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Abstract

Using Markov Chain Monte Carlo algorithms within the limited information Bayesian

framework, we estimate the parameters of the structural equation of interest and test weak

exogeneity in a simultaneous equation model with white noise as well as autocorrelated

error terms. A numerical example and an estimation of the supply and demand equations

of the U.S. gasoline market show that if we ignore autocorrelation we obtain unreasonable

posterior distributions of the parameters of interest. Also we find that the hypothesis of the

asymmetric effect of the changes in oil price on the changes in gasoline price is rejected. Oil

inventory has a significant negative effect on the gasoline price.
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1 Introduction

There have been many studies on Bayesian limited information estimation of the parameters

of the simultaneous equations model (SEM). Under diffuse prior, Dreze (1976) showed that

posterior distribution is in poly-t family in some cases. Tsurumi (1985) also derived the

exact posterior distribution for the structural parameters. Recently, Kleibergen and Van

Dijk (1998) developed a framework for construction of prior probability density functions

for the analysis of SEM. The use of the Jeffreys prior in SEM was examined by Chao and

Phillips (1998, 2000). Zellner (1998) suggests a finite sample Bayesian method of moments.

Computational difficulties in obtaining the posterior distribution of the structural pa-

rameters have long hampered the use of the limited information Bayesian estimation pro-

cedures. Zellner et al. (1988) proposed to use Monte Carlo integration method. With the

recent advent of Markov Chain Monte Carlo (MCMC) algorithms, the estimation and testing

procedures in the limited information Bayesian (LIB) analysis has become practical. Gao

and Lahiri (2001) focused on the weak instrument in the limited information analysis of

the simultaneous equation and used simulation methods to examine the approaches of Chao

and Phillips (1998), Kleibergen and Van Dijk (1998), Zellner (1998) and some non-Bayesian

methods.

In this paper, we propose Markov Chain Monte Carlo (MCMC) algorithms to estimate

not only the parameters of the structural equation of interest but also a parameter for

testing a weak exogeneity of the right hand side endogenous variables. Also, we suggest a

rank condition of identifiability. MCMC algorithms are developed first assuming that the

error terms are white noise, and then assuming that they are autocorrelated. One of our

primary objectives is to make Bayesian inference of the SEM with autocorrelated errors.

We estimate the demand elasticity and income elasticity of the gasoline price using the

SEM with an autocorrelated error term. There has been a considerable interest in the
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analysis of the gasoline market in the last thirty years. Ramsey (1975), Dahl and Sterner

(1991) among others estimate the gasoline demand and income elasticities using the aggregate

data. Espey (1998) provides an extensive overview of this literature. Studies by Schmalensee

and Stoker (1999), Yatchew and No (2001), and Nicol (2003) use the household data to

estimate demand and income elasticities.

In the analysis of demand equation, we examine the effect of oil inventory on gasoline

prices and allow the asymmetric effect of oil price changes. The relation between the gaso-

line prices and oil prices has been analyzed by many authors as well. Borenstein et al.

(1997), Johnson (2000), Galeotti et al. (2003) present evidence of the asymmetric response

of gasoline prices to changes in crude oil prices. Kaufmann and Laskowski (2004) do not find

asymmetries in the gasoline price if inventories and capacity utilization rates are introduced

in the model. Pindyck (2001) examines how oil inventories together with oil prices influence

the gasoline price. The effect of anticipated and unanticipated changes in oil inventories and

prices was analyzed by Radchenko (2004).

We find that gasoline is price inelastic but it is income elastic. We estimate the oil

inventory elasticity for gasoline and show that oil inventory has a significant negative effect

on gasoline price. In the analysis of asymmetric response of gasoline price to oil price

increases and decreases, we do no find evidence of asymmetric response.

The structure of the paper is as follows. In Section 2 we explain the SEM estimation

when the error terms are white noise and present an illustrative example. The model with

an autocorrelated error term is discussed in Section 3. We examine the U.S. gasoline market

using the procedures developed in Section 4. Concluding remarks are in Section 5.
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2 Estimation of Parameters When the Error Terms are

White Noise

2.1 Likelihood function of the structural equation of interest

The simultaneous equations system (SEM) is given by

Y Γ = XB + U (1)

where Y = [y1, ..., yn], U = [u1, ..., un]; yi, and ui are T × 1 vectors and Y is a T × n matrix

of endogenous variables; X is a T × k matrix of exogenous variables; U is a T × n matrix of

error terms which are assumed to follow a multivariate white noise process. Γ is an n × n

nonsingular matrix of parameters and B is a k × n matrix of parameters. The structural

equation of interest is given by

y1 = Y1γ1 + X1β1 + u1. (2)

where y1 and Y1 are, respectively, T ×1 and T ×m1 endogenous variables and γ1 and β1 are,

respectively, m1 × 1 and k1 × 1 structural coefficients.

As shown in Appendix A we derive the likelihood function

L(γ1, β1, Π
∗

2, σ
2
1, ρ

2, θ, Ω22|data, Π∗

21 = 0) ∝

σ−n
1 (1 − ρ2)−

n

2 |Ω22|
−

n

2 etr
(
−

1

2
(Y1 − XΠ∗

2)
′(Y1 − XΠ∗

2)Ω
−1
22

)
(3)

exp

(

−
1

2σ̃2
1

(y1 − Y1γ1 − X1β1 − V1θ)
′(y1 − Y1γ1 − X1β1 − V1θ)

)

where the notations used in (3) are defined in Appendix A.
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Given the prior density function on φ̃ = (γ
′

1, β
′

1, Π
∗
′

2 , σ2, ρ2, θ, Ω22)
′

the posterior pdf is

p(φ̃|data) ∝ p(φ̃) × L(φ̃|data).

where p(φ̃) is the prior density.

