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Abstract

This paper studies the estimation of conditional quantiles of counts. Given the
discreteness of the data, some smoothness has to be artificially imposed on the
problem. The methods currently available to estimate quantiles of count data either
assume that the counts result from the discretization of a continuous process, or
are based on a smoothed objective function. However, these methods have several
drawbacks. We show that it is possible to smooth the data in a way that allows
inference to be performed using standard quantile regression techniques. The per-
formance and implementation of the estimator are illustrated by simulations and an

application.
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1. INTRODUCTION

Since the publication of the two seminal papers on the econometrics of count data (Haus-
man, Hall and Griliches, 1984, and Gourieroux, Monfort and Trognon, 1984), this research
area has gained great popularity, being now the subject of two monographs (Cameron and
Trivedi, 1998, and Winkelmann, 2000) and of countless theoretical and applied journal
articles. This vast literature is roughly divided into two main strands.

Part of the literature follows the lead of Gourieroux, Monfort and Trognon (1984) and
concentrates on the semiparametric estimation of the conditional mean of the count variate
based on the pseudo-likelihood framework. Despite its elegance and attractiveness, this
approach is limited by its own nature because it does not provide information on many
aspects of the distribution of the counts which are often of interest in applied research.
In fact, the pseudo-likelihood approach only permits the estimation of the conditional
expectation of the variate of interest, which gives very little information about a condi-
tional distribution in which features other than location can depend on the regressors in
a complex way. Given the limitations of this approach, it is not surprising to find that,
following the early work of Mullahy (1986), several fully parametric probabilistic models
have been developed to describe particular features of count data sets often found in ap-
plications. These models completely describe the conditional distribution of interest and
therefore allow the researcher to study the impact of the covariates on every aspect of the
conditional distribution, at the cost of strong parametric assumptions and consequent lack
of robustness.

An alternative approach to modelling count data was pioneered by Efron (1992) who pro-
posed the asymmetric maximum likelihood estimator. This approach requires hypotheses
that are comparable to those underlaying the pseudo-likelihood approach, while allowing
the researcher to study the impact of the regressors on different regions of conditional dis-
tribution of interest. However, the estimated location measures are difficult to interpret.

The estimation of conditional quantile functions or quantile regressions (QR) was origi-

nally advocated and studied by Koenker and Bassett (1978) and is becoming increasingly



popular (see, for instance, the special issue of Empirical Economics on this subject edited
by Fitzenberger, Koenker and Machado, 2001). Although typical applications of QR
assume random sampling from absolutely continuous populations, there exist a rapidly
expanding set of results for other set-ups. The seminal departure was, of course, the work
of Manski (1975 and 1985) on median regression for binary and multinomial models, later
extended by Horowitz (1992). Powell (1984 and 1986) studied QR for censored data and
Lee (1992) analysed median estimation of ordered discrete responses. More recently, QR
techniques were applied to the study of duration or transition data by Koenker and Geling
(1999), Koenker and Bilias (2001) and Machado and Portugal (2002).

This paper studies the possibility of estimating conditional quantiles of count data.
Like the asymmetric maximum likelihood estimator, the estimation of conditional quan-
tiles requires hypotheses that are comparable to those underlaying the pseudo-likelihood
approach, while allowing the researcher to obtain most of the results that so far were only
possible to obtain using more structured models. In particular, using quantile regression
it is possible to study the impact of the regressors on each quantile of the distribution
and it is also possible to produce some probabilistic statements about the counts. The
main problem with the estimation of conditional quantiles with count data stems from the
conjunction of a non-differentiable sample objective function with a discrete dependent
variable. Since there are points of positive mass, the non-smoothness of the objective
function is not necessarily averaged away and, consequently, the usual strategies based
on Taylor expansions cannot be used to obtain the asymptotic distribution of the condi-
tional quantiles (see, Huber, 1981, pp. 50-51 for a discussion about the interplay between
smoothness of the objective function and of the density of the data). The problem is anal-
ogous to that faced in the estimation of conditional quantiles for binary data using the
maximum score estimator, which ultimately yields the non-standard rate of convergence
of the estimator (see Manski, 1975, and 1985). The objective function of the maximum
score estimator is non-differentiable both because it depends on the absolute value of a

residual and because the conditional median of Y given x, med (Y|z), is an indicator func-



tion. However, as shown by Horowitz (1992), both sources of non-differentiability can be
eliminated by smoothing the indictor function, leading to an estimator with a much more
tractable asymptotic distribution and to convergence rates of practical utility.

In order to be able to apply quantile regression to counts, some degree of smoothness
has to be artificially imposed on the problem. A possible approach is to view the count
data as the discretized result of a continuous underlying model. Then, as in the binary
choice case, the functional form of med (Y|z) results from the specification of a latent
model and the results of Lee (1992) on median regression for ordinal data can be extended
to estimate the parameters of interest. To achieve rates of convergence of practical inter-
est, the objective function defining the quantiles will have to be smoothed as in Horowitz
(1992) and Melenberg and van Soest (1994 and 1996). However, this approach has several
drawbacks. By its own nature, this approach lacks an interpretation in terms of an under-
lying count process and this may be an unappealing feature in some situations. Moreover,
this approach requires the introduction of a new parameter for each count actually ob-
served. On the other hand, the smoothed version of this estimator proposed by Melenberg
and van Soest (1994 and 1996) depends on the specification of smoothing parameters for
which, at present, there are no optimal selection rules and, for typical kernels, does not
achieve the usual /n convergence rate. Finally, the implementation of this estimator is
still computationally very expensive, which may explain why it is seldom used in practice.

