and p, their
bound tends to infinity for d ∈ (−p + 1/2,−p + 1) when k is fixed and p ≥ 2. We obtain a new bound
for d < 0 and p ≥ 2 in the next lemma which gives a sufficient bound for our purposes when combined
with Lemma 12 of Hurvich et. al (2002).

Lemma 27 Let {ξt} be a univariate process with spectral density

f (ω) =
σ2

2π

∣∣1− e−iω
∣∣−2d |α∗ (ω)|2

where d ∈ (−p + 1, 0) , p ≥ 2 and α∗ (ω) ∈ L∗ (µ, ρ) for some µ > 1 and ρ ∈ (1, 2] , and L∗ is defined in
Assumption 2. Let J (ω) be the tapered DFT of {ξt}n

t=1. Then for d < 0 and 1 ≤ k < j ≤ [(n− 1) /2] ,
∣∣∣∣∣E

(
J (ωk)

f1/2(ωk̃)
J (ωj)

f1/2(ωj̃)

)∣∣∣∣∣ +

∣∣∣∣∣E
(

J (ωk)
f1/2(ωk̃)

J (ωj)
f1/2(ωj̃)

)∣∣∣∣∣ ≤ Cjdkd (j + k)−2d−p
.

Proof. We will only derive this bound for the first term on the LHS, since the derivation for the other
term is similar. Let x = (ωj + ωk) /2, y = (ωj − ωk) /2 so that ωj = x + y and ωk = x− y. Then

E (J (ωk)J (ωj)) =
∫ π

−π

f (ω)Dn,p (ωj − ω) Dn,p (ωk − ω) dω

=
∫ π

0

[f (ω + y) + f (ω − y)] Dn,p (x− ω) Dn,p (x + ω) dω

:=
∫ π

0

g (y; ω)∆n (x;ω) dx.

Let W1 = {ω : 0 < ω < x/2} , W2 = {ω : x/2 < ω < min (3x/2, π)} and W3 = {ω : min (3x/2, π) < ω < π} ,

g (y; ω) = f (ω − y) + f (ω + y)

and
∆n (x; ω) = Dn,p (x− ω) Dn,p (x + ω) .

Then

E

(
J (ωk)

f1/2
(
ωk̃

) J(ωj)
f1/2(ωj̃)

)
= f−1/2(ωj̃)f

−1/2(ωk̃)
∫ π

0

g (y; ω)∆n (x; ω) dx =
3∑

a=1

qa (x, y) ,

where
qa (x, y) = f−1/2(ωj̃)f

−1/2
(
ωk̃

) ∫

Wa

g (y;ω)∆n (x; ω) dω.

By Assumption 2,
|g (y; ω)| ≤ C

(
|ω − y|−2d + |ω + y|−2d

)
.

Also by Lemma 0 of Hurvich and Chen (2000),

|∆n (x; ω)| ≤ Cn (1 + n |x− ω|)−p (1 + n |x + ω|)−p
, (57)
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for −απ < x− ω, x + ω < απ, 0 < α < 2.

Since ω(j+k)/4 < x− ω < ω(j+k)/2 and ω(j+k)/2 < x + ω < ω3(j+k)/2 for ω ∈ W1,

∆n (x; ω) ≤ Cn (j + k)−2p
,

by (57) and since ω(j−k)/4 − ωk/2 < y − ω < y = ω(j−k)/2 and ω(j−k)/2 < y + ω < ωj/2 + ω(j+k)/4 for
ω ∈ W1,

|q1 (x, y)| ≤ Cωd
j ωd

kn (j + k)−2p
∫ x/2

0

(
|ω − y|−2d + |ω + y|−2d

)
dω

≤ Cωd
j ωd

kn (j + k)−2p
ω(j+k)/4

(∣∣ω(j−k)/2

∣∣−2d + ω−2d
k/2 +

∣∣ωj/2 + ω(j+k)/4

∣∣−2d
)

≤ Cωd
j ωd

kn (j + k)−2p
ω1−2d

(j+k) ≤ Cjdkd (j + k)−2p+1−2d
. (58)

