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Abstract

The aims of this paper are estimate and forecast the Non-Accelerating Inflation
Rate of Unemployment, or nairu, for Brazilian unemployment time series data.
In doing so, we introduce a methodology for estimating mixed additive seasonal
autoregressive (masar) models, by the Generalized Method of Moments (gmm).
Furthermore, in order to cover a lack in econometric literature, an asymptotic
theory for the Yule-Walker estimators of autoregressive parameters is developed.
The paper provides some insights on estimating masar models when one of its
component has a possible unit root. The obtained results are consistent to the
literature and produce reasonable forecasts for nairu.
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1 Introduction

The prospect of unemployment is one of the most important topics in Macroeco-

nomics. It involves two crucial issues. First, one has to deal with the determinants

of average unemployment over extended periods. Though the relevant question here
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1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9310441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is related to the fact that unemployment corresponds to a legitimate failure of mar-

kets to clear, its causes and consequences are not less important. There is a wide

range of possible views. At one extreme is the perception that unemployment is

largely illusory, or the working out of no great concern frictions in the process of

matching up workers and jobs. Alternatively is the view that unemployment is the

result of non-Walrasian features of the economy and it fundamentally corresponds

to a misuse of resources.

Second issue concerns the cyclical behavior of the labor markets. Mostly, the

real wage does not appear to be highly procyclical, an evidence consistent to the

view that labor markets follow a Walrasian pattern, either the labor supply is highly

elastic or shifts in labor supply play an important role in employment fluctuations.

In this paper we will address the first issue.

The natural rate of unemployment is a key concept in modern Macroeconomics.

Such a concept originated upon Milton Friedman’s 1968 Presidential Address to the

American Economic Association. At that time, he argued that there was no long-

run trade-off between inflation and unemployment: as the economy adjusts to any

average rate of inflation, unemployment returns to its natural rate. Higher infla-

tion brings neither benefit in terms of lower average unemployment, nor does lower

inflation involve any cost in terms of higher average unemployment. Instead, the mi-

croeconomic structure of labor markets, households and individual firms’ decisions

affecting labor supply and labor demand determine the natural rate of unemploy-

ment. If monetary policy cannot affect the natural rate of unemployment, then its

appropriate role might be control inflation. In fact, monetary policy would help sta-

bilizing the economy around the natural rate in the short run, fitting to the objective

of maintaining low and stable inflation rates.

Another important concept of unemployment rate is the Non-Accelerating In-

flation Rate of Unemployment, or nairu. This is the unemployment rate that

matches the objective of maintaining stable inflation rates. According to the stan-
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dard macroeconomic theory enshrined in most undergraduate textbooks, inflation

will tend to rise if the unemployment rate falls below the natural rate. Conversely,

when the unemployment rate rises above the natural rate, inflation tends to fall.

Thus, the natural rate and the nairu are often viewed as two names for the same

thing, providing an important benchmark for gauging the state of the business cycle,

the outlook for future inflation, and the appropriate stance of monetary policy. In-

deed, natural rate of unemployment is not the same thing of nairu. While the two

are often viewed as synonyms, Estrella e Mishkin (1998) argues on the importance

of distinguishing them. The natural rate is the unemployment rate that would be

observed when short-run cyclical factors have played themselves out. Because wages

and prices adjust sluggishly, the natural rate can be viewed as the unemployment

rate when wages have had time for adjusting labor demand and labor supply. It

depends on structural factors characterizing the labor market and is generally as-

sumed to change slowly over time. At the circumstance when cyclical factors can

take significant time to work themselves out, the natural rate may be less useful for

policymakers concerned with the outlook for inflation over a short period of time.

The nairu, in Estrella e Mishkin (1998) view, should be interpreted as the

unemployment rate consistent with steady inflation in the near term; i.e. over the

next 12 months. The level of unemployment consistent with a steady inflation rate

over such a time horizon can change significantly. Hence, in the absence of cyclical

factors it need not to be the same as that, which is consistent to steady inflation in

the short-run, and the short-run nairu will fluctuate much more than the natural

rate. However, it is possible to look at unemployment without posit reference to

a Phillips Curve, admitting that the unemployment rate reverts to its natural rate

over medium to long horizons. In either case, the implication is that univariate data

on unemployment can be used to extract an estimate of nairu as a local average of

the series. Moreover, it can be seen that natural rate of unemployment and nairu

are the same. Note that in a masar model, the nairu is defined as a sum of two
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constant averages, an annual and a monthly one.