An alternative approach explored in this paper is based on the artificial smoothing of the
data using a specific form of jittering introduced by Stevens (1950) in a different context.
The idea is to construct a continuous variable whose conditional quantiles have a one-
to-one relationship with the conditional quantiles of the counts, and use this artificially
constructed continuous variable as a base for inference.

The remainder of the paper is organized as follows. Section 2 overviews the issues
involved in the estimation of quantiles for discrete data and provides a flavour of the
approach based on the artificial smoothing of the data. Section 3 presents the proposed

quantile regression estimator as well as two alternative approaches currently available.



Sections 4 and 5 evaluate the proposed approach using simulation experiments and a well

known data set. Finally, section 6 presents some concluding remarks.
2. A BIRD’S-EYE VIEW OF THE PROBLEM

Although this paper focuses on the estimation of quantile regression for count data, it is
useful to introduce the main features of this problem, and the solution proposed here, in a
much simpler context. To this end, this section considers the estimation of the quantiles of
a discrete random variable in the simplest possible case. Let Y denote a Bernoulli random

variable with Pr (Y = 0) = ¢, and 0 < ¢ < 1. The a-quantile of Y can be written as’

Qy<Oé):1<Oé>q)7

where 1 (A) is the usual indicator function for the event A. Given a sample {Y;}? |, the

maximum likelihood estimator of ¢ is given by ¢ =1 — % Y i Y, leading to the following

estimator for Qy (@)
Qy (@) =1(a>q),
which is the solution of min,cjo1) >, pa(Yi — ), with p,(v) = v(a — I (v < 0)) being the
usual check function.
Notice that, since Qy (a) is not a continuous function of ¢ at o = ¢, Slutsky’s theorem
cannot be invoked to claim consistency for Qy (). However, the asymptotic behaviour

of Qy (a) is easy to analyse. In fact, Qy (a) is also a Bernoulli random variable with

Pr (Qy () = 0) = Pr (« < §). Therefore, by the De Moivre-Laplace theorem, for large n

the probability Pr (Qy (o) = 0) can be approximated by 1 — @ <\/ﬁ O‘(;q )>.
Va(l—q

This result has several interesting implications.

1. For o« > ¢, Pr (Qy () = 0) tends to 0 as n passes to co. Therefore P lim (Qy (a)) =
Qy («). Similarly, for o < g, Pr (Qy (o) = 0) tends to 1, and again Plim (Qy (a))
= @y («). Therefore, for o # ¢, the estimator Qy (a) is consistent for Qy (@), a

result that can also be obtained using Slutsky’s theorem.
'Recall that the a-quantile of Y is defined by Qy (a) = min{n|P(Y <n) > a}.
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2. If « = q, Pr (Qy (o) = 0) =1—®(0) = 0.5. Consequently, as the sample size
goes to infinity, Qy (a)) converges to a Bernoulli distribution with parameter 0.5,

and therefore the estimator is not consistent.

3. The variance of the distribution of Qy (o) is
V|Qy (@] =Pra<@)Pra>4q),

which, invoking again De Moivre-Laplace’s theorem, for a # ¢, vanishes as n passes
to infinity. It is interesting to notice that the rate of convergence is not the usual
since nV |:Qy (a)} also converges to zero. Using well known results on the rate of
decay of the tails of the normal distribution (see, e.g., Pollard, 1984, appendix B),
it is possible to establish that V' [Qy (a)} converges to zero like n= /2 exp(—n).

4. Because the estimated quantiles are random variables with the same support as Y,

their asymptotic distribution cannot be normal when the data is discrete.

To sum up, in this very simple case none of the standard results on the asymptotic
properties of the estimators holds.

Consider now that a new random variable 7 is constructed by adding to ¥ a random
variable U uniformly distributed in the interval [0,1). That is, Z =Y + U. Obviously, Z
is a continuous random variable with positive density on the interval [0,2) and Q5 («) is

defined by

o

a q>
1+ (173) q <«

The interesting feature of the random variable 7 is that there is a one-to-one relationship

between @y (a) and @z («). Proposition 1 in section 3 shows that Qy (o) = [Qz () — 1],
where [a] denotes the so-called ceiling function which returns the smallest integer greater
than, or equal to, a.

Therefore, information about the quantiles of Y, the variate of interest, can be obtained

from @z (c). It is now interesting to study the properties of the following estimator of



. < qg>«
Qz<Oé): ! N s
1+ ~% <«

(1-9)
which, like Qy (a), only depends on ¢ and «.

The first thing that can be noticed is that Q («) is a continuous function of ¢ and
therefore, by Slutsky’s theorem, QZ (e) is comsistent for @z (). Moreover, for a # g,
Q 7 (@) is a continuous and differentiable function of ¢ and in this case the delta method
can be used to obtain the usual normal approximation to the distribution of Q 7 ().

However, for o = ¢, the derivative of Q)5 () with respect to g only exists when a = g =
0.5. This means that, except in this case, there will be a “discontinuity in the variance”
of the asymptotic distribution of Q 7 (@) (cf. Huber, 1981, pp. 50-51 and also Simpson,
Carroll and Ruppert, 1987 and Knight, 1998). Therefore, the standard results will hold
for the estimation of any quantile when ¢ = 0.5. Otherwise, the usual asymptotic theory
is valid only for quantiles with « # q.

As noticed, the reason for this breakdown of the asymptotic theory when a = ¢ and
q # 0.5 is that in this case the derivative of Q5 () with respect to ¢ is not continuous at
a = q. Equivalently, this results from the fact that the probability density function of 7
is not continuous at Q7 (o) when o = ¢, unless ¢ = 0.5. What is interesting to notice is
that, whatever the values of ¢ and «, this discontinuity occurs for Q4 (o) = 1. Using the

results of Knight(1998) it is possible to show that

. p 1 1
NG (QZ (@) — 1) B VIV 2 0p+ VIV <0}

where V is standard normal. When ¢ = 1/2 the limiting distribution is A(0,1/4); oth-
erwise is a member of the two-piece normal family of distributions (John, 1982), with
parameters (0, (1 —¢)~1, ¢ 1).