2.2 Choice of the prior distribution

Two widely used priors are the diffuse prior (Zellner (1988), Tsurumi (1985), and Dreze(1976)

among others) and the Jeffreys prior (Chao and Phillips (1998) and Kleibergen and Van Dijk

(1998)). The diffuse prior has the form

pd(γ1, β1, Π
∗

2, σ
2
1, ρ

2, θ, Ω) ∝

σ
−

1

2
(m1+2+ν0)

1 (1 − ρ2)−
1

2
(m1+2+ν0)|Ω|−

1

2
(m1+2+ν0) (4)

where ν0 ≥ 0. The Jeffreys prior is given by

pJ(γ1, β1, Π
∗

2, Ω) ∝

(σ2
1)

1

2
(k2−m1)|Ω|−

1

2
(k+m1+2)|Π∗

′

22X
′

2QX1
X2Π

∗

22|
1

2 (5)

where QX1
= I − X(X ′X)−1X ′.

The diffuse prior was criticized because it leads to improper posterior pdf’s when the

structural equation of interest is just identified. Although the Jeffrey’s prior avoids this

problem, the posterior pdf’s using the Jeffrey’s prior tend to have a wide variance such that

the proper posterior pdf’s are not much of practical use. As we see later, if the structural

equation of interest is overidentified, both the diffuse and Jeffrey’s priors give rise to proper
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posterior pdf’s that are insensitive to the choice of the priors. Hence, we use the diffuse prior

(4) in this paper and work with an over-identified equation.

Using Markov Chain Monte Carlo (MCMC) algorithms explained in Appendix B, we

obtain the posterior pdf’s of parameters of interest, in particular γ1, β1, ρ2 and Π∗

22. The

parameter ρ2 is defined in (A-12). It is the canonical correlation between the endogenous

variables on the right hand side of equation and the error term. The posterior density of ρ2

is used to test weak exogeneity. If the highest posterior density interval of ρ2 includes zero,

we do not reject the hypothesis that Y1 are weakly exogenous. Otherwise, we conclude that

variables Y1 are endogenous. We use the reduced form coefficients Π∗

22 to extract the singular

values to test the rank condition of identifiability. That is, after obtaining the draws of Π∗

22,

we extract the singular values ξ1, ..., ξm1
from Π∗

′

22Π
∗

22 and obtain the posterior density of the

minimum of ξi’s, and test the rank condition.

2.3 A Numerical Illustration for a White Noise Error Terms

Let us illustrate the limited information Bayesian estimates for the white noise error terms.

We generate the data using the following structural model

Y Γ = XB + U (6)

where Y = [y1, y2, y3] is a T × 3 matrix of endogenous variables, X = [x1, ..., x7] is a T × 7

matrix of exogenous variables, and x1 is the vector of ones. The number of observations in

the simulated example is T = 300. As for Γ, B, and the variance of the structural error term

ut = (ut1, ut2, ut2)
′, we set
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Γ =





1 −0.267 −0.87

−0.222 1 0

0 −0.046 1



 , B =





0.12 −0.05 0.08

0 0.74 0

0.7 0 0.53

0 0 0.11

0.96 0.13 0

0 0 0.56

0.27 0 0





,

V ar(ut) = 2





1.0 0.25 0.0625

0.25 1.0 0

0.0625 0 1.0



 (7)

The correlation matrix of the exogenous variables X is given in Table 1.

Table (1) Here.

The determinant of the correlation matrix of the exogenous variables is 0.0000393, indicating

that a high degree of multicollinearity exists among the exogenous variables. Multicollinear-

ity leads to poor posterior inference in that the posterior pdf’s tend to have larger variances.

Instead of equation (7), if we put V ar(ut) = 2I3 then we obtain much tighter posterior pdf’s.

The structural equation of interest is

y1 = γ1Y1 + X1β1 + u1 (8)

where Y1 = y2, X1 = [x1, x3, x5, x7], γ1 = 0.222, β1 = [β11, β13, β15, β17]
′ with β11 = 0.12,

β13 = 0.7, β15 = 0.96, β17 = 0.27. Note that the equation is over-identified because (m1 =

1) < (k2 = 3) and the rank of Π∗

22 is m1 = 1 Because m1 = 1, the singular value of Π∗
′

22Π22

is (π1
22)

2 + ... + (πk2

22)
2 where πi

22 is the i-th element of Π∗

22.
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Based on a diffuse prior, Tsurumi (1985) derived a marginal posterior probability density

functions of the coefficients of the structural equation within the limited information frame-

work. The posterior probability density function of the coefficient associated with the i-th

endogenous variable on the right hand side of the equation, γi1, is given by

p(γi1|data) ∝
∣∣∣Y

′

2MY2

∣∣∣
−

1

2

·
[1 + (γi1 − γ̂i1)

2h11·2]
ν1
2

[1 + (γi1 − γ̃i1)2g11·2]
ν2−m1+1

2

r∑

i=0

pi

(
r

i

)

, (9)

while the posterior probability density function of βi1 is given by

p(βi1|data) ∝ |Y
′

1M∗

1 Y1|
−

1

2 (ν∗

2s
∗2
2 )−(ν∗

2
−m1)/2

r∑

i=0

q∗i

(
r

i

)

(10)

notations are defined in Tsurumi (1985). The cumulant generating function is used to derive

equations (9) and (10).