The purpose of this paper is to estimate Brazilian nairu taking an autoregressive

time series model into account that is able to separate seasonal and local mean

components. The paper is organized as follow. Section 2 contains a review of a

simple economic model for unemployment rate determination, based on Neoclassical

theory. Next section presents the data used in this paper. Section 4 derives the

econometric model and shows the results we have reached upon. Finally, section 5

concludes.

2 Economic Foundations of Unemployment

The purpose of this section is to present an economic model of labor market, and

derive the employment rate. The neoclassical macroeconomics as the Keynesian one,

admits a stable relationship, in short run, between the volume of employment (n)

and the output (y),

y = f(n)

where the so-called short run production function, f(n) is increasing, strictly concave

and differentiable, with f(0) = 0. In this fashion, the average productivity of labor

f(n)/n tends to zero when n tend to infinity. The stability of this function results

from the hypothesis that capital stock, technological knowledge and firm’s structure

are given in the short run. Since these factors are fixed, the output y is related to

employment y through the law of decreasing returns.

Additionaly, we suppose the economy is competitive and a firm acts so as to

maximize its profits. In this way, given the output price p and the nominal wage w,

the employment level n is chosen to maximize the difference between revenue and

costs:

py − wn = pf(n)− wn (1)
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Since f(n) is supposed to be concave and differentiable, the condition for profit

maximization give us the following:

w

p
= f ′(n) (2)

which equates the real wage (w/p) to marginal productivity of labor, setting up the

labor demand’s curve.

Assembling the short run production function and the labor demand’s curve,

allow us to express output in terms of (p/w), the price/wage relation:

y = h(p/w) (3)

which is nothing else than aggregate supply.

Suppose now the labor demand’s curve is known, (w/p) = g(n). Hence, since

g(n) = f ′(n) and f(0) = 0:

f(n) =
∫ n

0
G(x)dx (4)

Finally, taking equation (3) and its inverse function, the following can be written:

p

w
= h−1(y) (5)

Nevertheless:

p

w
=

1
f ′(n)

=
dn

dy
(6)

and, in view of the fact that y = 0 for n = 0:

n =
∫ y

0
h−1(z)dz (7)

In this equation, n is the level of employment consistent to output y. If we label

l the number of workers currently employed and u the unemployed ones, the sum
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l+u must be equal to n. Therefore,the definition of unemployment rate is given by:

ur =
u

n
(8)

As we discuss at the beginning of this paper, there are quite a few interpretations

for this quantity. The simplest one is to name it as the natural rate of employment. If

this quantity is suitable for a steady-state inflation rate,the Non-Accelerate Inflation

Rate of Unemployment, nairu is defined.

Although the simplicity, models of labor market have proved useful for explain-

ing the cyclical components of unemployment and provide a reasonable basis for

the existence of a short run Phillips Curve (see, for example, Caballero e Bertola

(1992), Staiger, Stock e Watson (1996) ). While most of the work on searching

models focuses on understanding cyclical variations, they also provide a conceptual

framework for modelling nairu, which can be viewed as the model’s steady-state

unemployment rate.

If inflation expectations are unbiased and if a supply shock variable has zero

or an absent mean, then the average unemployment rate will equal the nairu.

Alternatively, we can simple posit the problem without reference to a Phillips Curve

where unemployment rate reverts to its natural rate at medium to long horizons. In

either case, the implication is that univariate data on unemployment can be used

in order to extract an estimate of the nairu as a local mean of the series. This

methodology is the framework upon which our empirical model is implemented next

section.