Consider now the regression problem in which ¢ is a continuous function of a set of
regressors, say &, and the researcher is interested in the estimation of the conditional
quantiles of Y, denoted Qy (o|z). As before, Qy (a|z) is either 0 or 1 and its estimator is

marred by problems which are similar to those found in the simpler case discussed above.
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However, smoothing Y by adding to it the uniform random variable, partially solves these
problems. In particular, except for the set in which z is such that Q7 («|z) = 1, standard
inference holds. However, as it will be argued below, this set will have measure zero
if one assumes that there exists at least on continuously distributed covariate and the
conditional quantiles of 7, @ («|x) are a continuous function (measurable would suffice)

of that covariate. This approach is explored in the following section.
3. SMOOTH QUANTILES FOR COUNTS

Some of the problems resulting from the discreteness of the data were highlighted in
the previous section. In the remainder of this section, we explore different ways around
this problem. Two of the methods considered have been available for the last 10 years.
However, these methods are not particularly attractive and, to our knowledge, they have
never been used in practice to model count data, and are not ever referred to in the mono-
graphs of Cameron and Trivedi (1998) and Winkelmann (2000). We start by surveying the
existing alternatives and then we will present the new method whose essence was sketched

in the previous section.
3.1 Smoothing the Process

One possible approach consists in modelling the discrete data as the result of a continu-
ous process crossing some thresholds. Despite the already mentioned drawbacks of treating
count data as the result of a continuous process, for completeness, we now present a sketch
of this approach.

The dependent variable Y takes values in the set {0,1,..., M} according to the model

M
Y= 1y >¢)=0
j=1

with & < &, < ... < §,, and where Y* is a latent variable satisfying, for a given set of

covariates x,

Y*=2'8(a) +en , Qe (o) =0.
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Since the function E]Nil L(Y* > &) is monotone, the equivariance property of the
quantiles implies that,

M M

Qy(alz) = 1Qy(alz) > &) = 1B (a) > ¢,).

=1 =1
Tee (1992) uses this result to extend Manskil’s maximum score estimator to ordered

discrete data models that is, in our setting, to the estimation of the conditional median.

The extension to general quantiles would be direct,

n M
mbin;pa (Yi - 21@26 > @))

j=1
where, as before, p,(v) is the check function (for simplicity of exposition we are condition-
ing on the &;’s).

Although we are not aware of such a proof, it is natural to anticipate that the estimator
will share Manski’s major drawback, the n=/? rate of convergence. This remark suggests
a smoothing alternative similar to Horowitz’s (1992) and Melenberg and van Soest (1994
and 1996) (see also Horowitz, 1998). That would entail replacing all the indicator functions
with integrated kernels. Notice, however, that the final smooth objective function would

result quite messy because things do not simplify as nicely as in the binary case.’

3.2 Smoothing the objective function

As noted in the introduction, the discreteness of the count data makes the sample
objective function defining the quantile regression estimator non-differentiable, leading to
all sorts of problems in obtaining asymptotically valid inference. Efron’s (1992) asymmetric
maximum likelihood (AMIL) estimator can be interpreted as resulting from smoothing
the objective function defining the quantile regression estimator. The AML estimates
conditional location functions for count data which are akin to the conditional expectiles

proposed by Newey and Powell (1987) for the linear model. Therefore, strictly speaking,

2 A simpler parametric alternative would be the rank regression approach of Fortin and Lemieux (2000).



this method does not permit the estimation of conditional quantiles for counts, but it allows
the estimation of different location functions for which asymptotically valid inference can
be performed using standard methods.

This approach requires hypotheses that are comparable to those underlaying the pseudo-
likelihood approach, while allowing the researcher to study the impact of the regressors
on different location functions. Moreover, this method is flexible enough to accommodate
the problems of under or overdispersion that so often afflict empirical models.

The asymmetric maximum likelihood estimator is defined by

~ AML

= argmax ) _ (Viajb — exp (2j0) ~ In (¥;1)) ' 0or(2))

b i—1

w ’

and reduces to the usual Poisson pseudo-likelihood estimator for w = 1.

Efron (1992) defines that the 100a-th AML regression percentile is obtained for w such
that a = %Z?:l 1 (YZ < exp (a:éBZML)) This definition reveals an important limitation
of this approach. Since the indicator function [ (YZ < exp (a:;BZML)) is necessarily equal
to one when Y; = 0, the AML regression percentiles cannot be computed for values of
« smaller that the proportion of zeros in the sample. Furthermore, as in the case of the
linear model (see Koenker 1992 and 1993), the estimated location measures are difficult to
interpret and, like the pseudo-likelihood approach, this modelling strategy does not allow
the researcher to make probability statements about the counts. In a count data context,
the main advantage of the expectiles is that they are generally easier to estimate because

are not restricted to be integers.
3.3 Smoothing the Data

Consider the random variables Y and X, and let Qy (a|z) denote the a-th quantile
of the conditional distribution of ¥ given X = z. Koenker and Bassett (1978) give
sufficient conditions for asymptotically valid inference on the parameters of @y (ax).

Among these conditions, the conditional probability density function f (Y|z) is required
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to be continuous and positive at @y (a|x). If Y results from a count, its support is the

set of the non-negative integers and those sufficient conditions are not satisfied.

