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Abstract

In order to reduce the �nite sample bias and improve the rate of convergence, local
polynomial estimators have been introduced into the econometric literature to estimate
the regression discontinuity model. In this paper, we show that, when the degree of
smoothness is known, the local polynomial estimator achieves the optimal rate of con-
vergence within the Hölder smoothness class. However, when the degree of smoothness
is not known, the local polynomial estimator may actually in�ate the �nite sample
bias and reduce the rate of convergence. We propose an adaptive version of the lo-
cal polynomial estimator which selects both the bandwidth and the polynomial order
adaptively and show that the adaptive estimator achieves the optimal rate of conver-
gence up to a logarithm factor without knowing the degree of smoothness. Simulation
results show that the �nite sample performance of the locally cross-validated adap-
tive estimator is robust to the parameter combinations and data generating processes,
re�ecting the adaptive nature of the estimator. The root mean squared error of the
adaptive estimator compares favorably to local polynomial estimators in the Monte
Carlo experiments.
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1 Introduction

In this paper, we consider the regression discontinuity model:

y = m(x) + �d+ " (1)

where m(x) is a continuous function of x; d = 1fx � x�g, and E("jx; d) = 0. Such a model
has been used in the empirical literature to identify the treatment e¤ect when there is a

discontinuity in the treatment assignment. A partial list of examples include Angrist and

Lavy (1999), Black (1999), Battistin and Rettore (2002), Van der Klaauw (2002), DiNardo

and Lee (2004), and Chay and Greenstone (2005).

Given the iid data fxi; yigni=1 ; our objective is to develop a good estimator of �; the
treatment e¤ect at a known cut-o¤ point x�: In order to maintain generality of the response

pattern, we do not impose a speci�c functional form on m(x): Instead, we take m(x) to

belong to a family that is characterized by regularity conditions near the cut-o¤ point. This

is a semiparametric approach to estimating the regression discontinuity model.

Semiparametric estimation of the regression discontinuity model is closely related to

the estimation of conditional expectation at a boundary point. In both settings, the widely

used Nadaraya-Watson (NW) estimator has a large �nite sample bias and slow rate of

convergence. To reduce the �nite sample bias and improve the rate of convergence, Hahn,

Todd and Van der Klaauw (2001) and Porter (2003) propose using a linear function or

a polynomial to approximate m(x) in a small neighborhood of the cut-o¤ point. Porter

(2003) obtains the optimal rate of convergence using Stone�s (1980) criterion and shows that

the local polynomial estimator achieves the optimal rate when the degree of smoothness of

m(x) is known.

In this paper, we show that the local polynomial estimator with the asymptotic MSE

optimal bandwidth may actually in�ate the �nite sample bias and reduce the rate of conver-

gence when the degree of smoothness of m(x) is not known. In particular, this will happen

if the order of the local polynomial is too large relative to the degree of smoothness. Hence,

a drawback of the local polynomial estimator is that the optimal rate of convergence can

not be achieved because it depends on the unknown quantity. This calls for an estimator

that is adaptive to the unknown smoothness. We require the estimator to be adaptive not

just at a �xed model, but also at a sequence of models near it. The adaptive rate refers

not just to pointwise convergence, but rather to convergence uniformly over models that

are very close to some particular model of interest.

The problem of adaptive estimation of a nonparametric function from noisy data has

been studied in a number of papers including Lepski (1990,1991,1992), Donoho and John-



stone (1995), Birge and Massart (1997) and the references cited therein. Various approaches

have been proposed, among which Lepski�s method has been widely used in the statistical

literature; see for example, Lepski and Spokoiny (1997), Lepski, Mammen and Spokoiny

(1997) and Spokoiny (2000). These papers study adaptive bandwidth choice in local con-

stant or linear regression for estimating the drift function in a Gaussian white noise model or

a nonparametric di¤usion model. More speci�cally, Lepski and Spokoiny (1997) work with

the Gaussian white noise model and consider pointwise estimation using a kernel method

with the Hölder smoothness class, assuming that the order of smoothness is less than 2.

Lepski, Mammen and Spokoiny (1997) extend the pointwise estimation to global estimation

using a high order kernel method with the Bosev class. In addition, Lepski�s method has

been used in several papers on semiparametric estimation of long memory in the time series

literature including Giritis, Robinson, and Samarov (2000), Hurvich, Moulier and Soulier

(2002), Ioudisky, Moulier and Soulier (2002), Andrews and Sun (2004) and Guggenberger

and Sun (2004). More recently, Andrews (2005) has used Lepski�s method to design a

rate-adaptive smoothed maximum score estimator proposed by Horowitz (1992).

In this paper, we use Lepski�s method to construct a rate-adaptive estimator of the

regression discontinuity model. In doing so, we extend Lepski�s method in several important

ways.

First, we consider the local polynomial estimators instead of kernel estimators. The

estimation of the regression discontinuity model is similar to the estimation of conditional

expectation on the boundary. It is well known that local polynomial estimators have some

optimality properties for the boundary estimation problem.

Second, a direct application of Lepski�s approach to the present framework involves

using a polynomial of a pre-speci�ed order and comparing local polynomial estimators with

di¤erent bandwidths. More speci�cally, one has to �rst choose the order of the polynomial

to be larger than the upper bound s� of the smoothness parameter. Such a strategy is not

optimal. If the underlying smoothness parameter s is less than s�; then it is better to use

a polynomial of order bsc; the largest integer strictly smaller than s: Using a polynomial
of a higher order will only in�ate the asymptotic variance without the bene�t of bias

reduction. In contrast, our adaptive method chooses both the bandwidth and the order of

the polynomial adaptively The chosen polynomial in the adaptive estimator is indeed of

order bsc:
Third, our adaptive rule does not use the lower and upper bounds for s while the adap-

tive rule in Lepski (1990) uses them explicitly. In consequence, the rate of convergence

of our adaptive estimator can be arbitrarily close to the parametric rate in the in�nitely
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smooth case while that of Lepski�s estimator is capped by the upper bound s�: This advan-

tage of our adaptive estimator is partly due to the use of the zero-one loss rather than the

squared-error loss. Results for the zero-one loss are su¢ cient to obtain the optimal rate of

convergence, which is the item of greatest interest here.

Finally, one drawback of Lepski�s approach is that there are constants in the adaptive

procedure that are arbitrary. This is true for other adaptive procedures although some

procedures may �x their constants at certain ad hoc values and seemingly remove the need

to choose any constant. In this paper, we propose using local cross validation to select the

constants and provide a practical strategy to implement the adaptive estimator.

We compare the root mean-squared error (RMSE) performance of the adaptive esti-

mator with the local constant, local linear, local quadratic and local cubic estimators. We

consider three groups of models with di¤erent response functions m(x): In the �rst group,

m(x) is the sum of a third order polynomial and a term containing (x � x�)s0 for some

non-integer s0. Response functions in this group are designed to have �nite smoothness

s0: By choosing di¤erent s0; we can get response functions that have di¤erent degrees of

smoothness. The second group is the same as the �rst group except that m(x) is perturbed

by an additive sine function such that the response function has a �ner structure. For the

third group, we take m(x) to be a constant, linear, quadratic or cubic function. This group

is designed to give each of the local polynomial estimators the best advantage.

The Monte Carlo results show that the RMSE performance of the adaptive estimator

is very robust to the data generating process, re�ecting its adaptive nature. Its RMSE is

either the lowest or among the three lowest ones for the parameter combinations and data

generating processes considered. In contrast, a local polynomial estimator may perform

very well in some scenario but disastrously in other scenarios. The best estimator in an

overall sense seems to be the adaptive estimator.

The rest of the paper is organized as follows. Section 2 overviews the local polynomial

estimator and examines its asymptotic properties when the order of the polynomial is larger

than the underlying smoothness. Section 3 establishes the optimal rate of convergence

within the Hölder smoothness class and shows that the local polynomial estimator achieves

the optimal rate when the degree of smoothness is known. Section 4 introduces the adaptive

local polynomial estimator. It is shown that the adaptive estimator achieves the optimal

rate for known smoothness up to a logarithm factor when the smoothness is not known.

For a given response function m(x); it is also shown that the adaptive procedure provides

a consistent estimator of the smoothness index de�ned in that section. The subsequent

section contains the simulation results that compare the �nite sample performance of the
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adaptive estimator with those of the local polynomial estimators. Proofs and additional

technical results are given in the Appendix.

Throughout the paper, 1 f�g is the indicator function and jj � jj signi�es the Euclidean
norm. C is a generic constant that may be di¤erent across di¤erent lines.

2 Local Polynomial Estimation

Consider the regression discontinuity design model y = m(x) + �d + " where m(x) is a

unknown function of x; E("jx; d) = 0 and d = 1fx � x�g. Given the iid data (xi; yi); i =
1; 2; :::;m; our objective is to estimate � without assuming the functional form of m(�).
However, it is necessary to assume that m(x) belongs to some smoothness class.

De�nition: Let s = `+� where ` is the largest integer strictly less than s and � 2 (0; 1]:
If a function de�ned on the interval [x�; x� + �) is ` times di¤erentiable,

sup
x2[x�;x�+�)

���m(j)(x)
��� � K for j = 0; 1; 2; 3; :::; `

and ���m(`)(x1)�m(`)(x2)
��� � K jx1 � x2j� for x1; x2 2 [x�; x� + �)

wherem(j)(x) is the j-th order derivative andm(j)(x�) is the j-th order right hand derivative

at x�; then we say m(x) is smooth of order s on [x�; x� + �). Denote this class of functions

byM+(s; �;K): Similarly, we can de�neM�(s; �;K) as the class of functions that satisfy

the above two conditions with [x�; x� + �) replaced by (x� � �; x�] and m(j)(x�) being the

left hand derivative at x�:

Assumption 1: m(x) 2M(s; �;K) where

M(s; �;K) := fm : m 2M+(s; �;K) \M�(s; �;K) \ C0(x� � �; x� + �)g

and C0(x� � �; x� + �) is the set of continuous functions on (x� � �; x� + �):

Assumption 1 allows us to develop an ` term Taylor expansion of m(x) on each side of

x�: Without loss of generality, we focus on x � x�; in which case we have

m(x) = m(x�) +
X̀
j=1

b+j (x� x
�)j + ~e+(x); (2)

where b+j =
1
j!
dj

dxj
m(x)jx=x�+ is the (normalized) j-th order right hand derivative of m(x)

at x� and

~e+(x) =
1

`!