3 Data and Methodology

The time series taken into account in this paper is the Open Unemployment

Rate (OUR) corresponding to five Brazilian metropolitan areas - Recife, Salvador,

Belo Horizonte, Rio de Janeiro, São Paulo and Porto Alegre - given in a monthly
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basis, including fifteen years old people and above1. The data set covers the period

from 1980.01 to 2002.12. We decided to use this series because (i) the quality of

the data is a striking fact compared to other related series and (ii) it covers the

longest period available, 22 years, a time span that seems appropriated to calculate

the natural rate of unemployment. Figure (1) portraits Brazilian Natural Rate of

Unemployment time series behavior:
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Figure 1: Brazilian Open Unemployment Rate - BOUR.

Concerning methodology, we admit a univariate time series model able to distin-

guish between deterministic and stochastic components of unemployment rate. The

deterministic components are a sum of two averages, one that is annual and another

one, a monthly seasonal structure. The first is modelled as an autoregressive process

with drift and can be interpreted as the nairu. In turn, the relevant parameters of

this time series are estimated, which allow us to forecast upon the results.
1The data comes from Brazilian Institute of Geography and Statistics - IBGE, (PME).
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4 The Econometric Model and Results

The aim of this section is to present a methodological sequence of useful pro-

cedures for finding accurate estimates for a mixed additive seasonal autoregressive

(masar) model when a possible unit root is present in one of its components. Our

empirical implementation of the univariate approach starts with the autoregressive

model:

Xt(r,m) = αr + µm + σmZt(r,m) (9)

for t(r,m) = S(r − 1) + m for r = 1, 2, . . . , T and m = 1, 2, . . . , S, where T is the

time series dimension and S the seasonal length in each period. The component

µm refers to seasonality, αr is the annual average series and Zt(r,m) constitutes the

stochastic structure of the process. Then, the model’s properties can be summarized

as follow:

Assumption 4.1 Let Xt(r,m) be a covariance stationary composite stochastic pro-

cess where autocovariances are assumed to be absolute. Then:

1. Ψ(L)Zt(r,m) = at(r,m) is an autoregressive process and the lag length p is en-

dogenously choose. Additionally:

(a) E(Zt(r,m)) = 0;

(b) at(r,m) ∼ i.i.d N(0, σ2
a);

2. The annual average series αr is a first order autoregressive process,

αr = µα + γαr−1 + ωr

with a possible unit root when γ is near unity. The innovations ωr are inde-

pendent and identically distributed as N(0, σ2
ω).
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3. Finally, independence between the innovations are assumed, hence,

E(ωrat(r,m)) = 0.

The assumptions above are summarized by the following structural model:

Xt(r,m) = αr + Yt(r,m) (10)

αr = µα + γαr−1 (11)

Yt(r,m) = µm + σmZt(r,m) (12)

Zt(r,m) =
p∑

j=1

φjZt(r,m) + at(r,m). (13)

Generalized method of moments is the method used in this paper (gmm) for

estimating the parameters of the model. Convergence characteristics for moments

estimators was stated by Hansen (1982).

In a first step one has to be careful on estimating the parameters of a masar

model as stated above, since every component should be checked out for stationarity,

specially the additive seasonal ones. Using data described in section 3, we found that

equation (11) may have a unit root, hence the vector of parameters Θ1 = (µα, γ, σ2
ω)

has a different asymptotic distribution of the remaining ones.

In order to deal with inference about the parameters, we first calculate a unit

root test, which ought to be robust for small samples, as this series length is only

T = 23 years. Therefore, we choose the df-gls test due to Elliot, Rothenberg e

Stock (1996). The basic procedure involves the estimation of an autoregression form

as follows:

∆αdm
r = γ∗αdm

r−1 + β1∆αdm
r−1 + . . . + βp∆αdm

r−p + $r (14)

where the superscript dm means that the time series was demeaned, by µα, specifying

that the alternative hypothesis is the stationarity around a mean. The moment
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estimator for µα is given by2:

µ̂α =
αr − α1

r − 1
(15)

In this case, we can write an estimator for γ∗, γ̂∗, as a function of residual

moments estimated $̂r:

γ̂∗ =
(1/r)

∑r
r=1 $̂r$̂r−1

(1/r)
∑r

r=1 $̂2
r−1

(16)

and the error’s variance as

σ̂∗
2
bαr

=
1
r

∑r
r=1(αr − γαr−1)2∑r

r=1 α2
r−1

(17)

The t-test statistics for null hypothesis of γ∗ = 1 is calculated by a traditional or-

dinary least squares approach, however, its limiting distribution is not Gaussian, but

a functional of a Brownian motion, W (s), defined as 0.5
(∫

W (s)2
)−1/2 [

W (1)2 − 1
]
.