3.3.1 Jittering

The main problem with the estimation of QR when Y results from counts is that, because
Y has a discrete distribution, Qy («|z) cannot be a continuous function of the parameters
of interest. This limitation can be overcome by constructing a continuous random variable
whose quantiles have a one-to-one relation with the quantiles of Y. A variable satisfying
this requirement can be constructed by adding to Y, the count variate of interest, U, a
uniform random variable in the interval [0,1), leading to Z = Y 4 U. This approach
uses a specific form of jittering proposed by Stevens (1950) (see also Anscombe, 1948
and Pearson, 1950) to introduce smoothness into the problem, leading to a conditional
quantile function that is continuous in «. Continuity is achieved by interpolating each
jump in the conditional quantile function of the counts using an integrated kernel, much
in the same way Horowitz (1992) smooths the conditional median of binary data. The
difference is that here the uniform distribution is used, not only due to the important
historical precedent, but specially because in the case of count data the kernel has to have
bounded support. Also, in this case, the uniform distribution allows important algebraic
and computational simplifications.

The next proposition, whose proof is given in the appendix, relates the quantiles of the

two random variables.

Proposition 1 Qy (a|z) = [Qz (a]z) — 1], where [a]| denotes the ceiling function which

returns the smallest integer greater than, or equal to, a.

As we show below, its is passible to perform inferences about the conditional quan-
tile functions Q4 (a]x) and, in particular, about the “regression coefficients” V5 (a;x) =
0Q 7 (a|z) /Ox;. These quantities are is interesting in themselves as the distribution of Z is
closely related to the distribution of interest. However, 7y (c; x) also provides information

about the way @y («|x) depends on the regressors. Proposition 1 above makes clear that
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if a given v, (cv; x) is zero that implies that Qy (a|z) does not depend on the corresponding
covariate. Therefore, it is possible to test the significance of the regressors in Qy («|z) by
testing their significance in Qy («o|z).

But it is possible to say more about the interpretation of ~y; (a; x). Of course, it does not
make sense to talk about derivatives of Qy (a|x) with respect to a particular z;. But its
certainly possible to define “inverse sensitivities” as the minimum variation in x; needed
to ensure that AQy (o) = Qy (a|z; + Az;) — Qy (a|z;) = 1, taking all other covariates
as fixed. First notice that if a given quantile of Z vary by an integer amount so does the
corresponding quantile of Y7 in symbols, AQy (o) =i = AQy («) = i, i integer. Thus,
under the smoothness conditions of Taylor’s theorem, the variation in the j-th regressor
sufficient to ensure that the a-th conditional quantile (at x) of the count process increases
by one unit can be approximated by 1/ Y, (a; x). Therefore, the interpretation of Y, (a; )
in terms of @y (a|x) is not very different {rom the interpretation of the parameters in any

standard non-linear model.

3.3.2 Asymptotics

Although the distribution function of Z is continuous, it is not smooth over its entire
support. In fact, it does not have continuous derivatives for integer values of 7. The prob-
lems for the theory developed by Koenker and Bassett (1978) would occur for inferences
about quantiles that turn out to be integers. However, under mild assumptions, valid
asymptotic inference is still possible, as we now proceed to show.

The asymptotic distribution of the QR estimator will be derived under the following

assumptions:

(Al) Y is a discrete random variable, with support in Ny, the set of the non-negative
integers; in its (minimum) support the conditional probability function of Y given
X is uniformly bounded away from zero for almost every realization of X;
(A2) X is a random vector in R* (with X; = 1) satisfying
(a) P(X'n=0)=0 for any n € R¥,
(b) E(XX') is {inite and non-singular;

12



(A3) Make Z =Y + U, where U is a Uniform in [0,1) random variable, independent of
X and Y. For some known monotone transformation 7'(+; «), possibly depending on

«, the following restriction on the quantile process of Z given X holds

QT(Z;Q)(oz]a:) =2’y (o), for a € (0,1).

and v(a) € T, a compact subset of RF.

Most of these assumptions are standard in the quantile regression literature (see, e.g.,
Pollard, 1991). The only “usual” assumption that is missing is the continuity of the
conditional density of the regressand at the quantile of interest. By construction, the set
of discontinuity points of the density of Z given x is Ny. Assumption (A2a) ensures that
P(X'y(a) € Np) = 0 and, consequently, for almost every realization of X the conditional
density of the regressand at the quantile of interest will be continuous. It is clear that
the same result could be obtained under conditions weaker than (A2a). For instance,
it would suffice to suppose that the quantile being estimated depends on a continuously
distributed covariate. That is, it is enough to assume that in (A3) the component of 7y ()
corresponding to the continuous covariate is not zero for the « of interest.

We now present the main results of the paper, whose proofs can be found in the appendix.

Proposition 2 The data {(y;, z;,u;)}? is a random sample of (Y, X, U), satisfying (A1),
(A2) and (A3). If ¥ («) is the estimator of (o) defined by

I T (Zs; ) —
min ;pa (1" (Zs; ) — xic)
where p,(v) =v(a— 1 (v <0)), then
Vi (¥(e) =v(e)) = N(0,D1AD )
with
A=a(l —a)B(XX')
and
D = E (fro(X"y (a) | X)X X)
with fr,(+|-) denoting the conditional density of T'(Z; ar) given x.

13



For this estimator to be useful in practice, it is necessary to obtain a consistent estimator
for the covariance matrix of /7 (¥ (&) — v (a)). Given that A = a (1 — a) LSy is
a consistent estimator of A, the main difficulty in constructing an asymptotically valid
covariance matrix is to find a consistent estimator for D.

