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Abstract 
 
In this paper we study two statistical ap-

proaches to load forecasting. Both of them model 
electricity load as a sum of two components – a 
deterministic (representing seasonalities) and a 
stochastic (representing noise). They differ in the 
choice of the seasonality reduction method. 
Model A utilizes differencing, while Model B uses 
a recently developed seasonal volatility tech-
nique. In both models the stochastic component 
is described by an ARMA time series. Models are 
tested on a time series of system-wide loads from 
the California power market and compared with 
the official forecast of the California System Op-
erator (CAISO). 

 

1. INTRODUCTION 
 

The forecasting of energy demand has 
become one of the major fields of research in 
electrical engineering. The power industry 
requires forecasts with lead times that range 
from the short term (a few minutes, hours or 
days ahead) to the long term (up to 20 years 
ahead). Short-term forecasts, in particular, 
have become increasingly important since 
the rise of the competitive energy markets.  

Load forecasting is vital to the whole 
power industry, however, it is a difficult task. 
Firstly, because the load time series exhibit 
seasonality – at the daily, weekly and annual 
timescales. Secondly, because there are 

many exogenous variables that may be con-
sidered, with weather conditions being the 
most influential. It is relatively easy to get 
short-term forecasts with a few percent error, 
however, the financial costs of the error are 
so high that research is aimed at reducing it 
even by a fraction of a percentage point. 

Most forecasting models and methods 
have already been tried out on load forecast-
ing, with varying degrees of success. They 
may be classified into two broad categories: 
artificial intelligence based techniques and 
classical (or statistical) approaches. The for-
mer include expert systems, fuzzy inference, 
fuzzy neural models, and – in particular – 
artificial neural networks (ANN). In the 1990s 
much research has been carried out in this 
area. Nevertheless, the reports on the per-
formance of ANNs in forecasting have not 
entirely convinced the researchers and the 
practitioners alike and the skepticism may be 
partly justified. Recent reviews and textbooks 
on forecasting argue that there is little evi-
dence as yet that ANNs might outperform 
standard forecasting methods [7,9]. Reviews 
of ANN based forecasting systems have 
concluded that much work still needs to be 
done before they are accepted as estab-
lished forecasting techniques and that they 
are promising but that ”significant portion of 
the ANN research in forecasting and predic-
tion lacks validity”. Two major shortcomings 
were found to detract from the credibility of 
the results: the proposed ANN architectures 
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were too large for the data at hand (the 
ANNs apparently overfitted the data) and the 
models were not systematically tested [7]. 

The statistical methods differ from the 
previous approach in that they forecast the 
current value of a variable by using an ex-
plicit mathematical combination of the previ-
ous values of that variable and, possibly, 
previous values of exogenous factors (spe-
cially weather and social variables). Models 
that have been applied recently include auto-
regressive (AR) models, linear regression 
models, dynamic linear or nonlinear models, 
ARMAX models, threshold AR models, 
methods based on Kalman filtering, optimiza-
tion techniques, and curve fitting procedures. 
The statistical models are attractive because 
some physical interpretation may be at-
tached to their components, allowing engi-
neers and system operators to understand 
their behavior. At the same time they offer 
relatively good performance [5,11,13,14]. 

In this paper we evaluate two statistical 
approaches. Both of them model electricity 
load as a sum of two components – a deter-
ministic (representing seasonalities) and a 
stochastic (representing noise). They differ in 
the choice of the seasonality reduction 
method. Model A utilizes differencing, while 
Model B uses a recently developed seasonal 
volatility technique [16]. In both models the 
stochastic component is described by an 
ARMA time series. 

 

2. ANALYZED DATA  
 
The analyzed time series of system-wide 

loads was constructed using data obtained 
from the California’s Independent System 
Operator (CAISO, http://oasis.caiso.com). 
The models are calibrated to data from the 
period January 1, 1999 – December 31st, 
2000, i.e. two full years. The following year is 
used for out of sample testing of the models. 
Recall, that it includes the period of soaring 
prices and San Francisco blackouts of Janu-
ary 2001. This rough period was  selected 
because we wanted to “stress test” the mod-
els.  