For ω ∈ W2,
∆n (x; ω) ≤ Cn (j + k)−p (1 + n |x− ω|)−p

because ω3(j+k)/4 < x + ω < min
{
ω5(j+k)/4, π + ω(j+k)/2

}
. Furthermore, since

∫∞
−∞ (1 + n |x|)−p

dx ≤
cn−1 and |g (y;ω)| ≤ C{ω−2d

5j+k + ω−2d
j+5k} ≤ Cω−2d

j+k , we have

|q2 (j, k)| ≤ Cωd
j ωd

kω−2d
j+kn (j + k)−p

∫ ∞

−∞
(1 + n |x− ω|)−p

dω ≤ Cjdkd (j + k)−2d−p
. (59)

For ω ∈ W3 = {ω : min (3x/2, π) < ω < π} and assuming that 3x/2 < π, we have ω5(j+k)/4 < x + ω <
π + ω(j+k)/2. We further break q3 into two integrals,

q
(1)
3 (j, k) =

∫

W3

[g (y; ω)− g (y;x)] ∆n (x; ω)1{x+ω≤π}dω

and
q
(2)
3 (j, k) =

∫

W3

[g (y; ω)− g (y; x)]∆n (x; ω)1{x+ω>π}dω.

Since |x− ω| ≥ 1
3ω for ω ∈ W3,

∣∣∆n (x; ω)1{x+ω≤π}
∣∣ ≤ Cn (1 + nω)−p (1 + n (x + ω))−p ≤ Cn−2p+1ω−2p. (60)

Because Dn,p (·) is 2π-periodic and |Dn,p (·)| is symmetric around −ωp−1,

|Dn,p (x + ω)| = |Dn,p (2π − (x + ω)− ωp−1)| .

Hence
∣∣∆n (x; ω)1{x+ω>π}

∣∣ ≤ Cn (1 + n |x− ω|)−p (1 + n |2π − (x + ω)|)−p

≤ Cn (1 + n |x− ω|)−p (1 + n |x− ω|)−p

≤ Cn−2p+1ω−2p, (61)

since |2π − (x + ω)| ≥ |x− ω| for x, ω ∈ [0, π] . Since |ω + y| < 2ω and |y − ω| = ω − y < ω for ω ∈ W3,

g (y; ω) ≤ Cω−2d.
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Thus for b ∈ {1, 2} , we have by (60), (61) and the above equation,
∣∣∣q(b)

3 (j, k)
∣∣∣ ≤ Cn−2p+1ωd

j ωd
k

∫ ∞

ω3(j+k)/4

ω−2d−2pdω ≤ Cn−2p+1ωd
j ωd

kω−2d−2p+1
j+k = Cjdkd (j + k)−2d−2p+1

.

(62)
Combining (58), (59) and (62),

E

∣∣∣∣∣
J (ωk)

f1/2
(
ωk̃

) J (ωj)
f1/2(ωj̃)

∣∣∣∣∣ ≤ Cjdkd (j + k)−2d−p
{

1 + (j + k)−p+1
}
≤ Cjdkd (j + k)−2d−p

.

¤

Corollary 13 Let {ξt} be the process defined in Lemma 27 with d ∈ (−p + 1/2, 1/2) . For k < K < ∞,
and 1 ≤ k ≤ (j − p + 1) ≤ [(n− 1) /2] ,

E

∣∣∣∣∣
J (ωk)

f1/2
(
ωk̃

) J(ωj)
f1/2(ωj̃)

∣∣∣∣∣ ≤
{

C log (1 + j) j|d|−1, d ≥ 0.
Cj|d|−p, d < 0.

.

Proof. By Lemma 12 of Hurvich, et. al (2002), the LHS is bounded by




Ck−|d|j|d|−1 log (1 + j) , p = 1

C (j − k)−p
h−pj

(
k
j

)d

+ (j − h)−p+1

{
h−1

(
j
h

)d
+ j−1

(
h
j

)d
}

, p ≥ 2
,

which reduces to
C log (1 + j) j|d|−1

for d ≥ 0. If we use this together with Lemma 27 , the corollary follows.¤

Lemma 28 Let Jza (ωh) be the ath element of Jz (ωh) and Zn,uv be the (u, v)th entry of Zn. Then under
the assumptions of Theorem 3,

E
(
n−2daaIzz,aa (ωh) Z2

n,uv

)
< ∞,

for 1 ≤ h < m + p and 1 ≤ a, u, v ≤ q.