The approach followed here for the estimation of D is akin to the one proposed by Powell
(1984), but takes advantage of some specific characteristics of this problem. In particular,
we explore the fact that, given the way Z is constructed, its density at Z = z equals the
probability that Z is greater or equal to |z| and smaller than |z 4 1], where |a| denotes
the floor function which returns the largest integer smaller than, or equal to, a. Therefore,

the conditional expectation of

H{|Qz(alr)] < Z < [Qz,(alz) + 1]} (1)

equals the conditional density of Z; at Qz (a|r). Of course, what is needed for the co-
variance estimator is not this, but an estimate of the density of T'(7; «) at 2/ («), which
can be obtained from the density of 7 at @z («|x) multiplying it by the Jacobian of the
transformation. The implementation of this approach is complicated by the fact that the
floor function is discontinuous. In order to be able to prove the consistency of the proposed
estimator, this function is replaced in (1 ) by a continuous function that approaches the
floor function as the sample size grows. To construct a consistent estimator for D, three

further assumptions are needed.

(A4) The inverse of transformation T(Z; ), T-1(+), is twice continuously differentiable,
with derivatives denoted by TU) = &T 1 (v; ) /O, § =1, 2.

(A5) The following expectations exist
L B {|IT @y ()] [|:])7]
2. B [supHer(a)Hgé ‘T(j)(a:;’y)‘ Ha:ZHQ}, for j = 1,2 and some § > 0.

(A6) {c,} is a sequence of real numbers in (0,1/2), such that ¢, = o(1) and
SUP i< [T (27 (@) =T (@i ()|
= 0,(1)

Cn

14



as 1 — OQ.

Proposition 3 Let,

with
@; =TW (24 () 1 {Fn (QZZ (oz]a:)) < 7Z; < F, (QZZ (a]x) + 1)}
where Q. (a|x) = T Y (al4 (o)) is the estimated a-th conditional quantile of Z and, for a
sequence ¢y,
lz] —1/24 (x— |z])/ (2¢c,) x—|z] <cpbandz>1

F.(z) = |z ] cn<z—lz|]<l—cporz<l

] +1/24 (@ = [2] = 1)/ Q26) 2= |z] 21 —¢,

\

Then, under (A1) to (A6)

D, L D.

Assumption (A6) warrants a few comments. As it is shown in the proof of Proposition
3, SUPjcicp QZ (a|z) — Qz (a]z)| = 0,(1) and, thus, (A6) restricts ¢, to converge to 0
not too fast (slower than the numerator). The precise nature of this restriction depends
on the regressors and on the transformation 7'(-) defined in Proposition 2. Suppose first
that the regressors are taken to have bounded support, i.e., P[|z;|| < K] = 1, for some
K. This is the case considered in the simulation study presented in the next section.
In this context Proposition 2 implies that sup,,.,, |2, (¥ (o) — v ()| = O, (y/n); on the
other hand, the continuity of 7™(.) implies that, in a closed neighbourhood of 7 («),
T (x4 () is bounded, uniformly in i. Therefore,

S [Ty (e)) = T (i ()] = Op(1/ V),
and ¢, must converge to 0 slower than 1/y/n that is, ¢,\/n — oo.
The condition of bounded support is rather extreme. However, it is quite natural in lin-

ear quantile regression models with heterogeneously distributed “errors” since, otherwise,
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it would be impossible for the conditional quantiles to be linear for all values of x without

crossing. Alternatively, one may prefer the common assumption that the regressors satisfy

nl/a
il =0 (=
e [l p<1n<n>>

(see, e.g., Koenker and Machado, 1999). If one further assumes that 7(.) is Lipschitz

continuous,

s [ (@)~ 1 )] = 0, (£2) 0, (2) =0 (e ).

Here, ¢, must be such that ¢,n'/*In (n) — co. The Lipschitz-continuity assumption may
be too stringent. For instance, it is not met when T™M(.) = exp(-). Specific rates for ¢,
must be derived on a case by case basis. For inverse transformations in the power family,

TM(x) = 27 with 7 < 2, a simple mean-value expansion yields

w1 @ @) = 1 )] = 0, () 0 (52) = 00 (o)

and, consequently, in this case ¢, will be restricted to go to 0 slower than 1/n®=7/41n (n)”.

3.3.3 Implementation issues

In order to implement the results in propositions 2 and 3, it is necessary to specify
the form of @, («|z) and the associated transformation 7'(Z; «). A possible approach to
this problem is now described. Noting that @, (c|x) is bounded from below by «, and
keeping in line with what is traditionally assumed in count data models (including the work
of Efron, 1992, on conditional expectiles for count data), a parametric representation of

Qz (a]x) can be specified as

Qz (a|z) = a +exp(z'y(a)). (2)

Notice that the count data models commonly used in practice do not lead to conditional
quantiles of 7 of this form. However, this specification permits great computational sim-
plifications and provides an approximation to the unknown conditional quantile functions,

much in the same way linear regression is used to approximate unknown mean regression
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functions (see White, 1980). Of course, in presence of misspecification of the regression
quantiles, appropriate estimators of the covariance matrix have to be used (see Cham-
berlain, 1994, and Kim and White, 2002). Further details on this are given in section
4.

Using (2), a simple algorithm to estimate v («) can be designed taking advantage of well
known properties of the quantile functions. In fact, v (&) can be estimated by running a

quantile regression of

log(Z —a) for Z>a
T(Z;a) = (3)
log (<) for Z<a
on x, with ¢ being a suitably small positive number. This is so because quantiles are invari-

ant to monotonic transformations, and because quantiles are also invariant to censoring

from below up to the quantile of interest.
4. SIMULATION RESULTS

The previous section suggests a simple procedure to estimate conditional quantiles of
a count variable Y from the quantiles of an artificially constructed auxiliary variable 7.
Moreover, it was argued that it is possible to construct an asymptotically valid test for
the hypothesis that Qy («|z) does not depend on a given covariate by testing that the
element of v (a) corresponding to that regressor is zero. This section reports the results
of a pilot simulation study on the finite sample behaviour of such test.