Due to a very strong daily cycle that we 
did not want to address in this paper, we 
created a 1096 days long sequence of daily 
loads, see Fig. 1. Apart from the daily cycle, 
the time series displays weekly and annual 
seasonality, which has to be removed before 
time series models can be fitted to the sto-
chastic part. 
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FIGURE 1.  Daily system-wide loads in Cali-

fornia (1999-2001) 
 

3. SEASONALITY REDUCTION 

3.1. Model A 
 
As we have mentioned we model the elec-

tricity load tZ  as a sum of two components – 
a deterministic (or seasonal) tX  and a sto-
chastic tY . The former can be treated in sev-
eral ways. Probably the simplest one is to 
use differencing, which consists of subtract-
ing selected previous load values from the 
current load [2]. In Model A we utilize the fol-
lowing formula:  

 
ttt XZY −=  
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T = 168 hours (i.e. one week), D = 24 hour 
(i.e. one day), N = 4 or 5 is the number of 
weeks used for calibration, and M = 7 is the 
number of days in a week. This procedure 
yields an approximately stationary sequence 

tY ; the KPSS test [10] does not reject the 
hypothesis of stationarity at the 5% level. 
This allows us to model the residuals (i.e. the 
stochastic part tY ) by an ARMA process. 
 

3.2. Model B 
 
The differencing technique applied in 

Model A has the disadvantage of being very 
sensitive to the load observed in the pro-
ceeding days or weeks. An alternative ap-
proach – which does not possess this defi-
ciency – consists of fitting, typically via a 
non-linear least-squares routine, a sum of 
sine (or cosine) waves having different ampli-
tudes, frequencies and/or phase angles [12]. 
However, in our case the daily data spans 
only a few years and no significant change of 
amplitude can be observed. Furthermore, as 
can be seen in Fig. 1, it is highly non-
sinusoidal – it is rather flat throughout the 
year with a substantial hump in late summer 
and autumn. Because common trend and 
seasonality removal techniques (like the 
moving average algorithm, see below) do not 
work well when the time series is only a few 
cycles long, in Model B we applied a new 
seasonality reduction technique [16] to the 
annual cycle. 

To remove the weekly cycle we used the 
moving average technique [4, p.30]. For the 
vector of daily loads },{ 7311 ZZ K  the trend 
was first estimated by applying a moving av-
erage filter specially chosen to eliminate the 
weekly component and to dampen the noise: 
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where t = 4, …, 728. Next, we estimated the 
seasonal component. For each k = 1,…, 7, 
the average wk of the deviations 

}72874),ˆ{( 77 ≤+≤− ++ jkmZ jkjk  was com-
puted. Since these average deviations do not 
necessarily sum to zero, we estimated the 
seasonal component kŝ as 
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where k = 1, …, 7 and 7ˆˆ −= kk ss  for k>7.  The 
deseasonalized (with respect to the 7-day 
cycle) data was then defined as ttt sZd ˆ−=  
for t = 1, …, 731. Finally, we removed the 
trend from the deseasonalized data }{ td  by 
taking logarithmic returns )/log( 1 ttt ddr += ,  
t = 1, … , 730.  

After removing the weekly seasonality we 
were left with the annual cycle. Unfortu-
nately, because of the short length of the 
time series (only 2 years), the method ap-
plied to the 7-day cycle could not be used to 
remove the annual seasonality. To overcome 
this we applied a new method which consists 
of the following [16]:  
(i) calculate a 25-dayrolling volatility [8]  
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for t = 1, … , 730 and a vector of returns 

}{ tR  such that R1 = R2 = … =R12 = r1, R12+t 
= rt for t = 1, … , 730, and R743 = R744 = … = 
R754 = r730;  

(ii) calculate the average volatility for 1 year, 

i.e. in our case 
2

20001999
tt

t
vv

v
+

= ; 

(iii) smooth the volatility by taking a 25-day 
moving average of tv ;  

(iv) finally, rescale the returns by dividing 
them by the smoothed annual volatility.  
 



The obtained time series showed no appar-
ent trend and seasonality (for details see 
[11]). Therefore, we treated it as a realization 
of a stationary process. Moreover, the de-
pendence structure exhibited only short-
range correlations. Both, the autocorrelation 
function (ACF) and the partial autocorrelation 
function (PACF) rapidly tended to zero, 
which suggested that the deseasonalized 
load returns could be modeled by an ARMA-
type process.  
 