The difference between this test and the tradicional Dickey e Fuller (1979) unit root

test is that the time-series is transformed via a generalized least squares (gls) re-

gression prior performing the test.

Elliot, Rothenberg e Stock and subsequent studies have shown that this test

has significantly higher power than the previous versions of the augmented Dickey-

Fuller test, specially for small samples. Lag length for autoregressive estimation was

choosen by using Perron e Ng (2001) sequential’s t-test criterion.

Straightaway, we must now present estimators for the vector Θ2 = (µm, σm, φj , σ
2
ε).

Lets first take a look to equation (12). The estimators for vector parameters

(µm, σm, ) are:

µ̂m =
1
T

T∑

r=1

Yt(r,m) (18)

σ̂2
m =

1
T

T∑

r=1

(
Yt(r,m) − µ̂m

)2 (19)

2Since the model do not have a mean in the usual sense, this estimator correspond to a recursive
estimation of a parameter of a diffusion process.
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In order to draw close the masar model presented at the beginning of this

section, we ought to derive the estimators for the autoregressive parameters (φj , σ
2
a)

in equation (13). We choose Yule-Walker equations approach, which are a special

case of moments estimators. Let the ρk be a positive definite autocorrelation function

which satisfies the same form of difference equation:

ρk = φ1ρk−1 + φ2ρk−2 + . . . + φpρk−p for k > 0

Note that if we write:

φ =




φ1

φ2

...

φp




ρp =




ρ1

ρ2

...

ρp




P p =




1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

...
...

... . . .
...

ρp−1 ρp−2 ρp−3 . . . 1




the solution of the system for the parameters φ, in terms of autocorrelations, may

be written in the following way

φ = P−1
p ρp (20)

Admitting ρ0 = 1, the Yule-Walker estimators are replacing by replacing the

theoretical autocorrelations ρk through its sample analogues rk, which results in

φ̂ = R−1
p ρp (21)

σ̂2
z =

σ2
ε

1−∑p
l=1 ρlφl

(22)

where Rp are the matrix of sample correlations.

For the sake of covering a lack in time series literature, we decided to present an

accurate proof of asymptotic normality of the Yule-Walker estimators. This proof is

obtained in two ways: first, assuming independence, under the hypothesis that the

sequence Zt(r,m) is stationary of order 4 and writing it as an infinite moving aver-
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age, and second by assuming that Zt(r,m) takes the form of a Martingale difference

sequence. Sticking with the former approach, we prove the following proposition in

appendix A:

Proposition 4.2 Asymptotic Normality of Yule-Walker Estimators. If Zt(r,m)

is a causal AR(p) process with {at} i.i.d. (0, σ2), and φ̂ is the Yule-Walker estima-

tor of φ, then

n1/2(φ̂− φ) ⇒ N(0, σ2Γ−1
p ) (23)

where Γp is the covariance matrix [γ(i− j)]pi,j=0. Moreover:

σ̂2
z → σ2

z

At this point, before presenting the model’s estimation results, we should provide

some idea about the econometric set up settled above. As a first point for noticing,

it would be acceptable choosing a unit root model directly, including a constant an

a time trend to fit the model. However, objections can be raised concerning this

procedure, justifying, indeed, the appeal for constructing of a new methodology,

named mixed additive seasonal autoregressive (masar) modelling.

First, the lower span frequency of annual average time series is desirable for

monthly observations when performing unit root tests, as stated in Campbell e Per-

ron (1992) and showed in Ghysels e Perron (1993). Moreover, at least theoretically,

our empirical implementation shed light on Brazilian Unemployment Structure, ad-

mitting the natural rate, or nairu, as a sum of two components. Finally, after

controlling for the integrated part, which lies at the annual model’s structure, we

are able to work on time serie’s monthly transient dynamics and perform good fore-

casts. Let’s now show the results obtained.