In Table 2 we present the posterior summary statistics of the MCMC draws. Figure 1

(a) exhibits the posterior pdf’s of γ1 that are derived in three different ways: (i) the exact

posterior pdf using equation (9), (ii) the posterior pdf by MCMC draws using the diffuse

prior (iii) the posterior pdf using Jeffrey’s prior. All of these posterior pdf’s are very close

to each other. This shows two things: (i) the MCMC draws yield a posterior pdf that is

indistinguishable from the exact posterior pdf, and (ii) the posterior pdf using the diffuse

prior and that using Jeffrey’s prior are practically the same, showing that for an overidentified

model the posterior pdf is insensitive to the choice of prior. We present the posterior pdf of

ρ2, the test of weak exogeneity, in Figure 1 (b). The posterior pdf is centered around the

true value, and clearly shows that the endogenous variable on the right hand side, Yt1, is

correlated with the error term ut1.

Table 2 and Figures 1 (a) and 1 (b) here
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3 Estimation of the Parameters When the Error Terms

are Autocorrelated

3.1 SEM with ARMA errors

Let us extend our Bayesian analysis to the SEM with autocorrelated error terms. The

structural error terms follow the following ARMA(p, q) process:

ut = Φ(L)ut−1 + νt + Θ(L)νt−1 (11)

where νt ∼ N(0, Ξ) and

Φ(L) = Φ1L + Φ2L
2 + ... + ΦpL

p, Θ(L) = Θ1L + Θ2L
2 + ... + ΘqL

q

Φi, Θi are n × n matrices. The reduced form of (1) is

Y = XΠ + V (12)

Given that ut follows ARMA(p, q) processes, it can be shown that vt also follows ARMA(p̃, q̃)

processes, where p̃ and q̃ are appropriately defined (Hamilton (1994), pp. 106-108). Accord-

ingly, vti, i = 1, ..., n, can be represented as

(1 − Φ̃i(L))vti = ηti + Θ̃i(L)ηti, (13)

where ηti is a white noise process and

Φ̃i(L) = φ̃1iL + φ̃2iL
2 + ... + φ̃p̃iL

p̃, Θ̃i(L) = θ̃1iL + θ̃2iL
2 + ... + θ̃q̃iL

q̃.

Let us postmultiply (12) by Λ defined in equation (A-3) in Appendix A:
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Y Λ = XΠΛ + V Λ

W = XΠ∗ + V∗ (14)

where W = Y Λ, Π∗ = ΠΛ, V∗ = V Λ, V∗ follows Gaussian ARMA processes and the

variance-covariance matrix is a non-linear functions of φ̃ij, θ̃ij, γ1 and of the elements of the

variance-covariance matrix Ξ. Hence, we cannot proceed with the decomposition (A-11) in

Appendix A that is for the white noise error terms.

The approach we take is to transform equation (14) into the model with white noise error

terms and apply MCMC algorithms developed for the model in Section 3. Using (13), we

transform (14) into

y1 − Φ̃1(L)v1 − Θ̃1(L)η1 = X1β1 + (Y1 − Φ̃2(L)V1 − Θ̃2(L)η2)γ1 + η1 − η2γ1

Y1 − Φ̃2(L)V1 − Θ̃2(L)η2 = XΠ∗

2 + η2 (15)

or

y∗

1 = Y ∗

1 γ1 + X1β1 + v∗

1

Y ∗

1 = XΠ∗

2 + V ∗

1 (16)

where

y∗

1 = y1 − Φ̃1(L)v1 − Θ̃1(L)η1

Y ∗

1 = Y1 − Φ̃2(L)V1 − Θ̃2(L)η2 (17)

v∗

1 = η1 − η2γ1

V ∗

1 = η2
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We use the MCMC algorithms for VAR models to construct y∗

1 and Y ∗

1 . We approxi-

mate the ARMA processes by AR processes. The main reason is that the estimation of a

vector ARMA process requires stringent sets of assumptions about the ARMA parameters

to guarantee the identification (Lutkepohl (1993), pp. 241-248), which makes estimation of

a vector ARMA model unattractive. At the same time, an invertible vector MA process

can be written as an infinite VAR process and infinite VAR process can be approximated

by a finite VAR process. Having obtained y∗

1 and Y ∗

1 , we apply the MCMC algorithms we

explained in the previous section to equations (16).

3.2 A Numerical Illustration for the Case of an ARMA Error

Process

We set that the structural error terms ut follow the following ARMA(1, 1) process

ut = Φut−1 + νt + Θνt−1 (18)

where

Φ =





0.97 0 0

0 0.95 0

0 0 −0.55



 , Θ =





0.7 0 0

0 0.8 0

0 0 0.9





In the reduced form error terms the ARMA process becomes an ARMA(3, 3) process.

As we discussed above, we estimate VAR rather than VARMA process. To decide on the lag

length of an AR process, either Akaike Information Criteria (AIC) or the Bayesian Schwartz

Criteria (SC) can be used. Based on the AIC criteria in Table 3, we choose an AR(4) process.