In these experiments, the counts Y7, Y5, ..., Y, were generated according to four different

models. In the first model, the counts are Poisson random variables with conditional

mean \; = exp (0y + 0,21; + 0x9;), where z; = 1 (0.05 + 0.9:;11> and xy; 1s a dummy
variable that equals 1 when 7 is a multiple of 5, being 0 otherwise. In the second model the
conditional distribution of the Y’s is negative binomial with mean A; as in model 1, and

overdispersion parameter ¢ = 0.5. The third and fourth models are zero inflated versions

of the first two models, with a proportion of zero inflation of 0.2.
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All experiments were performed with g = 67 = 1 and 0, = 0. Thus, A; does not depend
on xy, which therefore does not affect any aspect of the distributions of the counts. This
implies that the effect of 23 on Qy (a|z) is zero for every a. Using TSP 4.5 (Hall and
Cummins, 1999), 5000 simulations for each model were performed for o € {0.25,0.50,0.75}
and n € {500, 1000, 2000}.

In order to evaluate the proposed test for the hypothesis that Qy (a]z) does not depend
on Iy, the counts were jittered as described in section 3 and the quantiles of the artificial
data were estimated using the procedure described in the previous section. Specifying
Qz (a]x) as in (2), Z was then transformed to obtain T(Z;«a) according to (3), with
¢ =105,

Figures 1 to 4 graph the first there quartiles of T'(Z;«) against x; for each of the
models considered. These quantiles are clearly non-linear, especially for the zero inflated
cases. However, overall, the assumption of linearity seems a reasonable approximation,
at least over this range of x;. Therefore, the parameters of interest were estimated by
running the usual QR of T(Z;a) on zy, z; and a constant, and the significance of the
parameter associated with xy was tested using a t-ratio. Given the misspecification of the
functional form of the quantiles being estimated, the misspecification robust version of the
covariance matrix was used in the construction of the t-ratio (see Chamberlain, 1994 and
Kim and White, 2002). Specifically, the estimator used is based on the asymptotically
valid covariance matrix presented in section 3, which in this particular example has the

form

~

D'AD,
with

~

D= > exp ald () (B o+ exp a7 () < Zi < (0 -+ exp a7 ) + 1)
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Fig. 2: The first three quartiles

of T(Z; «) against x; for model 2
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Fig. 4: The first three quartiles of T'(7; o) against x; for model 4
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and

where the function F,, () is as defined in Proposition 3.

Several preliminary experiments were performed to choose the value of ¢,, and to evaluate
the sensitivity of the results to the choice of this smoothing parameter. The results of these
experiments indicate that the performance of the ¢ test is not very sensitive to the choice of
this parameter. The results presented here were obtained setting ¢, = 0.51n (In (n)) /y/n.

Table 1 presents the rejection frequencies of the null at the 1, 5 and 10 percent nominal
sizes for all the cases considered. To facilitate their interpretation, each of the reported
results was tested for compatibility with the nominal size using the usual asymptotic test
for proportions. Overall, it is encouraging to find that the results are reasonably accurate.
In fact, considering that the density of the data is discontinuous, that the distribution
of the errors is far from being independent of the regressors, and that the models are
often clearly misspecified, the results obtained are surprisingly accurate and compare very
favourably, for example, with those reported by Horowitz (1992) for models estimated with
the smoothed maximum score estimator. Of course, the rejection frequencies are closer to
the nominal significance level for the larger sample sizes, but even for n = 500 the results

are relatively reasonable.
5. AN EMPIRICAL ILLUSTRATION

This section illustrates the application of quantile regression for counts using the data
set on demand for health care previously studied by Pohlmeier and Ulrich (1995) and by
Santos Silva and Windmeijer (2001). These data consist of 5096 observations for employed
individuals, and they are taken from the 1985 wave of the German Socioeconomic Panel
(SOEP). In this data set the demand for health care services is measured by the number of
visits to a general practitioner in the last quarter, and by the number of visits to a specialist
(except gynaecology or paediatrics) in the same period. Here, we focus exclusively on the

case of visits to specialists. The variables used in the analysis are described in Table A.1
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Table 1: Simulation results for the four different models

n = 500 n = 1000 n = 2000
Reject. | Reject. | Reject. || Reject. | Reject. | Reject. || Reject. | Reject. | Reject.
a |at 1% | at 5% | at 10% | at 1% | at 5% | at 10% | at 1% | at 5% | at 10%
Model 1: Poisson
0.75 | 1.78*| 6.76* | 12.30* || 1.82* | 6.28* | 11.64* || 1.18 5.04 10.00
0.50 | 1.76* | 6.54* | 11.58* | 1.56* | 5.94* | 10.58 1.20 5.02 9.90
0.25 | 1.90* | 6.56* | 11.64* | 1.68* | 5.60 10.62 1.18 5.54 10.28
Model 2: Negative binomial
0.75 | 3.18*| 832* | 13.50* || 2.12* | 6.48* | 11.46* | 1.42* | 6.26* | 11.08*
0.50 | 2.14* | 6.42* | 11.24* || 1.66* | 6.26* | 11.32* || 1.02 5.56 10.86*
0.25 | 1.80* | 6.54* | 11.28" || 1.26* | 5.26 10.14 1.00 5.00 9.58
Model 3: Zero inflated Poisson
0.75 | 1.94*| 6.66* | 11.50* || 1.38* | 6.32* | 11.42* || 1.02 | 4.88 10.14
0.50 | 2.02*| 6.12* | 10.88* || 1.30* | 5.34 10.58 1.54* | 5.72* | 10.48
0.25| 1.08 | 4.68 8.40* || 0.90 | 4.64 9.50 0.90 | 4.68 9.66
Model 4: Zero inflated negative binomial

0.75 | 3.06* | 7.94* | 13.00* | 2.00* | 6.36* | 11.26* || 1.12 5.14 10.10
0.50 | 1.70* | 6.72* | 11.46* || 1.28* | 5.76* | 10.48 1.12 5.00 10.02
0.25| 1.14 | 4.10* 8.08* || 0.84 | 4.14* 9.00* || 0.78 | 4.00% 8.98*

* The result is not compatible with the nominal size at the 5% level.

in the appendix and correspond to those originally used by Pohlmeier and Ulrich (1995).