 
4. MODELING THE STOCHASTIC COM-
PONENT  

 
The mean-corrected (i.e. after removing 

the sample mean) deseasonalized load re-
turns were modeled by ARMA processes, i.e. 
processes of the form: 
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where ),( qp  denote the order of the model 
and }{ tε  is a sequence of independent, iden-
tically distributed variables with mean 0 and 
finite variance 2σ  (denoted by );0(iid 2σ  in 
the text). In both models the maximum likeli-
hood (ML) estimators were used to obtain 
estimates  of ( )2

11 ,,,,,, σθθφφ qp KK . The 
ML estimators used here are based on the 
assumption of Gaussian noise }{ tε . How-
ever, this does not exclude models with non-
Gaussian noise since the large sample dis-
tribution of the estimators is the same for 

);0(iid~}{ 2σεt  regardless of whether or not 
}{ tε  is Gaussian (see [3, Section 10.8]).  
In Model A the model size )2,3()q,p( =  

was selected based on the SAS implementa-
tion of the Extended Sample Autocorrelation 
Function (ESACF) and the Smallest CANoni-
cal (SCAN) correlation method that can ten-
tatively identify the orders of a stationary or 
nonstationary ARMA process [6,15]. In 
Model B the parameter estimates and the 

model size )6,1()q,p( =  were selected to be 
those that minimize the bias-corrected ver-
sion of the Akaike criterion, i.e. the AICC sta-
tistics, see [4, Section 5.5]. This time the 
ITSM and Matlab software was used, how-
ever, analogous results were also obtained 
with SAS. 

After calibrating ARMA processes we had 
to test their residuals. As it turned out, in both 
cases, there was not sufficient evidence to 
reject the i.i.d. hypothesis of the residuals at 
the common 5% level, however, the distribu-
tion was not Gaussian but heavy tailed. The 
hyperbolic distribution [1] gave a very good fit 
to Model B residuals (for details see [11]). 

 
 

5. FORECASTING PERFORMANCE  
 

It is not so surprising that a model will per-
form well when evaluated by its fit to the data 
set to which it was adjusted. The real test is 
whether it will be capable of also describing 
new data sets coming from the same proc-
ess. A suggestive and attractive way of com-
paring different models is to evaluate their 
performance when applied to a data set to 
which none of them was adjusted. The stan-
dard measure of goodness of fit is the differ-
ence between actual and forecasted outputs. 
The disadvantage of this method is that we 
have to save part of the data set (in our 
analysis – one year) for the comparisons and 
therefore cannot use all available information 
to build the model.  

In the previous section we fitted ARMA 
models to the stochastic (or deseasonalized) 
components of the system-wide load from 
the period January 1, 1999 to December 31, 
2000. Now, we test the performance of the 
model on data from the following year, i.e. 
from the period January 1 to December 31, 
2001. For every day in the test period we run 
a day-ahead prediction. We apply an adap-
tive scheme, i.e. instead of using a single 
model for the whole sample, for every day in 
the test period we calibrate the best 
ARMA(3,2) and ARMA(1,6) model (for Model 
A and Model B, respectively) to the previous 
730 values of the stochastic component and 
obtain a forecasted value for that day. The 



results are then “inverted” (the seasonality is 
added) and compared with the actual sys-
tem-wide loads and the CAISO official day-
ahead forecasts. The performance of the 
models can be observed in Figs. 2-7 and is 
summarized in Table 1 and Fig. 8.  
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FIGURE 2.  Daily system-wide loads in Cali-

fornia (Jan.-Feb. 2001) compared with 
Model A, Model B and CAISO day-ahead 
forecasts. 
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FIGURE 3.  Daily system-wide loads in Cali-

fornia (May-Jun. 2001) compared with 
Model A, Model B and CAISO day-ahead 
forecasts. 
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FIGURE 4.  Daily system-wide loads in Cali-

fornia (Nov.-Dec. 2001) compared with 
Model A, Model B and CAISO day-ahead 
forecasts. 
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FIGURE 5.  Mean Absolute Percentage Error 

(MAPE) of the day-ahead Model A, Model 
B and CAISO forecasts (Jan.-Feb. 2001). 
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FIGURE 6.  Mean Absolute Percentage Error 

(MAPE) of the day-ahead Model A, Model 
B and CAISO forecasts (May-Jun. 2001). 
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FIGURE 7.  Mean Absolute Percentage Error 

(MAPE) of the day-ahead Model A, Model 
B and CAISO forecasts (Nov.-Dec. 2001). 