Table 3 here
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In Table 4 we compare the estimates of the structural parameters of the first equation of

the SEM in which y1 and Y1 are transformed into y∗

1 and Y ∗

1 with the estimates we obtain

if we erroneously assume that ut is white noise. We see from Table 4 that the suggested

approach works well. The estimates of the parameters with transformation are very close

to the true values, while the estimates of the parameters ignoring transformation are very

misleading. We present the posterior densities of the parameters γ1, β11, and ρ2 in Figure

2 (a) - (f). One may notice that the posterior pdf’s of the parameters with y∗

1 and Y ∗

1 are

much sharper and are centered around the true values of the parameters than the posterior

pdf’s with y1 and Y1. This illustrates that wrongly assumed error terms lead to misleading

inference of the parameters.

Table 4 and Fig 2 Here

4 Analysis of the U.S. gasoline market

There has been a significant amount of interest in estimating price and income elasticities

of gasoline and in analyzing the relation between gasoline prices and oil prices. The elas-

ticity estimates of gasoline received a renewed attention recently because of environmental

consequences of rapid growth in US gasoline consumption. Depending on the responsiv-

ness of gasoline price to changes in price or income, the government may consider policies

to change the gasoline demand in order to decrease pollution. The estimates of price and

income elasticities are mixed and seem to depend on the estimation approach used.

Espey (1998) presents an extensive overview of the literature on estimating the gasoline

demand equation using the aggregate data. He reports that the range of short-run price

elasticity is from 0 and -1.26 with the median estimate of -0.23; the range of short-run
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income elasticity is from 0 to 2.91 with the median estimate of 0.39.3 Slightly different

results were reported by Dahl and Sterner (1991) who present the price gasoline elasticity in

the range between −0.26 and −0.86 while the long-run income elasticity seems to be elastic.

Another group of studies use expenditure survey data to estimate the demand elasticity.

These studies generally find that gasoline demand is price and income inelastic. Schmalensee

and Stoker (1999) and Yatchew and No (2001) provide evidence that high long-run income

elasticities could be due to a failure to control for some household characteristics. Nicol

(2003), Greening (1995) and Puller and Greening (1999) provide evidence that different

household groups seem to respond to price and income changes differently.

We use time series data to estimate price and income elasticities of gasoline. Preliminary

analyses of the data show that the data are autocorrelated, and thus we use the Bayesian

analysis developed in Section 4.

We also address a question of the effect of oil prices and inventories on gasoline prices.

Pindyck (2001) shows how dynamics of commodity prices, inventories and production are

interrelated.

Several studies including Borenstein et al. (1997), Godby et al. (2000), Johnson (2002)

and Borenstein and Shepard (2002) analyze the relation between oil and gasoline prices

in US. They find that the effect of oil price changes may be asymmetric. Galeotti (2003)

presents similar evidence for European markets. However, these studies generally do not

take into account the effects of gasoline inventories or production and the error terms are

assumed to be white noise. The only exception is the study by Kaufmann and Laskowski

(2004) who analyze how refinery utilization rates and inventories influence the asymmetry

in gasoline price.

We estimate two supply equations of gasoline. In one version of the supply equation we

3The long run income elasticity ranges from 0.05 to 2.73 with the median estimate of 0.81.
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do not distinguish between oil price increases and decreases. In the second version we allow

an increase and decrease in oil price to have different impact on gasoline price.

We specify the following simultaneous equations:

ln Pt = γ11ln Jt + β11 + β12ln Poil,t + β13Ds + β14Dw + ut1 (19)

ln
(

Gt

Wt

)
= γ21ln Pt + β21 + β22ln Zt + β23Ds + β24Dw + ut2 (20)

ln Jt = β31 + β32ln Jt−1 + β33Ds + β34Dw + ut3 (21)

Qs
t = Gt + Jt − Jt−1 (22)

where

Qs
t = production of gasoline in month t, in millions of barrels,

Pt = real retail price of gasoline to end users in urban areas including taxes

in month t, in dollars,

Poil,t = crude oil import FOB price from OPEC countries in month t, in dollars,

Jt = inventory of gasoline in month t, in millions of barrels,

Wt = stock of gasoline consuming vehicles at month t

Gt = gasoline consumption in month t, in millions of barrels,

Zt = average real weekly earnings of production workers, not seasonally adjusted

in month t, in dollars,

Ds = dummy variable for summer season; 1.0 for June − August and 0 otherwise

Dw = dummy variable for winter season; 1.0 for January − February

and 0 otherwise

The parameters of interest in equations (19) and (20) are γ11, β12, γ21, and β22 and we

expect the following signs for these parameters:
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γ11 < 0, β12 > 0, γ21 < 0, β22 > 0 (23)

Both of these equations are over-identified by the counting rule.

To analyze the asymmetric effect of oil price on gasoline price, we replace equation (19)

with the following supply equation:

△ln Pt = γ̃11△ln Jt + β̃11 + β̃+
12△ln P+

oil,t + β̃−

12△ln P−

oil,t

+ β̃13△Ds + β̃14△Dw + ũt1 (24)

where

△ln Poil,t = ln Poil,t−ln Poil,t−1,△ln P+
oil,t = max{0,△ln Poil,t},△ln P−

oil,t = min{0,△ln Poil,t}.

In equation (24) we see that if parameters β̃+
12 and β̃−

12 are found to be equal then the impact

of oil price on gasoline price is symmetric.