For more detailed information on the sample and on the variables used, see Pohlmeier and

Ulrich (1995).

Both Pohlmeier and Ulrich (1995) and Santos Silva and Windmeijer (2001) suggested
probabilistic models to describe the demand for health care that take into consideration
the fact that this demand is derived by two different decision processes: in a first stage
the individual decides to seek medical care and, in a second stage, the individual and the

health care provider decide on the total number of visits that are needed to complete the
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treatment. Pohlmeier and Ulrich (1995) argued that the parameters of the two decision
processes can be separately estimated using a hurdle model. Santos Silva and Windmeijer
(2001) studied the conditions under which it is possible to identify the two sets of para-
meters using only data on the total number of visits, and concluded that this can only be
achieved under reasonably strong hypotheses. In any case, the fact that the two tails of
the distribution are generated by two different processes means that it is often important
to assess the effect of the covariates on different regions of the distribution. This point
is clearly illustrated in Winkelmann’s (2001) recent study of the effects of the German
Health Care reform.

The methods used to study how the effects of the covariates vary across different regions
of the distribution are generally based on complex and heavily parametrized models. Here,
quantile regression is used to study how the impact of the covariates varies across different
regions of the conditional distribution of interest. Of course, imposing less structure on the
data, the results obtained with quantile regression are necessarily more impressionistic, but
also less sensitive to incidental assumptions, than those obtained by models that attempt
to fully describe the probabilistic structure of the data.

Given that the purpose of this section is purely to illustrate the application of the
proposed methodology, we restrict the analysis to the first three conditional quartiles. Of
course, in a more detailed analysis of the demand for health care using quantile regression
it would be interesting to estimate other quantiles, especially on the upper tail of the
distribution where the effect of the covariates changes more rapidly. For comparison,
results for the conditional expectiles based on the asymmetric maximum likelihood (AML)
estimator proposed by Efron (1992) are also presented. Given that the AMI regression
percentiles cannot be computed for values of a smaller that the proportion of zeros in
the sample, and noting that in the case under study the sample has 3456 observations for
which the individuals report zero visits to a specialist, the AML approach only allows the
estimation of regression percentiles with a > 67.8. Therefore, in this example, the only

AML regression percentile that is comparable with the quartiles estimated by the quantile
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regression approach is the one leading to %Z?:l 1 (YZ- < exp (a:;BZML)) = (.75, which is
obtained with w = 0.875.

Table 2 presents the absolute frequencies of the estimated quantiles for the number of
visits to specialists. Given that almost 70 percent of the individuals in the sample have
zero visits, it is not surprising to find that the estimate of the first conditional quartile of
the distribution of the number of visits is zero for 4955 individuals, which is more than 97
percent of the sample. Even the higher quartiles are flat at zero for a large proportion of
the sample. In fact, the results in Table 2 show that the probability of having zero visits
to a specialist during the observation period is at least 0.75 for about on third (1693 /5096)
of the individuals in the sample.

We now turn to a brief analysis of the effects of the covariates. Table 3 gives the
parameter estimates for the first three quartiles, together with standard errors estimated as
described in the simulation study of the previous section, as well as the estimates obtained
with the AML estimator with w = 0.875. Given the non-linearity of the specification of
Q7 (a]x) defined by (2), the values of the parameter estimates give an incomplete picture
of the effect of the covariates on the shape of the distribution. To facilitate the comparison
of the effects of the regressors across the different models, Table 4 presents estimates of
the semi-elasticities of Q7 (c|x) with respect to the covariates, evaluated at the mean
value of the continuous covariates and setting the dummy variables to zero. Defining Z
as the point where they are evaluated, the semi-elasticity of () («|z) with respect to Z;,
the j-th element of Z, is computed as the appropriate derivative of In (Qz(c|x)) for the
continuous variables, or as (exp (fyj (a)) — 1) (1—a/Qz(c|Z)) for the dummies. For the

AML regression the semi-elasticities are computed in a similar way.

Table 2: Frequencies of estimated quantiles for the number of visits to specialists

0o 1 2 3 4 5 6 7 8 9 10 11 >12
Qy(0.25]z) 4955 127 13 1 0 0 0O O O O O 0 O

Qy(0.50]z) 4171 721 134 39 21 6 1 1 1 1 0 0 O

o~

Qy(0.75|x) 1693 2250 453 221 131 88 64 42 30 22 13 13 76
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Table 3: Estimation results for visits to specialists