�
m(`)(~x)�m(`)(x�)

�
(x� x�)` (3)
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for some ~x between x and x�: Under Assumption 1; ~e+(x) satis�es��~e+(x)�� � K (`!)�1 jx� x�js for all x 2 [x�; x� + �): (4)

We break up the Taylor expansion into the part that will be captured by the local polyno-

mial regression and the remainder:

m(x) = m(x�) +

min(r;`)X
j=1

b+j (x� x
�)j +R+(x), x � x� (5)

where

R+(x) =
X̀

j=min(r;`)+1

b+j (x� x
�)j + ~e+(x) (6)

: = 1f` � r + 1gb+r+1(x� x�)r+1 + e+(x);��e+(x)= (x� x�)q�� = O(1) uniformly over x 2 [x�; x� + �); (7)

and q = min fs; r + 2g :
Let b+(r) denote the column r-vector whose j-th element is b+j for j = 1; 2; :::; min(r; `)

and 0 for j = min(r; `)+1; :::; r: Let zir = (1; (xi�x�); :::; (xi�x�)r) be the row (r+1)-vector,�
�+r
�0
= (c+; (b+(r))

0
) and c+ = �+m(x�): Then for xi � x�; we have

yi = zir�
+
r +R

+(xi) + "i (8)

To estimate �+r , we minimize

nX
i=1

kh(xi � x�)di (yi � zir�r)2 (9)

with respect to �r, where di = 1fxi � x�g; kh(xi � x�) = 1=hk((xi � x�) =h) and h is the
bandwidth parameter. Let Y + and Z+r be the data matrix that collects the values of yi

and zir respectively with the corresponding value of xi � x�. Then (8) can be written in

the vector form:

Y + = Z+r �
+
r +R

+ + "+ (10)

and the objective function in (9) becomes�
Y + � Z+r �r

�0
W+

�
Y + � Z+r �r

�
(11)

where W+ = diag(fhkh(xi � x�)g)xi�x� : Minimizing the preceding quantity gives

�̂
+

r =
�
ĉ+r ; (b̂

�(r))0
�0
=
�
Z+0r W

+Z+r
��1

(Z+0r W
+Y +): (12)
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De�ning Y �, Z�r , W
� analogously using the observations satisfying xi < x�; we have

Y � = Z�r �
�
r +R

� + "� (13)

where
�
��r
�0
= (c�; (b�(r))

0
), c� = m(x�) and b�(r) is similarly de�ned but with the right

hand derivatives replaced by the left hand derivatives. Minimizing

(Y � � Z�r �r)
0
W� (Y � � Z�r �r) with respect to �r gives an estimate for ��r :

�̂
�
r =

�
ĉ�r ; (b̂

�(r))0
�0
=
�
Z�0r W

�Z�r
��1

(Z�0r W
�Y �): (14)

The di¤erence between ĉ+r and ĉ
�
r gives an estimate for � :

�̂r = ĉ+r � ĉ�r : (15)

To investigate the asymptotic properties of �̂r; we maintain the following two additional

assumptions.

Assumption 2: (a) E("jx; d) = 0:
(b) �2(x) = E("2jx) is continuous for x 6= x� and the right and left hand limits exist at

x�:

(c) For some � > 0; E(j"j2+� jx) is uniformly bounded on [x� � �; x� + �]:
(d)The marginal density f(x) of x is continuous on [x� � �; x� + �].

Assumption 3: The kernel k (�) is even, bounded and has a bounded support.

Theorem 1 Let Assumptions 1-3 hold. If n!1 and h! 0 such that nh!1; then
p
nh(�̂r � �)�B ) N

�
0; !2�2r

�
where

!2 =
�2+(x�) + �2�(x�)

f(x�)
; �2r = e01�

�1
r Vr�

�1
r e1;

B = 1 fs > r + 1g
�
e01�

�1
r �r

� �
b+r+1 � (�1)r+1b

�
r+1

�
f(x�)

hr+1
p
nh(1 + op(1)) +Op

�
hq
p
nh
�
;

�r =
�
i+j�2

�
(r+1)�(r+1) =

0BB@
0 ::: r
...

...

r ::: 2r

1CCA ,

Vr = (vi+j�2)(r+1)�(r+1) =

0BB@
v0 ::: vr
...

...

vr ::: v2r

1CCA ;

e1 = (1; 0; ::::; 0)
0, �r = (r+1; :::; 2r+1)

0; j =
R1
0 k(u)ujdu and vj =

R1
0 k2(u)ujdu:
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Remarks

1. When s > r+1; Theorem 1 is the same as Theorem 3(a) in Porter (2003). The proof

is straightforward and uses part of Porter�s result.

2. If s > r + 1, the �asymptotic bias� of �̂r, de�ned as B=
p
nh, is of order hr+1: In

contrast, the asymptotic bias of �̂0 is of order h: The asymptotic bias of �̂r for r � 1
is smaller than that of �̂0 by an order of magnitude provided that m(x) is smooth of

order s > r + 1:

3. If s > r + 1; then the �asymptotic MSE�of �̂r is

AMSE(�̂r) = C1h
2r+2 +

C2
nh
: (16)

Assume that C1 > 0 and C2 > 0; then minimizing AMSE(�̂r) over h gives the

AMSE-optimal choice for h :

h� =

�
C2

(2r + 2)C1

�1=(2r+3)
n�1=(2r+3): (17)

For this AMSE-optimal choice of h; AMSE(�̂r) is proportional to��
e01�

�1
r �r�

0
r�
�1
r e1

� �
e01�

�1
r Vr�

�1
r e1

�2(r+1)�1=(2r+3)
n�2(r+1)=(2r+3): (18)

So �̂r converges to � at the rate of n�(r+1)=(2r+3): In particular, �̂0 converges to � at

the rate of n�1=3: As a consequence, by appropriate choice of h, one has asymptotic

normality of �̂r with a faster rate of convergence (as a function of the sample size n)

than is possible with �̂0:

4. When s > r + 1 and h = h�; the asymptotic mean squared error depends on the

kernel only through the quantity

�(k) =
�
e01�

�1
r �r�

0
r�
�1
r e1

� �
e01�

�1
r Vr�

�1
r e1

�2(r+1)
: (19)

This quantity is the same as Tp+1;� de�ned in equation (7) in Cheng, Fan and Marron

(1997, p. 1695). Using their proof without change, we can show that the kernel that

minimizes �(k) over the class of kernels de�ned by

K =
�
k(x) : k(x) � 0;

Z 1

�1
k(x)dx = 1; jk(x)� k(y)j � C jx� yj for some C > 0

�
is simply the Bartlett kernel k(x) = (1� jxj) 1 fjxj � 1g for all r. This is an unusual
result because the optimal kernel does not depend on the order of the local polynomial.
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5. Consider the case that s � r + 1 and h is proportional to the AMSE optimal rate

n�1=(2r+3): For such a con�guration, the asymptotic bias dominates the asymptotic

variance. The estimator �̂r converges to the true � at the rate of n
� s
2r+3 : The larger

r is, the slower the rate of convergence is. For example, when 2r + 3 � 3s; the rate
of convergence is slower than n�1=3; the rate that is obtainable using the Nadaraya-

Watson estimator. By �tting a high order polynomial, it is possible that we in�ate

the boundary e¤ect instead of reducing it.

Theorem 1 shows that the local polynomial estimation has the potential to reduce the

boundary bias problem and deliver a faster rate of convergence when the response function

is smooth enough. In the next section, we establish the optimal rate of convergence when

the degree of smoothness is known. It is shown that the local polynomial estimator with

appropriately chosen bandwidth achieves this optimal rate.

3 Optimal Rate of Convergence

To obtain the optimal rate of convergence, we cast the regression discontinuity model into

the following general framework:

Suppose P is a family of probability models on some �xed measurable space (
;A).
Let � be a functional de�ned on P, taking values in R. An estimator of � is a measurable
map �̂ : 
! R: For a given loss function L(�̂; �), the maximum expected loss over P 2 P
is de�ned to be

R(�̂;P) = sup
P2P

EPL(�̂; �(P )) (20)

where EP is the expectation operator under the probability measure P: Our goal is to �nd

an achievable lower bound for the minimax risk de�ned by

inf
�̂
R(�̂;P) = inf

�̂
sup
P2P

EPL(�̂; �(P )): (21)

If we add a subscript n to �̂, P; and P where n is the sample size, the achievable lower

bound will translate into the best rate of convergence of R(�̂;P) to zero. This best rate
is called the minimax rate of convergence as it is derived from the minimax criterion. It is

also commonly referred to as the optimal rate of convergence.

Now let us put the regression discontinuity model in the above general framework. Let

f(�) be a probability density function of x and 'x(�) be a conditional density of " for a
given x such that E("jx) = 0: For both densities the dominating measures are the usual
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Lesbegue measures. De�ne

P(s; �;K) =

�
Pm;� :

dPm;�
d�

= f(x)'x (y �m(x)) 1 fx < x�g

+ f(x)'x (y �m(x)� �) 1 fx � x�g ; m(x) 2M(s; �;K); j�j � K
o

where � is the Lesbegue measure on R2: For this family of models, the marginal distribution
of x and the conditional distribution of " are the same across all members. The di¤erence

among members lies in the conditional mean of y for a given x: In other words, the function

m(�) and the constant � characterize the probability model in the family P(s; �;K): To
re�ect this, we use subscripts m;� to di¤erentiate the probability model in P(s; �;K): For
the regression discontinuity model, the functional of interest is �(Pm;�) = �: For a given

loss function L(�; �); we want to design an estimator �̂ to minimize

sup
Pm;�2P(s;�;K)

Em;�L(�̂; �) (22)

where Em;�L(�̂; �) := EPm;�L(�̂; �) and EPm;� is the expectation operator under Pm;�:

One common choice of L(�; �) is the quadratic loss function

L(�̂; �) := L (�̂� �) = (�̂� �)2; (23)

in which case R(�̂;P) is the maximum expected mean squared error. Another common

choice is the 0-1 loss function

L(�̂; ) =: L (�̂� �) = 1 fj�̂� �j > �=2g (24)

for some �xed � > 0; in which case, R(�̂;P) is the maximum probability that �̂ is not in

the �=2-neighborhood of �: Since the expected mean squared error may not exist for the

local polynomial estimator, we use the 0-1 loss for convenience in this paper. The use of

the 0-1 loss is innocuous if the optimal rate of convergence is the item of greatest interest.

The derivation of a minimax rate of convergence for an estimator involves a series of

minimax calculations for di¤erent sample sizes. There is no initial advantage in making the

dependence on the sample size explicit. Consider then the problem of �nding a lower bound

for the minimax risk inf �̂ supP2P EPL(�̂; �): The simplest method for �nding such a bound

is to identify an estimator with a test between simple hypotheses. The whole argument

could be cast in the language of Neyman-Pearson testing. Let P;Q be probability measures

de�ned on the same measurable space (
;A). Then the testing a¢ nity (Le Cam (1986)

and Donoho and Liu (1991)) of two probability measures is de�ned to be

�(P;Q) = inf(EP�+ EQ(1� �)) (25)
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where the in�mum is taken over the measurable function � such that 0 � � � 1: In other
words, �(P;Q) is the smallest sum of type I and type II errors of any test between P and

Q. It is a natural measure of the di¢ culty of distinguishing P and Q: Suppose � is a

measure dominating both P and Q with corresponding densities p and q: It follows from

the Neyman-Pearson lemma that the in�mum is achieved by setting � = 1 fp � qg and

�(P;Q) =

Z
1 fp � qg pd�+

Z
1 fp > qg qd�

= 1� 1
2

Z
jp� qj d� := 1� 1

2
jjP �Qjj1 (26)

where jjP �Qjj1 =
R
jp� qj d� is the L1 distance between two probability measures.