We chose AR(4) error term in estimating the reduced form model based on AIC. In Table

5 and Table 6, we present the estimated results for the supply and demand equations. The

tables present estimates assuming that the error terms are white noise and then assuming

that the error terms are autocorrelated.

Table 5 and Table 6 Here

The estimates of supply equation (24) with the white noise and autocorrelated error term

are presented in Table 7.

In the estimation of the supply equation (19) with the white noise error terms, the point

estimate of γ11 is −1.6 and this shows that the level of inventories has an unreasonably

large negative effect on gasoline price. With the assumption of autocorrelation in the error
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terms, the effect of inventory is much less: γ11 = −0.24. This is close to the estimate of

γ̃11 = −0.30 in the autocorrelation version of (24). We may say that the estimation of SEM

with autocorrelated error terms gives robust results for different specifications of supply

function, while the results with the white noise error terms are not robust. An increase in

oil inventory by 1% leads contemporaneously to 0.24 − 0.3% decline in gasoline prices.

If we assume white noise error terms, we obtain a positive and significant estimate of

price elasticity of demand with the point estimate of γ21 = .184. If we assume that the error

terms are autocorrelated, however, we obtain a negative and significant price elasticity with

the point estimate of γ21 = −.543. Since we expect that the price and quantity demanded

are inversely related, the estimate obtained under autocorrelated errors is reasonable.

The Bayesian estimate of the price elasticity in the demand equation with autocorrelated

error term is −0.54 and this is in the range of price elasticities reported by Espey (1998)

or Dahl and Sterner (1991). The estimate of the income elasticity with autocorrelated error

term is 1.685 which indicates that the gasoline demand is income elastic.

Table 7 Here

Table 7 presents the estimates of the effect of oil price decreases and increases, β̃−

12 and

β̃+
12. Our estimates for these parameters are fairly close: 0.276 for an oil price increase and

0.233 for an oil price decline. Based on the estimates of the highest posterior density intervals

for these parameters, we reject the hypothesis of an asymmetric response of gasoline price to

changes in oil prices. This finding is not consistent with findings of Borenstein et al. (1997)

or Johnson (2002), but Bettendorf et al. (2003) argue that conclusions on the asymmetry

are dependent on the choice of the dataset in estimation. Our results support the findings of

Kaufmann and Laskowski (2004). Using a different econometric model, the authors reported

results similar to ours and argue that asymmetries in the price of gasoline are generated by
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refinery utilization rates and inventories.

For the white noise and autocorrelated error terms, the 95% highest posterior density

interval’s of ρ2 in estimation of supply equation (19) show that the right hand side endoge-

nous variable ln Jt (log of gasoline inventory) is correlated with the structural error term

ut1. The test of weak exogeneity for supply equation (24) indicates endogeneity only for the

autocorrelated error term case and does not reject the weak exogeneity for a white noise error

term version of equation (24). We take it as another evidence that the proposed autocorre-

lated approach produces reasonable results, while proceeding with white noise assumption

is misleading.

The 95% HPDI of ρ2 in the demand equation shows that the right hand side endogenous

variable ln Pt (log of gasoline price) is correlated with ut2 if we assume that the error terms

are white noise, but it is not correlated if we assume that the error terms are autocorrelated.

In conclusion, we compare the estimation results using the Bayesian procedures to those

using the two stage least squares (TSLS) with white noise error term and with an autocorre-

lated error terms.4 Table 8 and Table 9 present the estimates of gasoline demand and supply

functions by TSLS procedures. We observe that the Bayesian estimates with white noise

error terms and TSLS with white noise error terms are close to each other. Nevertheless,

there is a big difference between Bayesian and TSLS estimates of SEM for autocorrelated

case. Judged by the expected signs and sizes of the key regression parameters, the Bayesian

estimates using the autocorrelated error terms are much better than the TSLS estimates

with autocorrelated errors.

The SEM with autocorrelated error terms may be an alternative to the VAR analysis.

In the VAR analysis an impulse response function is used to measure an impact of oil

shocks on GDP (Jones et. al. (2004)) or on inflation (Hooker (2000)). If we use a SEM with

4TSLS with white noise error term and with an autocorrelated error term are canned procedures in

EVIEWS. The estimation procedure with an autocorrelated error term is done by Fair (1972) method.
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autocorrelated errors and construct a macro model, we may measure the impact of oil shocks

through the structural coefficients rather than the reduced form coefficients in the case of a

VAR model. Moreover, the LIB with autocorrelated errors allows us to test weak exogeneity

leading to careful specification of structural equations. Rather than treating oil price as

an endogenous variable, Hamilton (2003) uses a dummy variable for dates of oil shocks.

A structural equation that includes oil price as a weak exogenous variable may explain an

impact of oil shocks better than a VAR model that includes oil price as an endogenous

variable.

5 Concluding remarks

In this paper we developed the Bayesian MCMC algorithms to estimate the parameters of

a simultaneous equations system. With the MCMC procedures, one can conduct exogeneity

and rank identifiability tests. The MCMC algorithms are developed not only for the SEM

with white noise errors but also for the SEM with autocorrelated errors. To deal with

autocorrelation, we propose to transform the endogenous variables using the VAR model.

The MCMC algorithms are applied to analyze the U.S. gasoline market. The price

elasticity of demand for gasoline is −0.543 and the income elasticity is 1.68. We reject the

hypothesis of the asymmetric effect of oil price increases and decreases on gasoline price and

document a significant negative effect of oil inventory on the gasoline price. The reported

oil inventory elasticity estimate is approximately −0.3.