Setting about the stationary component, i.e., the coefficients φ of Zt(r,m), whose

lag length is endogenously chosen, using the Bayesian Information Criteria (bic), we

found that the transient dynamic of Brazilian unemployment rate is better adjusted
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by a first order autoregressive model with a coefficient equal to 0.6338, when bic =

−0.5077.

We ought to note that in a masar model, the nairu is defined as a sum of two

averages constants, (µα +µm), an annual and a monthly one. The value reached for

nairu is around 6.2417%. Alternatively, the transient dynamics, or the deviations

of the unemployment around its trend, is annually determined by the autoregressive

unit root process and monthly determined by the stationary process Zt(r,m).

The df-gls unit root test clearly indicates it is not possible to reject the null

hypothesis of a unit root for annual averages series, constituting the accelerating

component of nairu. Using a different model setup, Corseuil, Gonzaga e Issler

(1999) found the same results using disaggregate time series for Brazilian regions.

In this fashion, the results presented here confirm the thesis that persistency in

Brazilian unemployment data is not restrict to less develop regions, but is a phe-

nomenon that affects the economy at all. Our results is summarized in table (4)

below:

df-gls Unit Root Test
τ − Stat 1% Critical Value 5% Critical Value
-1.515 -2.66 -2.544

Estimates for Non-Stationary Components
γ̂∗ µ̂α σ̂∗2ω

0.9856 0.0627 0.0225
Estimates for Stationary Components

φ̂ µ̂m σ̂2
m

0.6338 6.179 2.4871

Table 1: masar Model Estimations for Brazilian Unemployment Rate.

Those findings raise two implications. First one concerns forecasting. The df-

gls test assumes the model is defined as a pure ar(1) after demeaning, and, since

it has a unit root, we cannot apply difference transformations in order to perform

the forecasts. However, as we will show next section, it is possible to re-parametrize

it in a way to include the constant term and then performs the forecasts.
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An important fact arising upon these findings involves a theoretical issue which

resists to be fully explained in light of economic theory. During the last fourty years,

the unemployment rate has raised in most developed and underdeveloped countries.

The lowest value encountered for one of the components of Brazilian nairu was

1987, when the long-run unemployment rate was only 3.98%. In previous periods,

evidences are toward high unemployment rates. However, this was specially due

to the debt crisis and world depression avowed at the beginning of the eighth’s.

Analyzing evolution along time, one realizes the trend for this component has been

scalating, reaching 8.34% in 1999, though experiencing a slow decrease to 7.88% in

2003.

There exist some hypotheses which attempt to shed light on this trend. Labor

economists argue that the Second World War changed the labor force composition,

introducing a new net flow of young workers into the labor market and, consequently,

rising the unemployment rate3. Another issue deals with the evident entrance of

women in the labor market, leading to an increase in the number of family members

earning wages. Finally, another approach goes toward the fact that generalization of

sectorial disjoint rise the unemployment rate increasing the job separation, or, the

time lag between loosing and finding a new job. However, these issues are beyond

the scope of this paper.

5 Forecasting

Along this section minimum mean square error(mse) are taking into account for

evaluating models’ forecasting, as estimated in previous section. Our goal is to look

upon the behavior of nairu, however,since we are dealing with a masar model, we

must construct the minimum mse for every model’s component. Lets admit a model
3Of course, this explanation is based in a Search Type Model which assumes the flow of new

jobs opening are slower than the flow of new workers.
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denoted by equation (9). Taking conditional expectations at time t(r,m):

E
(
Xt(r,m)+1

|Ht(r,m)

)
= E

(
αr+1 |Ht(r,m)

)
+ E

(
Yt(r,m)+1

|Ht(r,m)

)
(24)

where Ht(r,m) is the filtering that represents all information up to time t(r,m).