Now consider a pair of probability models P;Q 2 P such that �(P )� �(Q) � �: Then

for any estimator �̂

1 fj�̂� �(P )j > �=2g+ 1 fj�̂� �(Q)j > �=2g � 1: (27)

Let

� =
1 fj�̂� �(P )j > �=2g

1 fj�̂� �(P )j > �=2g+ 1 fj�̂� �(Q)j > �=2g ; (28)

then 0 � � � 1 and

sup
P2P

P(j�̂� �(P)j > �=2) � 1

2
fP (j�̂� �(P )j > �=2) +Q(j�̂� �(Q)j > �=2)g

� 1

2
EP�+

1

2
EQ (1� �) �

1

2
�(P;Q): (29)

Therefore

inf
�̂
sup
P2P

P fj�̂� �j > �=2g � 1

2
�(P;Q) (30)

for any P and Q such that �(P )� �(Q) � �:

Inequality (30) suggests a simple way to get a good lower bound for the minimax

probability error: search for the pair (P;Q) to minimize �(P;Q); subject to the constraint

�(P )� �(Q) � �:

To obtain a lower bound with a sequence of independent observations, we let (
;A) be
the product space and P be a family of probability models on such a space. Then for any
pair of �nite-product measures P = �ni=1Pi and Q = �

n
i=1Qi, the minimax risk satis�es

inf
�̂
sup
P2P

P fj�̂� �j > �=2g � 1

2

�
1� 1

2
jj�ni=1Pi ��ni=1Qijj1

�
(31)

provided that �(P )� �(Q) � �:

We now turn to the regression discontinuity model. Our objective is to search for two

probability models P and Q that are di¢ cult to distinguish by the independent observations
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(xi; yi), i = 1; 2; :::; n: Note that it is not restrictive to consider only particular distributions

for "i and xi for the purpose of obtaining a lower bound. The minimax risk for a larger

class of probability models must not be smaller than that for a smaller class of probability

models. Therefore, if the lower bound holds for a particular distributional assumption, then

it also holds for a wider class of distributions. To simplify the calculation, we assume that

"i is iid N(0; �2) and xi is iid uniform [x� � �; x� + �] under both P and Q: More details

on the construction of P and Q are given in the proof of the following theorem:

Theorem 2 Let Assumption 2 hold.

(a) For any �nite constants s, � and K; we have

lim inf
n!1

inf
�̂

sup
Pm;�2P(s;�;K)

Pm;�

����n s
2s+1 (�̂� �)

��� > �

2

�
� C

for some positive constant C and a small � > 0:

(b) Suppose Assumption 3 also holds: Let h =  1n
�1=(2s+1) for some constant  1; then

lim
�!1

lim sup
n!1

sup
Pm;�2P(s;�;K)

Pm;�

����n s
2s+1 (�̂` � �)

��� > �

2

�
= 0:

Remarks

1. Part (a) of the theorem shows that there exists no estimator �̂ that converges to

� at a rate faster than n�s=(2s+1) uniformly over the class of probability models

P(s; �;K): Part (b) of the theorem shows that the rate n�s=(2s+1) is achieved by

the local polynomial estimator provided that r = ` and h is chosen appropriately.

Because of Parts (a) and (b), the rate n�s=(2s+1) is called the minimax optimal rate

of convergence.

2. This results of the theorem extends Porter (2003) who considers a class of functions

that are ` times continuously di¤erentiable. Our result is more general as we consider

the Hölder smoothness class, which is larger than what Porter (2003) has considered.

Our method for calculating the lower bound for the minimax risk is also simpler than

that of Stone (1980), which is adopted in Porter (2003).

3. An alternative proof of the minimax rate is to use the asymptotic equivalence of

nonparametric regression models and Gaussian noise models (see Brown and Low

(1996)). The Gaussian noise model is de�ned by dY = S(t)dt+ "dW (t) where W (t)

is the standard Brownian motion. Ibragimov and Khasminskii (1981) show that the

optimal minimax rate for estimating the drift function S(t) is "2s=(2s+1): Since " in

11



the Gaussian noise model corresponds to 1=
p
n in a nonparametric regression with

n copies of iid data, we infer that the optimal minimax rate in the nonparametric

regression is n�s=(2s+1): Our proof is in the spirit of Donoho and Liu (1991) and

involves only elementary calculations.

4 A Rate Adaptive Estimator

The previous section establishes the optimal rate of convergence when the degree of smooth-

ness is known. In this section, we propose a local polynomial estimator that achieves the

optimal rate of convergence up to a logarithm factor when the degree of smoothness is not

known.

Let [s�; s�] for some s� > 0 and s� 2 [s�;1) be the range of smoothness. For each
� 2 [s�; s�], we de�ne a local polynomial estimator �̂� = ĉ+� � c�� ; by setting

h� =  1n
�1=(2�+1) and

r� = w for � 2 (w;w + 1] for w = 0; 1; ::: (32)

where  1 is a positive constant. Equivalently, r� is the largest integer that is strictly less

than � : Note that the subscript on �̂, ĉ+ and ĉ� indicates the order of the local polynomial

in the previous sections while it now indicates the underlying smoothing parameter that

generates the bandwidth and the order of the polynomial given in (32).

Let g := 1= log n and Sg be the g-net of the interval [s�;1): Sg = f� : � = s� + jg;

j = 0; 1; 2; :::g: For a positive constant  2; de�ne

ŝ = sup
n
�2 2 Sg : j�̂�1 � �̂�2 j �  2 (nh�1)

�1=2 ��1�(n) for all �1 � �2; �1 2 Sg
o
;

(33)

where �(n) = (log n)(log log(n))1=2: Intuitively, ŝ is the largest smoothness parameter such

that the associated local polynomial estimator does not di¤er signi�cantly from the local

polynomial estimator with a smaller smoothness parameter. Graphically, one can view the

bound in the de�nition of ŝ as a function of �1: Then, ŝ is the largest value of �2 2 Sg such
that j�̂�1 � �̂�2 j lies below the bound for all �1 � �2; �1 2 Sg: Calculation of ŝ is carried
out by considering successively larger �2 values s�; s�+ g; s�+2g; :::; until for some �2 the

deviation j�̂�1 � �̂�2 j exceeds the bound for some �1 � �2, �1 2 Sg:
Finally, we set the adaptive estimator to be

�̂A = �̂ŝ: (34)

12



The proposed adaptive procedure is based on the comparison of local polynomial es-

timators with di¤erent smoothness parameters from the g-net Sg: The total number of
smoothness parameters in Sg is of order log(n) and the resolution of the g-net Sg is 1= log n:
As the sample size increases, the grid of Sg becomes �ner and �ner. However, given the
structure of Sg; it is not possible to distinguish smoothness parameters whose di¤erence
is less than 1= log n: This is why the proposed estimator can not achieve the best rate of

convergence n�s=(2s+1) for known smoothness.

To further understand the adaptive procedure, consider a function m(�) 2 M(s; �;K)

but m(�) =2 M(s0; �;K) for any s0 > s: In other words, m(�) is smooth to at most order s:
For any �1 � �2 � s; it follows from Theorem 1 that the asymptotic bias of

p
nh�1(�̂�1��)

is

asymbias
�p

nh�1(�̂�1 � �)
�

= O
�p

nh�1h
r�1+1
�1

�
= O

�
n[�1�min(r�1+1;s)]=(2�1+1)

�
= O(1): (35)

Similarly, the asymptotic bias of
p
nh�1(�̂�2 � �) is

asymbias
�p

nh�1(�̂�2 � �)
�

= O
�
n�1=(2�1+1)n�min(r�2+1;s)=(2�2+1)

�
(36)

= O
�
n�1=(2�1+1)��2=(2�2+1)n[�2�min(r�2+1;s)]=(2�2+1)

�
= o(1):

Therefore, the asymptotic bias of
p
nh�1 j�̂�1 � �̂�2 j is bounded. On the other hand,p

nh�1 j�̂�1 � �̂�2 j is no larger thanp
nh�1 j�̂�1 � �j+

p
nh�1 j�̂�2 � �j (37)

whose asymptotic variance is of order O(1): As a consequence, when �1 � �2 � s;p
nh�1 j�̂�1 � �̂�2 j is stochastically bounded in large samples and

p
nh�1 j�̂�1 � �̂�2 j �

 2��1�(n) holds with probability approaching 1. This heuristic argument suggests that the

probability that ŝ is less than s is small in large samples. Next, consider �1 = s and �2 > s;

the asymptotic bias of
p
nhs(�̂�2��) is of order O

�
ns=(2s+1)n�s=(2�2+1)

�
= O (n�2�s) which

will be larger than  2��1�(n) in general if �2 � s is su¢ ciently large. This suggests that ŝ
can not be too far away from s from above. Rigorous arguments are given in the proofs of

the next two Theorems in the Appendix.

Theorem 3 Let Assumptions 2�3 hold. Assume that minr2[rs� ;rs� ] f�min(�r)g > 0 where

�min(�r) is the smallest eigenvalue of �r: For all s
� 2 [s�;1) with s� > 0; we have

lim
C1!1

lim sup
n!1

sup
s2[s�;s�]

sup
Pm;�2P(s;�;K)

Pm;�

�
n

s
2s+1 ��1(n) j�̂A � �j � C1

�
= 0:
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Remarks

1. Theorem 2 shows that the optimal rate of convergence for the estimation of � is

given by n�s=(2s+1) when s is �nite and known. Theorem 3 shows that the adaptive

estimator achieves this rate up to a logarithm factor �(n) when s is �nite and not

known.

2. When s is not known, the optimal rate of n�s=(2s+1) for known smoothness can not be

achieved in general. For the Gaussian noise model and quadratic loss, Lepski (1990)

shows that an extra (log n)s=(2s+1) factor is needed. This result has been recently

challenged by Cai and Low (2003) who show that under the 0-1 loss the achievable

lower bound for unknown smoothness is the same as that is possible with known

smoothness. However, their results are obtained under the assumption that there are

a �nite number of di¤erent values of the smoothness parameter. This assumption does

not hold for the problem at hand. As a result, the extra logarithm factor may not be

removed in general for the 0-1 loss. This extra logarithmic factor is an unavoidable

price for adaptation and most (if not all) adaptive estimators of linear functionals

share this property.