The MCMC procedures can provide the exogeniety and rank identifiability tests. More-

over, the analysis of the U.S. gasoline market reveals that the Bayesian estimation of SEM

with autocorrelated error term produces results that satisfy the prior expectations, while the

estimation using TSLS approach gives results that are hard to interpret.
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Appendix A: Derivation of the Structural Equation of

Interest from the Reduced Form Equation

The reduced form equation of SEM in (1) is given by

Y = XΠ + V (A-1)

where Π = BΓ−1, and V = UΓ−1 = [v1, ..., vn]. Given that the t-th column of U, ut, is

distributed as N(0, Σ), we see that the column of V, vt, is distributed as N(0, Σ̃), where

Σ̃ = Γ−1′ΣΓ−1. We partition Π as

Π =




π11 Π12 Π13

π21 Π22 Π23



 (A-2)

where π11 is k1×1, π21 is k2×1, Π12 is k1×m1, Π13 is k1×(n−m1−1) matrices. We see that

Π12 and Π22 are the reduced form coefficients associated with Y1, and Π13 and Π23 are the

reduced form coefficients associated with Y2, the endogenous variables in the simultaneous

equation system that are not included in the structural equation of interest.

Postmultiplying (A-1) by a n × m1 matrix Λ

Λ =





1 0

−γ1 Im1

0 0



 (A-3)

we obtain

Y Λ = XΠΛ + V Λ, or W = XΠ∗ + V∗ (A-4)

where W = (y1 − Y1γ1, Y1),
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Π∗ = ΠΛ =




π11 − Π12γ1 Π12

π21 − Π22γ1 Π22



 =




Π∗

11 Π∗

12

Π∗

21 Π∗

22



 , V∗ = [u1, V1] (A-5)

From equation (2) and (A-5), we see that

β1 = π11 − Π12γ1, and β2 = Π∗

21 = π21 − Π22γ1 = 0

As a result, we re-write equation (A-4) as

y1 = Y1γ1 + X1β1 + u1 (A-6)

Y1 = X1Π
∗

12 + X2Π
∗

22 + V1, (A-7)

where [u1t, V1t] ∼ N(0, Ω) and

Ω = Λ′Σ̃Λ =




σ2

1 δ′

δ Ω22



 , (A-8)

where

δ = Cov(ut1, Yt1)

Notice that if δ = 0 then the endogenous variables (i.e. stochastic regressors) in the right

hand side of the structural equation of interest are independent of ut1.

From equations (A-6) and (A-7) we obtain the likelihood function

L(φ|data, Π∗

21 = 0) ∝ |Ω|−
n

2 exptr
[
−

1

2
(W − XΠ∗)

′(W − XΠ∗)
′Ω−1

]
(A-9)
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where φ = (γ1, β1, Π
∗

2, σ
2
1, Ω22, δ), Π∗

′

2 = [Π∗
′

12, Π
∗
′

22] and ”etr” denotes ”‘exponential and

trace”’. This likelihood may be transformed into

L(φ̃|d, Π∗

21 = 0) ∝ (σ̃2
1)

−
n

2 |Ω22|
−

n

2 exp
(
−

1

2
tr(Y1 − XΠ∗

2)
′(Y1 − XΠ∗

2)Ω
−1
22

)
(A-10)

× exp

(

−
1

2σ̃2
1

(y1 − Y1γ1 − X1β1 − V1θ)
′(y1 − Y1γ1 − X1β1 − V1θ)

)

Equation (A-10) is obtained by factoring Ω−1:

Ω−1 =




1 0

−Ω−1
22 δ I








ω−1

11·2 0

0 Ω−1
22








1 −δ′Ω−1

22

0 I



 (A-11)

where

ω11·2 = σ2
1 − δ′Ω−1

22 δ = σ2
1(1 − ρ2), ρ2 = δ′Ω−1

22 δ/σ2
1 (A-12)

and

φ̃ = (γ1, β1, Π
∗

2, σ̃
2
1, Ω22, θ), θ = Ω−1

22 δ and σ̃2
1 = σ2

1(1 − ρ2) (A-13)

Appendix B: The Metropolis-Hasting Algorithm to Es-

timate the parameters φ̃

Using the likelihood (A-10) in Appendix A and the diffuse prior (4) in the text we see that

the posterior pdf is given by

p(φ̃|data) ∝ equation (4) × equation (A-10). (B-1)

We carry out MCMC algorithms in the following steps
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• Step 0: Set initial values for the parameters ξ0, Π∗0
2 , σ̃

2(0)
1 and Ω0

22.

• Step 1: Draw parameters ξi from the proposal density

ξi ∼ N(ξ̂, σ̃2(i−1)(Z(i−1)′Z(i−1))−1)

where ξ̂ = (Z(i−1)′Z(i−1))−1Z(i−1)′y1 and Z(i−1) = [Y1, X1, V
(i−1)
1 ]. We accept ξi with

probability λ:

λ = min





p(ξi, Π

∗(i−1)
2 , σ̃2(i−1), Ω

(i−1)
22 |data)

p(ξ(i−1), Π
∗(i−1)
2 , σ̃2(i−1), Ω

(i−1)
22 |data)

·
g(ξ(i−1)|Z(i−1), σ̃2(i−1))

g(ξ(i)|Z(i−1), σ̃2(i−1))
, 1






where g(·) is the proposal density.