 
 
TABLE 1.  Mean Absolute Percentage Errors 

(MAPE) of the day-ahead Model A, Model 
B and CAISO forecasts for the whole year 
2001. Best results are emphasized in bold. 

 
MAPE CAISO Model A Model B 
With  

holidays 
1.84% 2.30% 2.08% 

Without 
holidays 

1.77% 1.95% 1.71% 
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FIGURE 8.  Cumulated Mean Absolute Per-

centage Error (MAPE) of the day-ahead 
Model A, Model B and CAISO forecasts for 
data with US national holidays excluded. 

 
Looking at the Mean Absolute Percentage 

Error ( %100ˆMAPE
1n

1 ×−= ∑ =

n

i ii xx )  val-
ues for the whole test period we can observe 
that the CAISO forecast outperforms our 
models. Note, however, that the extreme dif-
ferences between the actual load and Mod-
els A and B correspond to the US national 
holidays – New Year’s Day (lag 1 in Fig. 5), 
Washington’s Birthday (lag 50 in Fig. 5), etc. 
Obviously, our models cannot capture the 
holiday structure. Fortunately, this can be 
quite easily incorporated into them by simply 
subtracting a certain amount of GW for these 
holidays based on previous years’ experi-
ence. When we compare the forecasting re-
sults for the same period but with US na-
tional holidays excluded our models perform 
much better. The results improve even more 
if we eliminate some of the days directly pro-
ceeding or following the holidays – in the bot-
tom row of Table 1 and in Fig. 8 we addition-
ally exclude four days with an abnormal con-
sumption pattern (Jan. 2, May 29, Sept. 4, 
and Dec. 31). After the exclusions Model A 
performs significantly better (but still worse 
than the CAISO forecast) and Model B out-
performs both Model A and the CAISO fore-
cast. It is worth noting that Model B yields the 
smallest forecasting error throughout the 
whole year, see Fig. 8. 



It is also quite surprising that both our 
models produce relatively small errors during 
the blackout days in San Francisco (see Fig. 
5), while the CAISO forecast is at least twice 
worse around this time. In fact, as reported in 
[11], the MAPE of Model B is only 1.23% dur-
ing the first two months of year 2001, com-
pared to 1.71% for the CAISO forecast dur-
ing this time period.  

As we have already mentioned the differ-
encing technique applied in Model A has the 
disadvantage of being very sensitive to the 
load observed in the proceeding days or 
weeks. This can be observed in Fig. 5 where 
the forecasting error of January 1 (lag 1) 
negatively influences the forecasts for Janu-
ary 8 (lag 8) and 15 (lag 15), i.e. a week and 
two weeks later.   

 
 
6. CONCLUSIONS  
 
Short-term load forecasting plays an im-

portant role in power system operation and 
planning. Accurate load prediction saves 
costs by improving economic load dispatch-
ing, unit commitment, etc. At the same time it 
enhances the function of security control. In 
this paper, we have evaluated two statistical 
approaches. Both of them model electricity 
load as a sum of two components – a deter-
ministic (representing seasonalities) and a 
stochastic (representing noise). They differ in 
the choice of the seasonality reduction 
method – Model A uses differencing, while 
Model B a new seasonality removal tech-
nique.  

The models were successfully applied to 
real data. A comparison was made between 
both models and the official forecasts of the 
California Independent System Operator 
(CAISO). The effectiveness of the ap-
proaches was demonstrated through a com-
parison of the real load data with short-term 
forecasted values. In terms of MAPE Model 
B yielded a smaller error than the CAISO 
day-ahead forecast during the whole year 
2001. While being simpler Model A returned 
a higher error.  

We strongly believe that the approach im-
plemented in Model B is a universal one and 

can be applied not only to the California 
power market system-wide load but also to 
other power market data sets displaying sea-
sonalities. Moreover, even for the more bur-
densome Model B the computational times 
are negligible and the method can be used in 
real time forecasting.  
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