3. If the function m(x) is not smooth to the same order on the two sides of x�; say

m(x) 2M+(s1; �;K)\M�(s2; �;K); then we can estimate c+ and c� adaptively on

each side of the cuto¤ point x�: For a constant  +2 > 0; let

ŝ+ = sup
n
�2 2 Sg :

��ĉ+�1 � ĉ+�2�� �  +2 (nh�1)
�1=2 ��1�(n) for all �1 � �2; �1 2 Sg

o
where ĉ+� is the local polynomial estimator of c

+ when h =  +1 n
�1=(2�+1) and r = r� ;

the largest integer strictly less than � : The adaptive estimator ĉ+A of c
+ is given by ĉŝ+:

The adaptive estimator ĉ�A of c
� can be analogously de�ned. Finally, the adaptive

estimator of �̂ is set to be �̂A = ĉ+A � ĉ�A: In this case, the rate of the convergence

of �̂A is easily seen to be �(n) exp
�
� min(s1;s2)
2min(s1;s2)+1

log n
�
: In other words, the slower

rate of convergence of ĉ+A and ĉ
+
A dictates.

4. Through ŝ; the adaptive estimator depends on several user-chosen constants, namely

 1;  2; s�; and s
�: In Section 5 we use local cross validation to choose  1 and  2: For

the bounds s� and s� we suggest using 1= log(n) and 1; respectively.

Theorems 2 and 3 suggest that ŝ provides a consistent estimator of s if m(x) 2
M(s; �;K): However, s is not well de�ned. According to our de�nition of smoothness,
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a function that is smooth of order s1 is also smooth of order s2 whenever s1 > s2: The

rate-optimal polynomial order and bandwidth are increasing functions of the smoothness

and we are therefore interested in de�ning a class of functions with a unique smoothness

index.

Before de�ning the new function class, recall that any function m(x) 2 M(s; �;K)

admits Taylor expansions of the form:

m(x) = m(x�) +
X̀
j=1

b+j (x� x
�)j + ~e+(x) for x � x� (38)

m(x) = m(x�) +
X̀
j=1

b�j (x� x
�)j + ~e�(x) for x < x� (39)

with the remainder terms satisfying��~e+(x)�� =(x� x�)s � (`!)�1K for x � x�;
��~e�(x)�� = jx� x�js � (`!)�1K for x < x�: (40)

Let ~e+ = f~e+(xi)gxi�x� and ~e
� = f~e�(xi)gxi<x� be the vectors that contain the remainder

terms. The following de�nition imposes an additional condition on ~e+(x) and ~e�(x):

De�nition 4 Let s0 = `0 + �0 where `0 is the largest integer strictly less than s0 and

�0 2 (0; 1]: LetM0(s0; �;K) be the class of functions satisfying

(i) m(x) 2M(s0; �;K) but m(x) =2M(s; �;K) for any s > s0:

(ii) Let Dn`0 =
p
nhdiag(1; h; h2; :::; h`0). The remainder terms ~e+(x) and ~e�(x) of the

`0-th order Taylor expansion of m(x) around x� satisfy

(nh)�1=2 h�s0
�D�1

n`0
Z+0`0 W

+~e+
�
� (�1)`0+1

�
D�1
n`0
Z�0`0 W

�~e�
� � C

for a constant C > 0 with probability approaching 1 as n!1; h! 0 such that nh!1:

The �rst requirement in the above de�nition determines the �maximum degree of smooth-

ness�of a function. For an in�nitely di¤erentiable function, there is no s0 such that the �rst

requirement is met. In this case, we de�ne s0 to be 1: In other words,M0(1; �;K) is the
set of in�nitely di¤erentiable functions. The second requirement asks for a lower bound for

the asymptotic bias of the local polynomial estimator with order `0: These two requirements

makeM0(s0; �;K) a subset ofM(s0; �;K) which is the most di¢ cult to estimate. Heuristi-

cally, if m(x) 2M0(s0; �;K); then there exists no estimator �̂ with the rate of convergence

faster than n�2s0=(2s0+1)+� for any � > 0: For a function m(x) 2M(s0; �;K)\M(s; �;K)

with s > s0; it is easy to see that the estimator �̂s converges to � at the rate of n�2s=(2s+1)
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which is faster than the rate n�2s0=(2s0+1): To rule out this case, we impose the �rst re-

quirement. On the other hand, when the �rst requirement is met but the asymptotic bias

of �̂s0 diminishes as n!1, possibly due to the cancellation of the asymptotic biases from
the two sides, we can choose a large bandwidth without in�ating the asymptotic bias and

thus obtain a rate of convergence that is faster than n�2s0=(2s0+1): To rule out this case, we

thus impose the second requirement.

Su¢ cient conditions for the second requirement are (i) K1 jx� x�js0 � j~e+(x)j �
K2 jx� x�js0 and K1 jx� x�js0 � j~e�(x)j � K2 jx� x�js0 for some K1 > 0;K2 > 0 (ii)

~e+(x) 6= ~e�(x) when `0 is odd.
The following theorem shows that ŝ provides a consistent estimate for the maximal

degree of smoothness.

Theorem 5 Let the assumptions of Theorem 3 hold. If m(x) 2 M0(s0; �;K) with s0 �
s� > 0; then

ŝ = min(s0; s
�) +Op

�
log log n

log n

�
as n!1.

Remarks

1. The theorem shows that ŝ consistently estimates the maximal degree of smoothness

s0 when it is �nite and s� and s� are appropriately chosen.

2. A direct implication of Theorem 5 is that ŝ converges to s� when s� � s0: As a

result, when the sample size is not large in practical applications, we can set an

upper bound that is relatively small. This will prevent us from using high order

polynomials for small sample sizes. For example, when s� = 3; the adaptive procedure

e¤ectively provides a method to choose between the local constant, local linear and

local quadratic estimators. In the simulation study, we choose s� = 4; which we feel

is a reasonable choice for sample size 500.

3. The adaptive estimator �̂A is not necessarily asymptotically normal. At the cost of a

slower rate of convergence, Theorem 5 enables us to de�ne a new adaptive estimator

that is asymptotically normal with zero asymptotic bias. More speci�cally, after

obtaining ŝ using the above adaptive procedure, we de�ne

�̂�ŝ := �ŝ(rŝ; h
�
ŝ); where h

�
s =  1n

�1=(2rs+1): (41)

If s0 <1 and s0 is not an integer, Theorem 5 implies that rŝ = rs0 with probability

approaching one: Thus, both rŝ and h�ŝ are essentially non-random for large n. In
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consequence, the adaptive estimator �̂�ŝ is asymptotically normal:q
nh�ŝ (�̂

�
ŝ � �)!d N(0; !

2�2rŝ): (42)

Of course, one would expect that a given level of accuracy of approximation by the

normal distribution would require a larger sample size when r and h are adaptively

selected than otherwise.

4. The only unknown quantity in (42) is !2 =
�
�2+(x�) + �2�(x�)

�
=f(x�): The density

of x at the cut-o¤ point, f(x�); can be estimated consistently by kernel methods.

Given a consistent estimate ~�; we de�ne the estimated residual by

~"i = yi � ~m(xi)� ~�di (43)

where

~m(xi) =

Pn
i=1 kh(x� xi) [yi � ~�di]Pn

i=1 kh(x� xi)
(44)

Porter (2003) shows that, under some regularity conditions,

�̂2+(x�) =
2
Pn
i=1 kh(xi � x�)di~"2iPn
i=1 kh(xi � x�)

and �̂2�(x�) =
2
Pn
i=1 kh(xi � x�)(1� di)~"2iPn

i=1 kh(xi � x�)
(45)

are consistent for �2+(x�) and �2�(x�) respectively. Plugging �̂2+(x�); �̂2�(x�) and

f̂(x�) = 1=n
Pn
i=1 kh(xi�x�) into the de�nition of !2 produces a consistent estimator

for it. The adaptive estimator �̂ŝ or �̂�ŝ can be used to compute the estimated residual

in (43).

5 Monte Carlo Experiments

In this section, we propose a practical strategy to select the constants  1 and  2 in the

adaptive procedure and provide some simulation evidence on the �nite sample performance

of the adaptive estimator.

The empirical strategy we use is based on the squared-error cross validation, which has

had considerable in�uence on nonparametric estimation. Since our objective is to estimate

the discontinuity at a certain point, we use a local version of cross validation proposed by

Hall and Schuany (1989) for density estimation.

For each combination of ( 1;  2) ; we �rst use the adaptive rule to determine ŝ; hŝ; and

rŝ:We then use the local polynomial estimator with bandwidth hŝ and polynomial order rŝ

to estimate the conditional mean of yi at x = xi leaving the observation (xi;yi) out. Denote
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the estimate by ŷ�i( 1;  2); where we have made it explicit that ŷ�i depends on ( 1,  2):

Let fx+i1 ; :::; x
+
im
g and fx�i1 ; :::; x

�
im
g be the closestm observations that are larger and smaller

than x� respectively. We choose  1 and  2 to minimize the local cross validation function:

CV ( 1;  2) =
mX
k=1

(y+ik � ŷ
+
�ik( 1;  2))

2 +
mX
k=1

(y�ik � ŷ
�
�ik( 1;  2))

2 (46)

Finally we use the cross validation choice ( ̂1;  ̂2) of ( 1;  2) to compute the adaptive

estimator, which is denoted by �̂A( ̂1;  ̂2):

In this paper, we do not provide asymptotic results for �̂A( ̂1;  ̂2); but we do give some

simple results for an estimator based on a data-dependent method that is close to ( ̂1;  ̂2):

Let 	 = f	1; :::;	Ug be a �nite grid of positive real numbers. Take (~ 1; ~ 2) to be the
closest point in 	 � 	 to ( ̂1;  ̂2): Let �̂A(~ 1; ~ 2) denote the adaptive estimator based

on (~ 1; ~ 2): One can take the grid size of 	 to be su¢ ciently small that the minimum of

CV ( 1;  2) over ( 1;  2) 2 	�	 is quite close to its minimum over R+ � R+; at least if
one has knowledge of suitable lower and upper bounds for  1 and  2:

The asymptotic behavior of �̂A(~ 1; ~ 2) is relatively easy to obtain. First, Theorem

3 holds for �̂A(~ 1; ~ 2) under Assumptions 2 and 3. The reasons are that the theorem

holds for �̂A for each combination ( 1;  2) 2 	 � 	 and that there are a �nite number

of such combinations. So, �̂A(~ 1; ~ 2) is consistent and has the rate of convergence given

by n
s

2s+1 ��1(n): Second, suppose the value ( ̂1;  ̂2) is not equidistant to any two points in

	 � 	 (which fails only for a set of points with Lebesgue measure zero) and assume that

( ̂1;  ̂2) converges to ( 
�
1;  

�
2) in large samples. Let ( 

o
1;  

o
2) be the closest point in 	�	 to

( �1;  
�
2) : Let �̂A( 

o
1;  

o
2) and �̂A( 

�
1;  

�
2) denote the adaptive estimators based on ( 

o
1;  

o
2)

and ( �1;  
�
2) respectively. Then, the asymptotic distribution of �̂A(~ 1; ~ 2)�� is the same

as that of �̂A( o1;  
o
2) � �. This holds because (~ 1; ~ 2) = ( o1;  

o
2) with probability that

goes to 1 as n!1 by the discreteness of 	. After a simple modi�cation along the line of

(41), we have q
nh�ŝ

�
�̂�A(~ 1; ~ 2)� �

�
!d N(0; !