Proof. We will use the notation Jzab
(ωj), Aab,j , and Bu,j defined in (41) and (43). Following from (41),

E
(
n−2daaIzz,aa (ωh)Z2

n,uv

)
=

1
n2daamn

q∑

b1,b2=1

mn∑

j1,j2=1

νj1νj2E
[
Jzab1

(ωh)Jzab2
(ωh) Iεε,uv (ωj1) Iεε,uv (ωj2)

]

=
1

n2daamn

q∑

b1,b2=1

Ψab1

(
ωh̃

)
Ψab2

(
ωh̃

)

×
mn∑

j1,j2=1

νj1νj2E
[
Aab1,hAab2,hBu,j1Bv,j1Bu,j2Bv,j2

]

≤ C

mn

q∑

b1,b2=1

∣∣∣∣∣∣

mn∑

j1,j2=1

νj1νj2E
[
Aab1,hAab2,hBu,j1Bv,j1Bu,j2Bv,j2

]
∣∣∣∣∣∣
,
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since n−2daa
∣∣Ψab1

(
ωh̃

)
Ψab2

(
ωh̃

)∣∣ ≤ C by (5). It is sufficient to show that

1
mn

mn∑

j1,j2=1

νj1νj2E
[
Aab1,hAab2,hBu,j1Bv,j1Bu,j2Bv,j2

]
< ∞ (63)

for 1 ≤ b1, b2 ≤ q. Since Aab,j and Bu,j are zero mean normal random variables. The expectation in (63)
is a sum of 15 products of three expectations which are all the possible pair-partitions of the 6 random
variables. Thus the LHS of (63) can be decomposed accordingly. Many terms of this decomposition are
zero since E [Bu,j1Bu,j2 ] = 0 and

∑
j vj = 0. Here we show the finiteness for only two nonzero terms,

since the rest of the terms can be handled analogously. By Corollary 13, for 1 ≤ a, b, u ≤ q, h < j,
h ≤ m + p and j = 1, . . . ,mn,

|E (Aab,hAau,j)|+
∣∣E (

Aab,hAav,j

)∣∣ =
{

C log (1 + j) jd−1, d ≥ 0.
Cj|d|−p, d < 0.

,

Note that by (45), E
∣∣Aab1,hAab2,h

∣∣ ≤ Ch. Applying the above bound together with (44), we have

E (Aab,hBu,j) = E (Aab,hAau,j) + E [Aab,h (Bu,j −Aau,j)]

≤ C
(
j|d|+ε−11 {d ≥ 0}+ Cj|d|−p

)
+

(
E |Aab,h|2 E |Bu,j −Aau,j |2

)1/2

< Cj|d|+ε−11 {d ≥ 0}+ Cj|d|−p + j−ρ/2 = O
(
j−1/2−ε

)
(64)

where ε > 0. Let c = m + p,

1
mn

mn∑

j1,j2=1

νj1νj2E [Aab1,hBu,j1 ]E
[
Aab2,hBv,j2

]
E

[
Bv,j1Bu,j2

]

≤ C
log2 mn

mn

mn∑

j1=c

mn∑

j2=c

∣∣E [Aab1,hBu,j1 ]E
[
Aab2,hBv,j2

]
E

[
Bv,j1Bu,j2

]∣∣

+ C

c−1∑

j1=1

mn∑

j2=1

∣∣E [Aab1,hBu,j1 ]E
[
Aab2,hBv,j2

]
E

[
Bv,j1Bu,j2

]∣∣

= O


 log m2

n

mn

mn∑

j1,j2=c

j
−1/2−ε
1 j

−1/2−ε
2 1{|j1−j2|<p} +

log mn

mn


 = O

(
log m2

n

mn

)
,

since the summation over j1, j2 ∈ {1, . . . , c− 1} is O
(
m−1

n

)
. Also

1
mn

mn∑

j1,j2=1

νj1νj2E
[
Aab1,hAab2,h

]
E

[
Bu,j1Bv,j2

]
E

[
Bv,j1Bu,j2

]

= Ch var (Zuv) < ∞.