Counting on the monthly average series component, αr, the conditional expec-

tation up to time r is given by:

E
(
αr+1 |Ht(r,m)

)
= E

(
αr+1 |αr

)
(25)

As expected, the minimum mse for a forecasting model is

α̂r+1 = E
(
αr+1 |αr

)
= µα + αr (26)

Since αr is not directly observed, an recursive equation of the type applies

α̂r+1 = (r − 1)µα + α̂1 (27)

where α1 matches an gmm estimate for α1 and is given by

α̂1 =
1
S

S∑

m=1

Xt(1,m) (28)

Or alternatively:

E
(
Yt(r,m)+1

|Ht(r,m)

)
= µm + σmE

(
Zt(r,m)+1

|Ht(r,m)

)
(29)

Once an ar(1) model for Zt(r,m) is adjusted in the previous section, so, in this

case, the following can be written:

E
(
Zt(r,m)+1

|Ht(r,m)

)
= Ẑt(r,m)+1

= φ̂1Ẑt(r,m) (30)
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Finally, the minimum mse forecast for the entire masar process is obtained,

which is given by:

X̂t(n,m)+1
= (n− 1)µ̂α + α̂1 + µ̂m + σ̂mẐt(n,m)+1

. (31)

for m = 1, 2, . . . , S.

Figure (2) shows the results for the model’s forecast.
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Figure 2: Forecasting for Unemployment Time Series.

Updating the forecasting based on conditional expectations, we obtain future

values for a 12 months length. The square root of mse is 0.4618, and the mean

absolute percentage error of the forecasts is 4.45%. Chow’s4 forecast test for the 12

forecasts returns an F value of 0.7217, with a corresponding P − value of 0.99, So

the hypothesis of a stable masar scheme for this specification is not rejected.
4This test is based on Chow’s influential 1960 article, Chow (1960).
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6 Concluding Remarks

For the last fifty years, Macroeconomics has been a matter of concern among

academics and policy makers. Searching for a reasonable explanation for stressing

its importance, one can raise many of them. However, nothing strikes the researchers

most than puzzles or controversies generated by discussions involving macroeconomic

issues. Along this paper, we dealt with a controversy that has been lasting for forty

years, approximately: the estimation and interpretation of nairu.

Once this issue is still an open question, we decided to get into this debate by

estimating Brazilian nairu taking an autoregressive time series model into account

that is able to separate seasonal and local mean components. In doing so, we admit

an univariate time series model that is able to distinguish between deterministic and

stochastic components of unemployment rate. The deterministic components are a

sum of two averages, one that is annual and other: a monthly seasonal structure.

The first was modelled as an autoregressive process with drift and can be interpreted

as the nairu. In this sense, the methodology developed along this paper is new and

allow us to bring more information to the discussion.

Upon the results obtained by estimating the econometric model designed in

section 4 of this paper, we highlight two concluding remarks. First, a formal proof

for the asymptotic normality of the Yule-Walker estimator is provided, which is

indeed a puzzling task. Second, the coefficient estimates of the masar model are

consistent, besides showing separate estimates for stationary and non-stationary

components.

From the macroeconomic point of view, the results presented in Table 1 are strik-

ing. Once the estimate coefficients for the nairu reaches, approximately, 6.25%,

three main conclusive features arises from our analysis. First, since the existence of

a unit root cannot be rejected, the long run trend of Brazilian unemployment is in-

creasing. Second, the estimate for γ̂∗ reinforces the non-rejection of a null hypothesis
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about the existence of a unit root in Brazilian unemployment data, suggesting the

upward trend for unemployment is permanent. Finally, concerning the cyclical or

transitory component, we interpret it as the transient dynamics of unemployment,

given a government intervention through a macroeconomic policy.

Finally, but certainly not last, our results set challenges to the future design of

macroeconomic policies. Moreover, there is also room for researching on this issue.