• Step 2: Draw the parameter σ̃2(i) using the inverted gamma as the proposal density

σ̃2(i) ∼ IG(S, df) (B-2)

where S = (y1 − Z(i−1)ξi)′(y1 − Z(i−1)ξi) and df is the degree of freedom. We accept

σ̃2(i) with probability λ:

λ = min





p(ξ(i), Π

∗(i−1)
2 , σ̃2(i), Ω

(i−1)
22 |data)

p(ξ(i), Π
∗(i−1)
2 , σ̃2(i−1), Ω

(i−1)
22 |data)

·
g(σ̃2(i−1))

g(σ̃2(i))
, 1






• Step 3: Draw Π
∗(i)
2 using the multivariate normal proposal density:

V ec(Π
∗(i)
2 ) ∼ N(V ec(Π̂2), Ω

(i−1)
22 ⊗ (X ′X)−1) (B-3)

22



whre Π̂2 = (X ′X)−1X ′Y1, and accept Π
∗(i)
2 with probability λ:

λ = min





p(ξ(i), Π

∗(i)
2 , σ̃2(i), Ω

(i−1)
22 |data)

p(ξ(i), Π
∗(i−1)
2 , σ̃2(i), Ω

(i−1)
22 |data)

·
g(V ec(Π

∗(i−1)
2 ))

g(V ec(Π
∗(i)
2 ))

, 1






• Step 4: Draw Ω
(i)
22 using the inverted Wishart distribution

Ω
(i)
22 ∼ IW (V

′(i)
1 V

(i)
1 , df)

and accept Ω
(i)
22 with probability λ:

λ = min





p(ξ(i), Π

∗(i)
2 , σ̃2(i), Ω

(i)
22 |data)

p(ξ(i), Π
∗(i)
2 , σ̃2(i), Ω

(i−1)
22 |data)

·
g(Ω

(i−1)
22 )

g(Ω
(i)
22 )

1






• Step 5: Draws of ρ2(i) and the singular values ξ1, ..., ξm1
are made as follows. Draw

Ω(i) using the inverted Wishart as the proposal density

Ω(i) ∼ IW [(u
(i)
1 , V

(i)
1 )′(u

(i)
1 , V

(i)
1 ), df ]

where u
(i)
1 = y1 − Y1γ

i
1 − X1β

(i)
1 . The draw of σ

2(i)
1 is given by

σ
2(i)
1 = ν

(i)
11·2 + δ(i)′Ω−1

22 δ(i)

where ν
(i)
11·2 is the 1-1 element of Ω−1(i) and δ(i) = Ω

(i)
22θ(i). The draw of ρ2(i) is given by

ρ2(i) = θ(i)′δ(i)/σ
2(i−1)
1
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Appendix C: Sources of Data

Qs
t = production of gasoline, millions of barrels per month, Monthly Energy Review

Pt = retail price of gasoline to end users in urban areas excluding taxes for month t,

Monthly Energy Review. The price variable in the demand equation is deflated by

CPI. CPI is taken from the Federal Reserve bank of St. Louis

Jt = inventory of gasoline, millions of barrels per month, Monthly Energy Review

Wt = stock of gasoline consuming vehicles for month t.We used the methodology

described in Tsurumi(1980)

Gt = gasoline consumption, millions of barrels per month,Monthly Energy Review

Zt = average weekly earnings of production workers, not seasonally adjusted at month t,

divided by CPI, Survey of Current Business
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Table 1: The Correlation matrix of
exogenous variables

x3 x4 x5 x6 x7

x2 0.99 0.93 0.87 0.69 0.6
x3 0.93 0.88 0.73 0.61
x4 0.87 0.67 0.64
x5 0.75 0.69
x6 0.85
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Table 2: Summary Statistics of
Bayesian Estimate of (8) by using
MCMC algorithms, White Noise
Error Terms

True values Estimates
γ1 0.222 0.205

(0.09, 0.31)
β11 0.120 -0.078

(-0.75, 0.60)
β13 0.700 0.704

(0.59, 0.82)
β15 0.960 0.988

(0.93, 1.04)
β17 0.270 0.267

(0.25, 0.29)
σ2 2 2.056

(1.82, 2.31)
θ 0.637 0.651

(0.64, 0.53)
ρ2 0.685 0.683

(0.59, 0.77)
(1) Figures are posterior means
(2) Figures in parenthesis are 95

% highest posterior density in-
terval (HPDI)
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Table 3: AIC and SC
to select lag length
in the transforma-
tion

p SC AIC
2 2.236 1.902
3 2.048 1.778
4 1.964∗ 1.777∗

5 1.984 1.899

* denotes the
minimum value
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Table 4: Summary Statistics of Bayesian Estimates
of (8)

Error terms are assumed to be
True values white noise∗ autocorrelated

γ1 0.222 0.532 0.241
(0.02, 0.97) (0.13, 0.34)

β11 0.120 5.228 1.96
(2.20, 8.11) (1.16, 2.74)

β13 0.700 0.419 0.674
(-0.10, 1.02) (0.56, 0.78)

β15 0.960 0.813 0.967
(0.65, 1.01) (0.92, 1.02)

β17 0.270 0.195 0.263
(0.12, 0.27) (0.25, 0.28)

σ2 2 27.515 1.89
(24.50, 31.19) (1.66, 2.12)