2�2rŝ): (47)

where �̂�A(~ 1; ~ 2) is the same as �̂A(~ 1; ~ 2); except that the bandwidth hŝ = ~ 1n
�1=(2ŝ+1)

is replaced by h�ŝ = ~ 1n
�1=(2rŝ+1):

The above theoretical results for �̂�A(~ 1; ~ 2) are not entirely satisfactory because they

require the use of the somewhat arti�cial grid 	. Nevertheless, in the absence of asymptotic

results for �̂A( ̂1;  ̂2); they should be useful. Since our cross validation algorithm is based

on a grid search, we e¤ectively use the estimator �̂A(~ 1; ~ 2) in our simulations.

In our Monte Carlo experiment, we let s� = 4, m = 0:1n; and 	 = f0:1; 0:5; 1; 5g to
compute the adaptive estimator. To evaluate the �nite sample performance of the adaptive
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estimator �̂A(~ 1; ~ 2), we compare it with the local constant, local linear, local quadratic

and local cubic estimators, each of them using the locally cross-validated bandwidth. For

these local polynomial estimators, we use the AMSE-optimal bandwidth h = cn�1=(2r+3)

and choose c over the set C = (0:1; 0:2; :::; 1) [ (2; 3; 4; :::; 10) via cross validation. For each
estimator the cross validation is based on the same neighborhood observations fx+i1 ; :::; x

+
im
g

and fx�i1 ; :::; x
�
im
g and uses the grid search method. We have considered other choices of m,

	 and C but the qualitative results are similar.
We consider three groups of experiments. In the �rst group, the data generating process

is yi = m(xi) + �� 1 fxi > x�g+ "i where � = 1 and

m(xi) =

( P3
i=1(xi � x�)i + � jxi � x�j

s0 for xi � x�;P3
i=1(xi � x�)i � � jxi � x�j

s0 for xi < x�:
(48)

Both xi and "i are iid standard normal. fxigni=1 is independent f"ig
n
i=1. We set x

� = 0

without loss of generality. We consider several values for s0; i.e. s0 = 1=2; 3=2; 5=3; 7=2

and two values for �; i.e. � = 1 and 5: s0 characterizes the smoothness of m(x) while �

determines the importance of the not-so-smooth component in m(x):

For the second group of experiments, the data generating process is the same as the

one above except that a sine wave is added to m(x); leading to

m(xi) =

( P3
i=1(xi � x�)i + 5 sin 10(xi � x�) + � jxi � x�j

s0 for xi � x�P3
i=0(xi � x�)i + 5 sin 10(xi � x�)� � jxi � x�j

s0 for xi < x�
(49)

The response function we just de�ned has a �ner structure than that given in (48). Such

a response function may not be realistic in empirical applications but it is used to examine

the �nite sample performances of di¤erent estimators in the worst situations.

For the last group of experiments, the data generating process is

m(xi) =
kX
i=0

10(xi � x�)i; for k = 0; 1; 2 or 3: (50)

Since m(xi) is a constant, linear, quadratic or cubic function, we expect the local constant,

local linear, local quadratic and local cubic estimators to have the best �nite sample per-

formances in the respective cases of k = 0; 1; 2 and 3: The motivation for considering this

group is to �crash�test the adaptive estimator against the local polynomial estimators.

For each group of the Monte Carlo experiments, we compute the bias, standard deviation

(SD) and root mean square error (RMSE) of all estimators considered. The number of

replication is 1000 and the sample size is 500. More speci�cally, for an estimator �̂; the
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bias, SD, and RMSE are computed according to

bias = �̂� �; SD = 1

1000

1000X
i=1

�
�̂i � �̂

�2
and RMSE =

q
(bias)2 + (SD)2 (51)

where �̂ = 1=1000
P1000
m=1 �̂m and �̂m is the estimate for the m-th replication.

Table I presents the results for the �rst group of experiments. It is clear that the

local constant estimator has the smallest standard deviation and the largest bias. When

s0 = 3=2; 5=2; 7=2; the slope of m(x) is relatively �at at x = x�. As a result, the e¤ect of the

standard deviation outweighs that of the bias. It is not surprising that the local constant

estimator has the smallest RMSE in these cases. However, when s0 = 1=2; the function

m(x) becomes very steep at x = x�: As expected, the local constant estimator has a large

upward bias and the largest RMSE. Next, for the rest of the local polynomial estimators,

the absolute values of the biases are in general comparable while the standard deviation

decreases with the order of the polynomial. The latter result seems to be counter-intuitive at

�rst sight. However, as the order of the polynomial increases, the cross-validated bandwidth

also increases. Note that the bandwidth and polynomial order have opposite e¤ects on the

variance of the local polynomial estimators. In �nite samples, it is likely that the variance

reduction from using a larger bandwidth dominates the variance in�ation from using a

higher order polynomial. This is the case for the �rst group of data generating processes

we consider. Finally, the performance of the adaptive estimator is very robust to the

parameter con�gurations. When the underlying process is not so smooth (s0 = 1=2; �0 = 1);

the adaptive estimator has the smallest RMSE. In other cases, the RMSE of the adaptive

estimator is only slightly larger than the smallest RMSE. It is important to note that the

smallest RMSE is achieved by di¤erent estimators for di¤erent parameter combinations.

Table II reports the results for the second group of experiments. We report only the

case � = 1 as it is representative of the case � = 5: Due to the rapid slope changes in

the response function, all estimators have much larger RMSE�s than those given in Table

I. While the local constant estimator has a satisfactory RMSE performance in Table I, its

RMSE performance is the poorest because of the large bias. The best estimator, according

to the RMSE criterion, is the local linear estimator whose absolute bias is the smallest

among the local polynomial estimators and standard deviation is only slightly larger than

that of the local constant estimator. Compared with the local polynomial estimators, the

adaptive estimator has the smallest bias for all parameter combinations while its variance is

comparable to that of the local linear estimator. As a consequence, the RMSE performance

of the adaptive estimator is quite satisfactory.

Table III gives the result for the last group of experiments. As expected, when the
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response function is a polynomial with order r; the local polynomial estimator with the same

order has the best �nite sample performance in general. An exception is the local linear

estimator whose RMSE is larger than that of the local quadratic and cubic estimators. The

performance of the adaptive estimator is very encouraging. Its RMSE is either the smallest

or slightly larger than that of the estimator which is most suitable for the underlying data

generating process.

To sum up, the RMSE of the adaptive estimator is either the smallest or among the

smallest ones. The performance of the adaptive estimator is robust to the underlying

data generating process. In contrast, a local polynomial estimator may have the best

performance in one scenario and disastrous performances in other scenarios. For example,

the local constant estimator performs well in the �rst group of experiments but performs

poorly in the second group of experiments. The local linear estimator has a satisfactory

performance in the second group of experiments but its performance is the worst in the

�rst group of experiments. The adaptive estimator seems to be the best estimator in an

overall sense.
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Table I: Finite Sample Performances of Di¤erent Estimators
When m(xi) =

P3
i=1(xi � x�)i + � jxi � x�j

s0 sign(xi � x�)
Adaptive
Estimator

Local
Constant

Local
Linear

Local
Quadratic

Local
Cubic

(s0; �) = (1=2; 1)
Bias 0.2710 0.5085 0.1688 0.3075 0.3097
SD 0.4807 0.4798 0.6722 0.5813 0.4861
RMSE 0.55171 0.6990 0.6927 0.65743 0.57622

(s0; �) = (3=2; 1)
Bias -0.0639 0.1646 -0.1086 0.0775 0.0157
SD 0.4894 0.4259 0.6983 0.5507 0.4456
RMSE 0.49333 0.45642 0.7063 0.5558 0.44591

(s0; �) = (5=2; 1)
Bias -0.0537 0.1392 -0.0929 0.0933 0.0301
SD 0.4818 0.4129 0.7006 0.5571 0.4473
RMSE 0.48453 0.43561 0.7064 0.5646 0.44802

(s0; �) = (7=2; 1)
Bias -0.0663 0.1349 -0.0776 0.0922 -0.0450
SD 0.4776 0.4049 0.6979 0.5654 0.4498
RMSE 0.48193 0.42751 0.7019 0.5726 0.45182

(s0; �) = (1=2; 5)
Bias 1.1136 1.5467 1.0278 1.0667 1.1755
SD 0.7618 0.6399 0.8771 0.7423 0.6884
RMSE 1.34902 1.6737 1.3509 1.29941 1.36213

(s0; �) = (3=2; 5)
Bias -0.0668 0.2178 -0.1801 0.0248 0.0017
SD 0.5002 0.4667 0.7462 0.5323 0.4938
RMSE 0.50442 0.51483 0.7672 0.5326 0.49381

(s0; �) = (5=2; 5)
Bias 0.0318 0.1373 -0.1122 0.1130 0.0906
SD 0.4643 0.4262 0.7404 0.5749 0.4548
RMSE 0.46513 0.44761 0.7485 0.5856 0.46352

(s0; �) = (7=2; 5)
Bias -0.1153 0.1310 -0.0794 0.0879 -0.0838
SD 0.5387 0.4131 0.7095 0.6064 0.4970
RMSE 0.55063 0.43321 0.7136 0.6124 0.50382

The superscripts 1; 2; 3 indicate the smallest, second smallest, and third smallest RMSE
in each row, respectively
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Table II: Finite Sample Performances of Di¤erent Estimators
When m(xi) =

P3
i=1(xi � x�)i + 5 sin 10(xi � x�) + � jxi � x�j

s0 sign(xi � x�)
Adaptive
Estimator

Local
Constant

Local
Linear

Local
Quadratic

Local
Cubic

(s0; �) = (1=2; 1)
Bias 0.0203 1.8541 0.1991 0.2331 0.4653
SD 1.2396 0.9792 1.0803 1.1507 1.7428
RMSE 1.23983 2.0965 1.09791 1.17352 1.8030

(s0; �) = (3=2; 1)
Bias -0.0596 1.6518 0.0738 0.1394 0.3368
SD 1.2646 0.9398 1.0732 1.1760 1.6929
RMSE 1.26543 1.9002 1.07521 1.18362 1.7253

(s0; �) = (5=2; 1)
Bias -0.0573 1.6481 0.0756 0.1491 0.3326
SD 1.2651 0.9369 1.0749 1.1811 1.6782
RMSE 1.26573 1.8956 1.07701 1.18992 1.7100

(s0; �) = (7=2; 1)
Bias -0.0560 1.6476 0.0769 0.1487 0.3284
SD 1.2680 0.9370 1.0755 1.1810 1.6761
RMSE 1.26863 1.8952 1.07771 1.18972 1.7072