Indeed, the unemployment rate long run trend is upward and the degree of success

of a macroeconomic policy on job creation is, at least, doubtful. The reasons for our

findings is still a matter of further research to be pursued after this paper.
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A An Asymptotic Theory for the Yule-Walker Equa-

tions

Asymptotic normality for Yule-Walker equations can be found in a variety of

ways. However, a formal and consistent proof for the AR(p) model is relatively

hard to find, since it takes converge properties of infinity series into account, due

to its MA(∞) (moving average) representation. In this appendix, we aim to proof

Proposition (4.2) assuming that Zt(r,m) is a causal and stationary AR(p) process of

order 4 that can be expressed in a infinite moving average form. Writing this model

in a matrix notation:

Z = φW + E (32)

we obtain the following estimator:

φ̂ = (W ′W )−1W ′Z

onde Z = (Z1, Z2, . . . , Zt(r,m)), E = (E1, E2, . . . , Et(r,m)) and W is a matrix given

by

W =




W0 W−1 . . . W1−p

W1 W0 · · · W2−p

...
...

. . .
...

Wt(r,m)−n−1 Wt(r,m)−n−2 . . . Wt(r,m)−p




(33)

Note that, following equation (21):

φ̂ = R−1
p ρ̂p

In this fashion, the first step to show asymptotic normality of Yule-Walker esti-

mators is the following:

n−1(W ′W ) ⇒ Rp (34)
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and

n−1(W ′Z) ⇒ ρp (35)

where the symbol ” ⇒ ” indicates weak convergence (or in probability).

PROOF: Let Rp = ρ [(i− j)]pi,j=0 be the covariance matrix of the autoregressive

process Zt. Writing the model in an infinity moving average representation,

W t =
∞∑

j=0

ΨjZt−j , Zt−j ∼ iid(0, σ2) (36)

Then, for proving propositions (34) and (35) it is enough to show that:

ρ∗p(h) ⇒



∞∑

j=0

ΨjΨj+h


 σ2 = ρp (37)

Ensuring
∑∞

j=0 Ψj < ∞ and
∑∞

j=0 Ψ2
j |j| < ∞, this is, the process is covariance

stationary, we shall prove the result (37) for h = 0. The general case is similar.

Now:

ρ∗p(0) = n−1
n∑

t=1

∑

i

Ψ2
i Z

2
t−1 + Yn (38)

where Yn =
∑∑

i 6=j ΨiΨjn
−1

∑n
t=1 Zt−iZt−j By the weak law of large number for

moving averages, lets show the converge of first term:

E

(
n−1

n∑

t=1

∑

i

Ψ2
i Z

2
t−1

)
≤ n−1

n∑

t=1

∑

i

E
(
Ψ2

i

)
E

(
Z2

t−1

)

≤ n−1E
(
Z2

t−1

) ∑

i

E
(
Ψ2

i

)

≤ n−1σ2

(∑

i

Ψ2
i

)

Since
(∑

i Ψ
2
i

)
directly converges by applying Slutsky Lemma, then:

n−1
n∑

t=1

∑

i

Ψ2
i Z

2
t−1 ⇒ n−1σ2

(∑

i

Ψ2
i

)
(39)
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So it suffices to show: Yn ⇒ 0. For i 6= j, {Zt−iZt−j} ∼ iid WN(0, σ4), and

hence5,

V ar

(
n−1

n∑

t=1

Zt−iZt−j

)
= n−1σ4 → 0.

Thus, for an integer k, we are able to write the following:

Ynk =
∑

|i|≤k

∑

|j|≤k,i 6=j

ΨiΨjn
−1

n∑

t=1

Zt−iZt−j (40)

which enables us to show that:

lim
k→∞

lim sup
n→∞

E|Yn − Ynk| ⇒ 0 (41)

Taking

P (|Yn − Ynk| ≥ ε) = P


∑∑

i 6=j

ΨiΨjn
−1

n∑

t=1

Zt−iZt−j −
∑

|i|≤k

∑

|j|≤k,i6=j

ΨiΨjn
−1

n∑

t=1

Zt−iZt−j




= P




∣∣∣∣∣∣
∑

|i|>k

∑

|j|>k

ΨiΨjn
−1

n∑

t=1

Zt−iZt−j

∣∣∣∣∣∣




= P


1/n

∣∣∣∣∣∣
∑

|i|>k

∑

|j|>k

ΨiΨj

n∑

t=1

Zt−iZt−j

∣∣∣∣∣∣




P (|Yn − Ynk|) ≤ E

(
1/nε

∣∣∣∣∣
∑∑

ΨiΨj

n∑

t=1

Zt−iZt−j

∣∣∣∣∣

)

≤ 1
nε

E
(∑∑

ΨiΨj

)
Cov (Zt−iZt−j) ⇒ 0

Therefore Yn ⇒ 0 which concludes the proof.