θ 0.637 0.413 0.598
(0.01, 0.47) (0.48, 0.72)

ρ2 0.685 0.584 0.650
(0.13, 0.97) (0.55, 0.75)

(1) Figures are posterior means
(2) ∗ Erroneously assumed error process
(3) Figures in parenthesis are 95 % highest posterior

density interval (HPDI)
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Table 5: Supply equation (19)

Error terms are assumed to be
white noise autocorrelated

ln Jt γ11 -1.631 -0.239
(-1.85, -1.43) (-0.32, -0.15)

Const β11 7.11 3.422
(5.98, 8.25) (2.97, 3.87)

ln Poil,t β12 0.523 0.216
(0.48, 0.57) (0.20, 0.23)

Ds β13 -0.001 0.002
(-0.04, 0.03) (-0.010, 0.015)

Dw β14 0.070 0.004
(0.03, 0.11) (-0.009, 0.02)

σ2 0.018 0.0022
(0.015, 0.020) (0.002, 0.0025)

θ 1.533 0.496
(0.94, 2.12) (0.32, 0.66)

ρ2 0.153 0.125
(0.05, 0.25) (0.05, 0.20)

(1) Figures are posterior means
(2) Figures in parenthesis are 95 % highest pos-

terior density interval (HPDI)
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Table 6: Demand equation (20)

Error terms are assumed to be
white noise autocorrelated

ln pt γ21 0.184 -0.543
(0.10, 0.26) (-1.01, -0.07)

Const β21 -1.670 0.095
(-2.65, -0.64) (-2.84, 3.01)

ln Zt β22 1.422 1.685
(1.18, 1.64) (1.51, 1.85)

Ds β23 0.038 0.039
(0.02, 0.05) (0.02, 0.05)

Dw β24 -0.051 -0.047
(-0.07, -0.03) (-0.06, -0.03)

σ2 0.0043 0.0025
(0.0039, 0.0048) (0.0022, 0.0028)

θ -0.147 0.349
(-0.24, -0.06) (-0.15, 0.84)

ρ2 0.167 0.063
(0.02, 0.32) (0.00, 0.19)

(1) Figures are posterior means
(2) Figures in parenthesis are 95 % HPDI
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Table 7: Supply equation (24)

Error terms are assumed to be
white noise autocorrelated

△ln Jt γ̃11 -0.106 -0.300
(-0.63, -0.42) (-0.47, -0.14)

Const β̃11 0.0021 0.001
(-0.003, 0.007) (-0.003, 0.006)

△ln P+
oil,t β̃12 0.239 0.276

(0.14, 0.33) (0.18, 0.38)

△ln P−

oil,t β̃15 0.225 0.233
(0.13, 0.31) (0.14, 0.32)

△Ds β̃13 0.006 0.003
(-0.006, 0.018) (-0.05, 0.012)

△Dw β̃14 0.002 0.014
(-0.013, 0.017) (0.004, 0.02)

σ̃2 0.0008 0.0006
(0.0007, 0.009) (0.0005, 0.0007)

θ 0.298 0.528
(-0.24, 0.84) (0.33, 0.71)

ρ2 0.169 0.343
(0.00, 0.49) (0.18, 0.49)

(1) Figures are posterior means
(2) Figures in parenthesis are 95 % HPDI
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Table 8: TSLS of the supply equation (19)

Error terms are assumed to be
white noise autocorrelated

ln Jt γ11 -1.631 0.161
(0.10) (0.06)

Const β11 4.918 -2.070
(0.55) (0.42)

ln Poil,t β12 0.522 0.181
(0.02) (0.02)

Ds β13 -0.001 0.009
(0.018) (0.003)

Dw β14 0.071 0.003
(0.019) (0.003)

σ2 0.017 0.006
(1) Figures are TSLS estimates.
(2) Figures in parenthesis is estimated standard

error.

37



Table 9: TSLS of the demand equation (20)

Error terms are assumed to be
white noise autocorrelated

ln pt γ21 0.185 0.200
(0.04) (0.02)

Const β21 6.581 6.739
(0.30) (0.272)

ln Zt β22 1.419 1.333
(0.11) (0.23)

Ds β23 0.039 0.033
(0.009) (0.005)

Dw β24 -0.051 -0.046
(0.009) (0.005)

σ2 0.0036 0.0025
(1) Figures are TSLS estimates.
(2) Figures in parenthesis is estimated stan-

dard error.
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Figure 1: Estimation of parameters with white noise error term. (a) The posterior density of
parameter γ1, true value γ1 = 0.222. (b) The posterior density of ρ2, true value ρ2 = 0.685.
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Figure 2: The error terms are autocorrelated in the data generating process. (a) The pos-
terior density of parameter γ1 assuming that error term is white noise. The true value of
γ1 = 0.222. (b) The posterior density of parameter β11 assuming that error term is white
noise. The true value of β11 = 0.12. (c) The posterior density of ρ2 assuming that error term
is white noise. The true value of ρ2 = 0.685. (d) The posterior density of parameter γ11

assuming ARMA error term. (e) The posterior density of parameter β11 assuming ARMA
error term. (f) The posterior density of ρ2 assuming ARMA error term.
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Figure 3: Data for the estimation of gasoline model. (a) Graphs of the main data series. (b)

Graph of the monthly change in inventories, in %. (c) Graph of the monthly change in price

of gasoline, in %.
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