The superscripts 1; 2; 3 indicate the smallest, second smallest, and third smallest values in
each row, respectively
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Table III Finite Sample Performances of Di¤erent Estimators

for Di¤erent Response Functions

Adaptive

Estimator

Local

Constant

Local

Linear

Local

Quadratic

Local

Cubic

m(x) = 0

Bias -0.0287 -0.0228 -0.0128 -0.0089 -0.0250

SD 0.4287 0.3554 0.6243 0.5015 0.4437

RMSE 0.42942 0.35591 0.6242 0.5014 0.44423

m(x) = 10(x� x�)
Bias 0.0204 0.5789 -0.0127 0.0563 0.1073

SD 0.5273 0.5411 0.6244 0.5355 0.5816

RMSE 0.52741 0.7922 0.6245 0.53822 0.59113

m(x) = 10(x� x�) + 10(x� x�)2

Bias 0.0198 0.5876 -0.0079 0.0522 0.1198

SD 0.5304 0.5491 0.7809 0.5380 0.5881

RMSE 0.53051 0.8040 0.7809 0.54022 0.59993

m(x) = 10(x� x�) + 10(x� x�)2 + 10(x� x�)3

Bias 0.0991 0.5763 -0.0115 0.1630 0.1177

SD 0.6317 0.5436 0.7470 0.6464 0.5949

RMSE 0.63912 0.7920 0.7471 0.66633 0.60641
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6 Appendix of Proofs

Proof of Theorem 1. It is easy to show that

�̂
+

r � �+r =
�
Z+0r W

+Z+r
��1

Z+0r W
+"+ +

�
Z+0r WZ+r

��1
Z+0r W

+R+ (A.1)

Let

Dnr =
p
nhdiag(1; h; h2; :::; hr): (A.2)

Then

Dnr

�
�̂
+

r � �+r
�

(A.3)

=
�
D�1
nr Z

+0
r W

+Z+r D
�1
nr

��1
D�1
nr Z

+0
r W

+"+ +
�
D�1
nr Z

+0
r W

+Z+r D
�1
nr

��1
D�1
nr Z

+0
r W

+R+:

It follows from the proof of Lemma A.1(a) below that

p lim
n!1

D�1
nr Z

+0
r W

+Z+r D
�1
nr = f(x�)�r: (A.4)

Porter (2003) shows that, under Assumption 2,

D�1
nr Z

+0
r W

+"+ ) N

�
0;

�2+(x�)

f(x�)
Vr

�
: (A.5)

Combining (A.3), (A.4) and (A.5) gives

Dn;r

�
�̂
+

r � �+r
�
�
�
D�1
nr Z

+0
r W

+Z+r D
�1
nr

��1
D�1
nr Z

+0
r W

+R+

) N

�
0;
�2+(x�)

f(x�)
��1r Vr�

�1
r

�
, (A.6)

which implies

p
nh(ĉ+r � c+)�B+ ) N

�
0;

�2+(x�)

f(x�)
e01�

�1
r Vr�

�1
r e1

�
; (A.7)

where B+ = e01
�
D�1
nr Z

+0
r W

+Z+r D
�1
nr

��1
D�1
nr Z

+0
r W

+R+:

Similarly, we can show that

p
nh(ĉ�r � c�)�B� ) N

�
0;

�2�(x�)

f(x�)
e01�

�1
r Vr�

�1
r e1

�
: (A.8)

By the independence of
p
nh(ĉ+r � c+) and

p
nh(ĉ�r � c�); we get

p
nh(�̂r � �)� (B+ �B�)) N

�
0;
�2+(x�) + �2�(x�)

f(x�)
e01�

�1
r Vr�

�1
r e1

�
: (A.9)
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When ` � r + 1;

D�1
nr Z

+0
r W

+R+ = hr+1
p
nhb+r+1�r(1 + op(1)): (A.10)

When ` � r;

D�1
nr Z

+0
r W

+R+ =
p
nh
�
D�1
nr Z

+0
r W

+e+
�
= Op

�
hq
p
nh
�
: (A.11)

Therefore

B+ = 1 f` � r + 1g
�
e01�

�1
r �r

�
b+r+1

f(x�)
hr+1

p
nh(1 + op(1)) +Op

�
hq
p
nh
�
: (A.12)

Similarly

B� = 1 f` � r + 1g
(�1)r+1

�
e01�

�1
r �r

�
b�r+1

f(x�)
hr+1

p
nh(1 + op(1)) +Op

�
hq
p
nh
�
: (A.13)

Let B = B+ �B�, then

B = 1 f` � r + 1g
�
e01�

�1
r �r

� �
b+r+1 � (�1)r+1b

�
r+1

�
f(x�)

hr+1
p
nh(1 + op(1))

+Op

�
hq
p
nh
�
: (A.14)

Combining (A.14) and (A.9) leads to the desired result.

Proof of Theorem 2. Part (a). The proof uses the following result from Pollard (1993):

Let P = �ni=1Pi and Q = �
n
i=1Qi be the �nite products of probability measures such that

Qi has density 1 + �i(�) with respect to Pi: If �2i = EPi�
2
i is �nite for each i; then

jj�ni=1Pi ��ni=1Qijj1 � exp
 

nX
i=1

�2i

!
� 1: (A.15)

Using this result and (31), we have

inf
�̂
sup
P2P

P(j�̂� �j � �=2) � 1

2

 
3

2
� exp

 
nX
i=1

�2i

!!
; (A.16)

provided that �(P )� �(Q) > �:

To get a good lower bound for the minimax risk, we consider two probability models P

and Q: Under the model P; the data is generated according to

Y = mP (X) + �Pd+ " (A.17)

where Y = (y1; y2; :::; yn)
0, mP (X) = (mP (x1); :::;mP (xn)), " = ("1; :::; "n); xi s iid

uniform(x� � �; x� + �), "i s iid N(0; 1) and "i is independent of xj for all i and j: The
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data generating process under Q is de�ned analogously with mP (X) + �Pd replaced by

mQ(X) + �Qd: It is obvious that both models P and Q satisfy Assumption 2.

We now specify m and � for each model. For the probability model P; we let mP (x) = 0

and �P = 0: For the probability model Q; we let

mQ(x) = ���s� ((x� x�) =�) and �Q = ��s (A.18)

where � = n�1=(2s+1) and � is an in�nitely di¤erentiable function satisfying (i) 0 � �(x) � 1;
(ii) �(x) = 0 for x � 0 and (iii) �(x) = 1 for x � �:

Obviously mP 2 M(s; �;K): We next verify that mQ 2 M(s; �;K): First, by con-

struction, mQ is continuous on [x� � �; x� + �] : Second, the i-th order derivative of m(i)
Q

is ��s�i�(i) ((x� x�) =�) which is obviously bounded by K when n is large enough for all

i � `: Third, we verify the Hölder condition for the `-th order derivative. It su¢ ces to

consider the case when x1 2 [x�; x� + �] and x2 2 [x�; x� + �] as the Hölder condition holds
trivially when x1 2 [x� � �; x�] and x2 2 [x� � �; x�]: We consider three cases: (i) when x1,
x2 2 [x�; x� + ��]; the `-th order derivative satis�es�����s�`�(`) ((x1 � x�) =�)� ��s�`�(`) ((x2 � x�) =�)���

� ��s�`�(`+1)
�
��1~x

�
��1 jx1 � x2j

= ��s�`�1�(`+1)
�
��1~x

�
jx1 � x2j`+1�s jx1 � x2js�`

� C��s�`�1�`+1�s�`+1�s jx1 � x2j� (A.19)

� K jx1 � x2j�

if � is small enough; (ii) when x1 2 [x�; x� + ��] and x2 � x� + ��;�����s�`�(`) ((x1 � x�) =�)� ��s�`�(`) ((x2 � x�) =�)���
=

�����s�`�(`) ((x1 � x�) =�)� ��s�`�(`) ((x� + �� � x�) =�)���
� K jx1 � x� � ��j� � K jx1 � x2j� (A.20)

when the �rst inequality follows from (A.19); (iii) when x1 � x� + �� and x2 � x� + ��;

we have �(`) ((x1 � x�) =�) = �(`) ((x2 � x�) =�) = 0: Again the Hölder condition holds

trivially.

It remains to compute the L1 distance between the two measures. Let the density of

Qi with respect to Pi be 1 + �i(xi; yi); then

�i(xi; yi) =

(
' (yi �mQ(xi)� �Q) ='(yi)� 1; if xi 2 [x�; x� + ��)

0; otherwise
(A.21)
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where ' (�) is the standard normal pdf. Therefore,

EPi�
2
i =

1

2�

Z x�+��

x�

Z 1

�1

�
' (y �mQ(x)� �Q)'�1(y)� 1

�2
'(y)dydx
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Z x�+��
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�1
'2 (y �mQ(x)� �Q)'�1(y)dydx

�1
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Z x�+��
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2
�: (A.22)

Plugging the standard normal pdf yields:

EPi�
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1
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x�

Z 1

�1
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�
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=
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2
�2�2s+1(1 + o(1)) � �2=(2n) (A.23)

when n is large enough.

When � is small enough, say �2=2 � log (5=4) ; we have

exp

 
nX
i=1

�2i

!
� exp

�
�2=2

�
<
5

4
: (A.24)

It follows from (A.16) that

inf
�̂

sup
Pm;�2P(s;�;K)

Pm;�

����n s
2s+1 (�̂� �)

��� � �=2
�
� 1

2
(
3

2
� 5
4
) =

1

8
� C (A.25)

on choosing C � 1=8: Here the second inequality holds because �(P )� �(Q) = �n�
s

2s+1 �
�n�

s
2s+1 for a small �.

Part (b). It follows from Theorem 1 that lim�!1 P (n
s

2s+1 [�̂` � �] � �=2) = 0 for a sin-

gle probability model and a single bandwidth. This is because Theorem 1 holds and when

h =  1n
�1=(2s+1); the bias term satis�es B = Op

�
hs
p
nh
�
= Op (1) : Hence, it su¢ ces to

show that the results of Theorem 1 hold uniformly over Pm;� 2 P(s; �;K):We focus on the
case x � x� as the case for the x < x� follows in a similar way. Inspection of the proof of The-

orem 1 shows that all quantities except
�
D�1
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��1
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is stochastically bounded uniformly over m 2 M(s; �;K) and � 2 [�K;K]: This is ob-
vious as (i)

�
D�1
nr Z

+0
r W

+Z+r D
�1
nr

��1 does not depend on m and � and D�1
nr Z

+0
r W

+R+ is

uniformly bounded because��e+(x)= (x� x�)q�� = O(1) uniformly over x 2 [x�; x� + �]:

To prove Theorems 3 and 5, we need the following two lemmas. For notational con-

venience, when r = r� ; h� =  1n
�1=(2�+1); we write Z+� = Z+r� ; D

+
n� = D+

nr� and W
+
� =

W+ = h�diag(kh� (xi � x�))xi�x� . De�ne Z
�
� ; D

�
n� and W

�
� analogously. Let sup(s;Pm;�)

abbreviate sups2[s�;s�] supPm;�2P(s;�;K) throughout the rest of the proof.