Ensuring the results stated above, we go further by demonstrating the asymptotic

normality of Yule-Walker estimators. In order to do that a Cholesky factorization
5WN denotes a White Noise process.
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is necessary. Let U t = (Wt−1, . . . , Wt−p)′E, t ≥ 1. Using projections we get

U1 = (W0, . . . , W−p)

U2 = (W1, . . . , W1−p)

...
...

Un = (Wn−1, . . . , Wn−p)

By the Gram-Schmidt process, we write the sum
∑n

t=1 W ′E, which has the

following properties:

E(U t) = 0

V ar(U tU
′
t) = σ2Rp

We want to show that, if φ̂ is the Yule-Walker estimator of φ, then we prove

that:

n1/2(φ̂− φ) ⇒ N(0, σ2Γ−1
p ) (42)

where Rp is the covariance matrix [ρ(i− j)]pi,j=0.

PROOF: Observe, initially,

n1/2(φ̂− φ) = n1/2
[(

W ′W
)−1

W ′Z − φ
]

= n1/2
[(

W ′W
)−1

W ′(Wφ + E)− φ
]

= n1/2
[(

W ′W
)−1 (W ′Wφ + W ′Z)− φ

]

= n
(
W ′W

) (
n−1/2W ′E

)

One can observe that working in this fashion the independent random variable

U , presented above is perfectly useful, to express the term W ′E. Writing Zt(r,m) in
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its moving average form,

W t =
∞∑

j=0

ΨjZt−j .

Let now m be any fixed integer positive and set

W
(m)
t =

m∑

j=0

ΨjZt−j

and

U
(m)
t = (W (m)

t−1 , . . . ,W
(m)
t−p )′E.

Now, admitting λ, a fixed element of Rp, then λU
(m)
t is a strictly stationary

(m+ p)− dependent white noise sequence with variance given by σ2λ′R(m)
p λ. Since

we are dealing with U t that is an independent random variable, we claim the Central

Limit Theorem (clt) to demonstrate the following:

n−1/2
n∑

t=1

λ′U (m)
t ⇒ N(0,λ′σ2λR(m)

p ) (43)

which it suffices to show (42). Writing Umn = n−1/2
∑n

t=1 λ′U (m)
t , a sum of (n−m)

independent random variables with zero mean and variance σ2λ′Rpλ is obtained.

Then, by Lindeberg-Feller Central Limit Theorem we conclude:

Umn ∼ iid (0, σ2λ′Rpλ).

Given that:

σ2R(m)
p → σ2Rp as m →∞

directly the following are obtained:

n−1/2
m∑

t=1

λ′U (m)
t ⇒ N

(
0, σ2Rp

)
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Moreover:

1
n

V ar

(
λ′

m∑

t=1

(
U

(m)
t −U t

))
= λ′E

[(
U

(m)
t −U t

)(
U

(m)
t −U t

)′]
λ (44)

As U
(m)
t → U t the expression above goes to zero as n →∞. Recall U is written

in order to replace exactly W ′E, then we go back to: W ,the process of interest.

Using Tchebychev inequality and the fact: E (E) = 0, we obtain:

P
(∣∣∣W (m)

t −W
∣∣∣ > ε

)
= E

∣∣∣W (m)
t −W

∣∣∣
2

= ε−2V ar
(
W

(m)
t −W

)
→ 0 (45)

upon what we conclude W
(m)
t → W t in mean square when m →∞.

Writing the characteristic function of W that is Normal by hypothesis and ap-

plying the Cramer-Wold device:

n−1/2W ′E ⇒ N
(
0, σ2Rp

)

. Using the results (34) and (35), already proved above, we reach the conclusion:

φ̂ ⇒ N
(
φ, n−1σ2R−1

p

)
(46)

which concludes the proof.
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