The proof is completed.¤

The next corollary is a corollary of Lemma 4.

Corollary 14 ‖Xk (H)−Xk‖F = Op (n−αk) .
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Proof. Note that since both H and Im are symmetric, a multiplication of −1 to χj (H) or χj will still
retain the properties. We can assume that χ′jχj (H) ≥ 0. We have

‖Xk (H)−Xk‖2F ≤ ak max
j∈Nk

‖χj (H)− χj‖2 ≤ C max
j∈Nk

sin2 θ (χj , χj (H))

≤ C ‖sinΘ {M (Xk (H)) , M (Xk)}‖2F
by the definition of the sin Θ bound. ¤

Lemma 29 Under Assumption 1, the eigenvectors of H,

χj (H) D−→ ξ̊j (vec (U,V)) , j = 1, . . . , q,

where ξ̊j are continuous functions of vec (U,V) and U,V are defined in Lemma 1.

Proof. Since χj (H) = B′χj (ΦD) , it is sufficient to show that

χj (ΦD) D−→ ς̊j (vec (U,V)) , j = 1, . . . , q,

where ς̊j are continuous functions of vec (U,V) . Let Φ̃D = d−1
n ΦDd−1

n

Φ̃D = X′
(
Φ̃D

)
Λ

(
Φ̃D

)
X

(
Φ̃D

)
.

First note that under Assumption 1, the eigenvalues of Φ̃D are distinct with probability 1 by Okamoto
(1973). Since both Φ̃D and ΦD are block diagonal matrices,

ΦD = d−1
n X′

(
Φ̃D

)
Λ

(
Φ̃D

)
X

(
Φ̃D

)
d−1

n = X′
(
Φ̃D

)
d−1

n Λ
(
Φ̃D

)
d−1

n X
(
Φ̃D

)
.

This implies that
X′ (ΦD) = X′

(
Φ̃D

)
and Λ (ΦD) = d−1

n Λ
(
Φ̃D

)
d−1

n .

Let K be defined as in Lemma 6 and we rewrite Un and Vn in (10) as

Un =
(
U(0)

n , . . . ,U(s)
n

)′
and Vn =

(
V(0)

n , . . . ,V(s)
n

)′

where U(k)
n and V(k)

n are ak ×m matrices. Since K is a block diagonal matrix,

Φ̃D = d−1
n K′dn diag

(
U(0)

n U(0)′
n · · · U(s)

n U(s)′
n

)
dnKd−1

n

= K′ diag
(

U(0)
n U(0)′

n · · · U(s)
n U(s)′

n

)
K.

It follows that
χj (ΦD) = χj

(
Φ̃D

)
:= ς̊j (vec (Un,Vn)) D−→ ς̊j (vec (U,V)) ,

and
χj (H) = B′χj (ΦD) D−→ B′ς̊j (vec (U,V)) .

¤
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Remark 3 Let X̊ (ΦD) = [̊ς1 (vec (U,V)) , . . . , ς̊s (vec (U,V))] and X̊ (H) =
[
ξ̊1 (vec (U,V)) , . . . , ξ̊s (vec (U,V))

]
=

[
X̊0 (H) · · · X̊s (H)

]
. Since X̊ (ΦD) is a diagonal block matrix, X̊k (H) = B′X̊k (ΦD) ∈ Bk.

Corollary 15 Let b be a q × 1 vector in M (Xk) with length one, then under Assumption 1,

b
D−→ b̊ := ξ̊ (vec (U,V)) ,

where ξ̊ is a continuous function with respect to vec (U,V) and U,V are defined in Lemma 1.

Proof. The corollary follows from Lemma 29 and Corollary 14 and b = c′Xk for some ak × 1 vector c.¤
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