Lemma A.1 Let Assumptions 2(d) and 3 hold. If minr2[rs� ;rs� ] f�min(�r)g > 0; then for

some constant C2 and any constant C3 we have, as n!1;
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where �min(A) is the smallest eigenvalue of matrix A.

Proof of Lemma A.1. Part (a) Let �n� = D�1
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� W

+
� Z

+
� D

�1
n� ; then the (i; j)-th

element of �n� is

�n� (i; j) =
1

nh�

1

hi+j�2�

nX
k=1

k(
xk � x�
h�

) (xk � x�)i+j�2 1 fxk � x�g : (A.26)

Note that
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we have, as n!1, nh� !1;

E�n� (i; j) =

Z 1

0
k(z)zi+j�2f(x�)dz(1 + o(1)) (A.29)

and

V ar(�n� (i; j)) �
1

nh�
max

x2[x�;x�+�]
f(x)

Z 1

0
k2(z)z2(i+j�2)dz = O(

1

nh�
) (A.30)

uniformly over � 2 [s�; s]; Pm;� 2 P(s; �;K) and s 2 [s�; s�]. The uniformity over Pm;� 2
P(s; �;K) is trivial because �n� (i; j) does not depend on m(�) or �: The uniformity over �
and s holds because maxx2[x�;x�+�] f(x)

R1
0 k2(z)z2(i+j�2)dz does not depend on � or s:

Invoking the Markov inequality yields, for any � > 0;

Pm;� (j�n� (i; j)� E�n� (i; j)j > �) = O(
1

nh�
) (A.31)

uniformly over � 2 [s�; s]; Pm;� 2 P(s; �;K) and s 2 [s�; s�].
Let �(i; j) =

R1
0 k(z)zi+j+2f(x�)dz. By the dominating convergence theorem, we have

lim
h�!0

E�n� (i; j) = �(i; j): (A.32)

Combining this with (A.31), we get

Pm;� (j�n� (i; j)� �(i; j)j > �) = O(
1

nh�
) (A.33)

uniformly over � 2 [s�; s]; Pm;� 2 P(s; �;K) and s 2 [s�; s�].
Denote �r� = (�(i; j)), the (r� + 1) � (r� + 1) matrix with the (i; j)-th element being

�(i� 1; j � 1). Then

Pm;� (j�min (�n� )� �min(�r� )j > �) = O(
1

nh�
) (A.34)

and thus

Pm;� (�min (�n� ) < Cr� ) = O(n�
2�

2�+1 ) (A.35)

for some positive constant Cr� � �min(�r� ) � �: Note that for � 2 [s�; s�]; there is only a
�nite number of limiting matrices �r� and constants Cr� : Let C2 = min�2[s�;s�]Cr� : Then

Pm;�

�
inf

�2[s�;s�]
�min (�n� ) � C2

�
= o(1) (A.36)

uniformly over � 2 [s�; s]; Pm;� 2 P(s; �;K) and s 2 [s�; s�].
Part (b) The proof is similar to that of part (a). Details are omitted.
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Part (c) Let B� = D�1
n� Z

+0
� W

+
� R

+
� ; then the i-th element of B� is

B� (i) =
1p
nh�

1

hi�1�

nX
k=1

k(
xk � x�
h�

) (xk � x�)i�1R+� (xk): (A.37)

But

R+� (xk) = 1f` � r� + 1gb+r�+1(xk � x
�)r�+1 + e+(xk); (A.38)

where ���e+(xk)= (xk � x�)minfs;r�+2g��� < C (A.39)

for a constant C that is independent of xk and � : Hence jR+� (xk)j � C jxk � x�jmin(r�+1;s) :
As a consequence�p

nh�h
min(r�+1;s)

��1
jB� (i)j (A.40)

� C

nh�

1

h
i�1+min(r�+1;s)
�

nX
k=1

k(
xk � x�
h�

) (xk � x�)i�1 (xk � x�)min(r�+1;s)

Using the same argument in the proof of part (a), we can show that the above upper bound

converges to Z 1

0
k(z)zi�1+min(r�+1;s)f(x�)dz (A.41)

uniformly over � 2 [s�; s]; Pm;� 2 P(s; �;K) and s 2 [s�; s�]. Note thatp
nh�h

min(r�+1;s)
� =  

0:5+min(r�+1;s)
1 n1�

1
2�+1n

min(r�+1;s)
2�+1

= Cn
1
2(1�

1
2�+1)n

�min(r�+1;s)
2�+1 (A.42)

= Cn
��min(r�+1;s)

2�+1 = O(1) uniformly.

Therefore jB� (i)j is bounded above uniformly over � 2 [s�; s]; Pm;� 2 P(s; �;K) and s 2
[s�; s�]. Combining this with the divergence of �(n) yields the desired result.

Part (d) The proof is similar to that of part (c). Details are omitted.

Let An be the union of events�
inf

�2[s�;s�]
�min

�
D�1
n� Z

+0
� W

+
� Z

+
� D

�1
n�

�
� C2

�
[�

inf
�2[s�;s�]

�min
�
D�1
n� Z

�0
� W

�
� Z

�
� D

�1
n�

�
� C2

�
[(

sup
�2[s�;s�]

D�1
n� Z

+0
� W

+
� R

+
�

 > C3�(n)

)
[(

sup
�2[s�;s�]

D�1
n� Z

�0
� W

�
� R

�
�

 > C3�(n)

)
whose probabilities are speci�ed in Lemma A.1. Let Acn denote its complement.
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Lemma A.2 Let the assumptions of Theorem 3 hold.

(a) For a constant C such that C > 4C3C
�1
2 ; we have

sup
s2[s�;s�]

sup
Pm;�2P(s;�;K)

sup
�2[s�;s]

Pm;�

�p
nh� j�̂� � �j > C�(n); Acn

�
= O

�
��2(n)

�
:

(b) Let �0 := s0+(�s0) (log log n) = log(n) with
p
2� > 2+1=s0: If m(x) 2M0(s0; �;K)

for some s0 < 1; then for any constant C > 0;

Pm;�

�p
nhs0 j�̂�0 � �j � C�(n); Acn

�
= o(1):

Proof of Lemma A.2. Part (a) Note that

Pm;�

�p
nh� j�̂� � �j > C�(n); Acn

�
= Pm;�

�p
nh� j

�
ĉ+� � ��m(x�)

�
�
�
ĉ�� �m(x�)

�
j > C�(n); Acn

�
� Pm;�

�p
nh�

��ĉ+� � ��m(x�)�� > C

2
�(n); Acn

�
+Pm;�

�p
nh� jĉ�� �m(x�)j >

C

2
�(n); Acn

�
(A.43)

We now consider each of the two terms. It follows from the proof of Theorem 1 that

ĉ+� � ��m(x�) = e01
�
Z+0� W

+
� Z

+
�

��1
Z+0� W

+
� "

+ + e01
�
Z+0� W

+
� Z

+
�

��1
Z+0� W

+
� R

+
� : (A.44)

So

Pm;�

�p
nh�

��ĉ+� � ��m(x�)�� > C

2
�(n); Acn

�
� Pm;�

����e01 �D�1
n� Z

+0
� W

+
� Z

+
� D

�1
n�

��1
D�1
n� Z

+0
� W

+
� R

+
�

��� > C

4
�(n); Acn

�
+Pm;�

����e01 �D�1
n� Z

+0
� W

+
� Z

+
� D

�1
n�

��1
D�1
n� Z

+0
� W

+
� "

+
��� > C

4
�(n); Acn

�
� Pm;�

��
�min

�
D�1
n� Z

+0
� W

+Z+� D
�1
n�

���1 D�1
n� Z

+0
� W

+
� R

+
�

 > C

4
�(n); Acn

�
+Pm;�

��
�min

�
D�1
n� Z

+0
� W

+Z+� D
�1
n�

���1 D�1
n� Z

+0
� W

+
� "

+
 > C

4
�(n); Acn

�
� Pm;�

�D�1
n� Z

+0
� W

+
� R

+
�

 > C3�(n); A
c
�
+ Pm;�

�D�1
n� Z

+0
� W

+
� "

+
 > C3�(n)

�
= Pm;�

�D�1
n� Z

+0
� W

+
� "

+
 > C3�(n)

�
(A.45)

The last equality holds because on Ac;
D�1

n� Z
+0
� W

+
� R

+
�

 � C3�(n) for all � : Let �+ =
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diag(�2(xi)jxi>x�); then

Pm;�
�D�1

n� Z
+0
� W

+
� "

+
 > C3�(n)

�
� C�23 ��2(n)trace(ED�1

n� Z
+0
� W

+
� "

+"+0W+0
� Z+0� D

�1
n� )

= C�23 ��2(n)trace(ED�1
n� Z

+0
� W

+
� �

+W+0
� Z+0� D

�1
n� )

= C�23 ��2(n)
r�+1X
i=1

1

nh�

1

h2i�2�

nX
k=1

Ek2(
xk � x�
h�

)�2(xk) (xk � x�)2i�2 1 fxk � x�g

= C�23 ��2(n)
r�+1X
i=1

Z 1

0
k2(z)z2i�2f(x� + h�z)�

2(x� + h�z)dz

� C�23 ��2(n) max
x2[x�;x�+�]

�
f(x)�2(x)

	 r�+1X
i=1

Z 1

0
k2(z)z2i�2dz

= O
�
��2(n)

�
(A.46)

uniformly over � 2 [s�; s]; Pm;� 2 P(s; �;K) and s 2 [s�; s�]. Therefore

Pm;�

�p
nh�

��ĉ+� � ��m(x�)�� > C

2
�(n); Acn

�
= O

�
��2(n)

�
(A.47)

uniformly. Similarly, we can prove that

Pm;�

�p
nh� jĉ�� �m(x�)j >

C

2
�(n); Acn

�
= O

�
��2(n)

�
(A.48)

uniformly. Combining (A.43), (A.47) and (A.48) leads to the require result.

Part (b) Note that

Pm;�

�p
nhs0 j�̂�0 � �j � C�(n); Acn

�
= Pm;�

�p
nh�0 j�̂�0 � �j � n

� s0
2s0+1n

�0
2�0+1C�(n); Acn

�
= Pm;�

�p
nh�0 j�̂�0 � �j � C (log n)�s0=(2s0+1)(2�0+1) �(n); Acn

�
: (A.49)

The last equality holds because

n
� s0
2s0+1

+
�0

2�0+1 = exp

�
�s0 log

�1 n log log n

(2s0 + 1) (2�0 + 1)
log n

�
= (log n)�s0=[(2s0+1)(2�0+1)] : (A.50)

Let

G+�0("
+) = e01

�
D�1
n�0Z

+0
�0W

+
�0Z

+
�0D

�1
n�0

��1
D�1
n�0Z

+0
�0W

+
�0"

+ (A.51)

G+�0(~e
+) = e01

�
D�1
n�0Z

+0
�0W

+
�0Z

+
�0D

�1
n�0

��1
D�1
n�0Z

+0
�0W

+
�0~e

+ (A.52)
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and de�ne G��0("
�) and G��0(~e

�) analogously. Thenp
nh�0 j�̂�0 � �j = G+�0("

+)�G��0("
�) +G+�0(~e

+)�G��0(~e
�) (A.53)

and

Pm;�

�p
nh�0 j�̂�0 � �j � C (log n)�s0=(2s0+1)(2�0+1) �(n); Acn

�
� Pm;�

���G+�0(~e+)�G��0(~e�)�� � ��G+�0("+)�G��0("�)��+
C (log n)�s0=(2s0+1)(2�0+1) �(n); Acn

o
� Pm;�

���G+�0(~e+)�G��0(~e�)�� � C�(n) + C (log n)�s0=[(2s0+1)(2�0+1)] �(n); Acn

�
+Pm;�

���G+�0("+)�G��0("�)�� � C�(n); Acn
�

� Pm;�

���G+�0(~e+)�G��0(~e�)�� � C�(n) + C (log n)�s0=[(2s0+1)(2�0+1)] �(n); Acn

�
+Pm;�

�G+�0("+) � C

2
�(n); Acn

�
+ Pm;�

�G��0("�) � C

2
�(n); Acn

�
:

(A.54)

But

Pm;�

�G+�0("+) � C

2
�(n); Acn

�
= Pm;�

����e01 �D�1
n�0Z

+0
�0W

+
�0Z

+
�0D

�1
n�0

��1
D�1
n�0Z

+0
�0W

+
�0"

+
��� � C

2
�(n); Acn

�
� Pm;�

��
�min(D

�1
n�0Z

+0
�0W

+
�0Z

+
�0D

�1
n�0

��1 D�1
n�0Z

+0
�0W

+
�0"

+
 � C

2
�(n); Acn

�
� Pm;�

��
�min(D

�1
n�0Z

+0
�0W

+
�0Z

+
�0D

�1
n�0

��1 D�1
n�0Z

+0
�0W

+
�0"

+
 � C

2
�(n); Acn

�
= Pm;�

�D�1
n�0Z

+0
�0W

+
�0"

+
 > C�(n)

�
= O(��2(n)) (A.55)

where the last line follows from (A.46). Similarly

Pm;�

�G��0("�) � C

2
�(n); Acn

�
= O(��2(n)): (A.56)

As a consequence

Pm;�

�p
nhs0 j�̂�0 � �j � C�(n); Acn

�
(A.57)

� Pm;�

���G+�0(~e+)�G��0(~e�)�� � C�(n) + C (log n)�s0=[(2s0+1)(2�0+1)] �(n); Acn

�
+ o(1):
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Using the de�nition ofM0; we have��G+�0(~e+)�G��0(~e�)��
=

���e01�s0 �D�1
ns0Z

+0
s0W

+
s0~e

+ � (�1)`0+1D�1
ns0Z

�0
s0W

�
s0~e

�
���� (1 + o(1))

� C
p
nh�0h

s0
�0(1 + o(1)) = Cn

�0�s0
2�0+1 (1 + o(1)) (A.58)

= (log n)(�s0)=(2s0+1)(C + o(1)):

However, since

(log n)(�s0)=[(2s0+1)(2�0+1)] �(n) = C (log n)(�s0)=(2s0+1)
2

�(n)(1 + o(1)):

= o((log n)(�s0)=(2s0+1)) (A.59)

provided that
p
2� > 2 + 1=s0, we have

P
���G+�0(~e+)�G��0(~e�)�� � C�(n) + C (log n)8s0=[(2s0+1)(2�0+1)] �(n)

�
= o(1); (A.60)

when n is large enough. Combining this with (A.57) leads to the stated result.

Proof of Theorem 3. Using Lemma A.1, we write

Pm;�

�
n

s
2s+1 ��1(n)j�̂ŝ � �j � C1

�
= Pm;�

�
n

s
2s+1 ��1(n)j�̂ŝ � �j � C1; A

c
n

�
+ Pm;�(An)

: = �+n +�
�
n + o(1) (A.61)

where

�+n = Pm;�

�
n

s
2s+1 ��1(n)j�̂ŝ � �j � C1; ŝ � s;Acn

�
and

��n = Pm;�

�
n

s
2s+1 ��1(n)j�̂ŝ � �j � C1; ŝ < s;Acn

�
: (A.62)

We want to show that limC1!1 lim supn!1 sups;Pm;� �
+
n = 0 and likewise for �

�
n :

We consider �+n �rst. By the triangle inequality and the de�nition of ŝ; we have

�+n � Pm;�

�
n

s
2s+1 ��1(n)j�̂ŝ � �̂sj � C1=2; ŝ � s;Acn

�
+ Pm;�

�
n

s
2s+1 ��1(n)j�̂s � �j � C1=2; A

c
n

�
� Pm;�

�
n

s
2s+1 ��1(n)(nhs)

�1=2 2�s�(n) � C1=2; A
c
n

�
+ Pm;�

�
n

s
2s+1 ��1(n)j�̂s � �j � C1=2; A

c
n

�
� Pm;�( 

�1=2
1  2�s� � C1=2; A

c
n) + Pm;�

�
n

s
2s+1 ��1(n)j�̂s � �j � C1=2; A

c
n

�
: = �+n;1 +�

+
n;2 (A.63)

35



where we have used that �s is non-decreasing in s:Obviously, limC1!1 lim supn!1 sups;Pm;� �
+
n;1 =

0: It follows from Lemma A.2(a) that

lim
C1!1

lim sup
n!1

sup
(s;Pm;�)

�+n;2 = 0: (A.64)

In consequence, limC1!1 lim supn!1 sup(s;Pm;�)�
+
n = 0:

Next, we consider ��n : We have

��n =
X

�2Sg :�+g<s
Pm;�

�
n

s
2s+1 ��1(n)j�̂� � �j � C1; ŝ = � ; Acn

�
+Pm;�

�
n

s
2s+1 ��1(n)j�̂�s � �j � C1; ŝ = � s; A

c
n

�
�

X
�2Sg :�+g<s

Pm;�(ŝ = � ; Acn) + Pm;�

�
n

s
2s+1 ��1(n)j�̂�s � �j � C1; A

c
n

�
:= ��n;1 +�

�
n;2; (A.65)

where � s 2 Sg and s� g � � s < s:

Now, we bound Pm;�(ŝ = � ; Acn): By the de�nition of ŝ; if ŝ = � ; there exists ~� � � ;

~� 2 Sg such that j�̂(� + g)� �̂(~�)j >  2 (nh~� )
�1=2 �~��(n). As a consequence, for all � 2 Sg

with � + g < s;

Pm;�(ŝ = � ; Acn)

�
X

~�2Sg :~���
Pm;�

�
j�̂�+g � �̂~� j >  2 (nh~� )

�1=2 �~��(n); A
c
n

�
�

X
~�2Sg :~���

Pm;�

�
(nh�+g)

1=2 j�̂�+g � �j >
1

2
 2�s��(n); A

c
n

�

+
X

~�2Sg :~���
Pm;�

�
(nh~� )

1=2 j�̂~� � �j >
1

2
 2�s��(n); A

c
n

�

� 2(s� � s�)(log n) sup
~�<s

Pm;�

�
(nh~� )

1=2 j�̂~� � �j >
1

2
 2�s��(n); A

c
n

�
; (A.66)

where the third inequality holds because there are at most (s�� s�)(log n) elements ~� 2 Sg
for which ~� � � : Note that the third inequality only applies for � such that � + g < s: It is

for this reason that we decompose ��n into �
�
n;1 +�

�
n;2 in (A.65).

Equations (A.65), (A.66) and Lemma A.2(a) give: for some C <1;

sup
s2[s�;s�]

sup
Pm;�2P(s;�;K)

��n;1 � 2(s� � s�)2(log n)2C��2(n)

= O((log log n)�1) = o(1) as n!1: (A.67)
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Next, we have

ns=(2s+1)n��s=(2�s+1) � ns=(2s+1)n�(s�g)=(2s�2g+1) = n�s;gg � ng = nlog
�1 n = e; (A.68)

where �s;g = (2s+1)�1(2s�2g+1)�1 � 1: This, � s < s; and (A.65) give: for some C <1;
ns=(2s+1) �  

�1=2
1 (nh�s)

1=2e and

��n;2 � Pm;�

�
(nh�s)

1=2j�̂�s � �j � C1 
1=2
1 e�1�(n)

�
� C��2(n) = o(1) as n!1: (A.69)

This completes the proof of the theorem.

Proof of Theorem 5. Set s := min(s0; s�). We �rst bound P (ŝ < s� g) : We have

P (ŝ < s� g) =
X

�2Sg :�+g<s
P (ŝ = � ; Acn) + o(1) = o(1); (A.70)

where the second o(1) term follows from the same proof for ��n;1 = o(1); see equation

(A.67). Here we do not need the uniformity result as we focus on a particular function in

M0(s0; �;K):

If s0 � s�, then (A.70) clearly implies the result. Therefore, from now on we can assume

s0 < s�. We now prove that P (ŝ > �0) = o(1) where �0 := s0 + (�s0) (log log n) = log(n)

with
p
2� > 2 + 1=s0 as de�ned in Lemma A.2(b). Assume without loss of generality that

�0 2 Sg: By the de�nition of ŝ;

P (ŝ > �0) = P (ŝ > �0; A
c
n) + o(1)

� P
�p

nhs0 j�̂�0 � �̂s0 j �  2�s0�(n); A
c
n

�
+ o(1)

� P
�p

nhs0 j�̂�0 � �j �  2�s0�(n) +
p
nhs0 j�̂s0 � �j; Acn

�
+ o(1)

� P
�p

nhs0 j�̂�0 � �j �  2�s0�(n)) + C�(n); A
c
n

�
+P

�p
nhs0 j�̂s0 � �j � C�(n); Acn

�
+ o(1)

= o(1); (A.71)

where the last line uses both parts of Lemma A.2. In the above proof, we implicitly assume

that s0 2 Sg: If this is not the case, we can bound P (ŝ > �0) by

P
�q

nh�s0 j�̂�0 � �̂s�0 j �  2�
�
s0�(n); A

c
n

�
+ o(1) (A.72)

where s�0 := max fs : s 2 Sg; s � s0g. The rest of the proof goes through with obvious
changes.

Combining (A.70) and (A.71), we get ŝ = min(s0; s�) +Op (log log n= log n) as desired,

completing the proof of Theorem 5.
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