Quantile regression results Efron’s AML

Regressors 4(0.25) s | 4(0.50) se | 4(0.75) s.e. Agﬁ% s.e.
Constant —2.372 1.092 | —2.157 0.868 | —1.450 0.740 | —0.378 0.505
FEMALE 0.913 0.172 | 1.094 0.122 | 1.511 0.097 | 0.602 0.075
SINGLE —0.194 0.242 | —0.308 0.196 | —0.353 0.159 | —0.342 0.105
AcE —0.908 0.533 | —0.339 0.406 | —0.213 0.350 | —0.215 0.239
Acr? 0.936 0.649 | 0.306 0.492 | 0.136 0.438 | 0.232 0.288
INCOME 0.291 0.069 | 0.192 0.484 | 0.380 0.056 | 0.095 0.084
CHRONIC COMPLAINTS| 0.979 0.168 | 1.127 0.123 | 1.515 0.130 0.868 0.087
PRIVATE INSURANCE 0.480 0.268 | 0.401 0.196 | 0.194 0.157 | —0.016 0.130
EDUCATION 0.046 0.023 | 0.032 0.019 | 0.033 0.017 | 0.003 0.013
HEAVY LABOUR —0.144 0.252 | —0.002 0.160 | 0.006 0.126 | —0.120 0.099
STRESS 0.043 0.179 | 0.001 0.131 | 0.154 0.115| 0.091 0.085
VARIETY ON JOB 0.198 0.179 | 0.214 0.123 | 0.187 0.101 0.174 0.080
SELF DETERMINED 0.156 0.185 | 0.195 0.124 | 0.151 0.104 | —0.021 0.082
CONTROL 0.332 0.199 | 0.030 0.155 | 0.184 0.136 | 0.118 0.097
Por-0/5 —1.400 0.678 | —0.737 0.220 | —0.850 0.197 | —0.627 0.137
Por-5/20 —0.578 0.249 | —0.689 0.173 | —0.521 0.128 | —0.305 0.108
Por-20/100 —0.139 0.199 | —0.136 0.139 | —0.280 0.132 | —0.260 0.088
PHYSICIANS DENSITY 4.654 0.999 | 2.172 0.858 | 1.066 0.780 0.954 0.640
UNEMPLOYMENT 0.015 0.055 | 0.015 0.035 [ —0.059 0.044 | —0.033 0.028
HOSPITALIZED —0.004 0.249 | 0.369 0.210 | 0.277 0.175 0.265 0.130
SICK LEAVE 0.895 0.189 | 0.757 0.155 | 0.921 0.136 0.725 0.105
DISABILITY 0.212 0.276 | 0.523 0.200 | 0.579 0.169 | 0.218 0.122
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Table 4: Semi-elasticities for visits to specialists

1st Quartile

2nd Quartile

3rd Quartile

AML (w=0.875)

Regressors S.-elast. s.e. [S.-elast. s.e. [S.-elast. s.e. [S.-elast.  s.e.
FEMALE 0.227 0.057 | 0.325 0.052 | 0.734 0.090 | 0.826 0.101
SINGLE —0.027 0.031 [—0.043 0.024 [—0.062 0.024 |—0.289 0.089
AcE 0.998 0.659 | 0.343 0.564 | 0.181 0.650 | 1.637 2.063
INCOME 0.044 0.015| 0.031 0.080 | 0.079 0.013 | 0.095 0.084
CHRONIC COMPLAINTS| 0.253 0.075 | 0.341 0.070 | 0.737 0.127 | 1.381 0.134
PRIVATE INSURANCE 0.094 0.065 | 0.081 0.047 | 0.045 0.039 |-0.016 0.129
EDUCATION 0.007 0.004 | 0.005 0.003 | 0.007 0.004 | 0.003 0.013
HEAVY LABOUR —0.020 0.034 [—0.000 0.026 | 0.001 0.026 |—0.113 0.093
STRESS 0.007 0.028 | 0.000 0.021 | 0.035 0.029 | 0.095 0.089
VARIETY ON JOB 0.033 0.032 | 0.039 0.024 | 0.043 0.024 | 0.191 0.087
SELF DETERMINED 0.026 0.032 | 0.035 0.024 | 0.034 0.025 [—0.021 0.081
CONTROL 0.060 0.040 | 0.005 0.026 | 0.042 0.034 | 0.125 0.103
Por-0/5 —0.115 0.036 [—0.085 0.022 [—0.119 0.023 |—0.466 0.100
Por-5/20 —0.007 0.027 [—0.081 0.020 [—0.084 0.020 |—0.263 0.092
Por-20/100 —0.020 0.028 [—0.021 0.021 [—-0.051 0.023 |—0.229 0.078
PHYSICIANS DENSITY 0.708 0.178 | 0.355 0.136 | 0.222 0.160 | 0.954 0.640
UNEMPLOYMENT 0.002 0.008 | 0.002 0.006 [—0.012 0.009 |—0.033 0.028
HOSPITALIZED —0.001 0.038 | 0.073 0.050 [ 0.066 0.049 | 0.303 0.148
SICK LEAVE 0.220 0.071 | 0.185 0.056 | 0.314 0.078 | 1.065 0.151
DISABILITY 0.036 0.052 | 0.112 0.057 | 0.163 0.061 | 0.244 0.136
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Starting with the quantile regression results, it is noticeable that, although some co-
variates have very similar effects on the three estimated quartiles (e.g. EDUCATION and
SICK LEAVE) there are also regressors whose eflects vary substantially with a. A leading
example of this is the variable PHYSICIANS DENSITY, whose effect is halved from the first
to the second quartile, decreasing again substantially from the median to the third quar-
tile. Considering that @(0.25]36) is zero for most of the individuals in the sample, it can
be concluded that this variable is especially important to determine whether or not the
individual visits a specialist, but is much less important in explaining the length of the
treatment, conditional on having at least one visit. This result is in accordance with the
findings of Pohlmeier and Ulrich (1995) and Santos Silva and Windmeijer (2001).

In contradistinction, the effects of FEMALE and CHRONIC COMPLAINTS increase with a,
and are statistically significant for the three quartiles. This means that the distribution of
visits to specialists for individuals for which these variables equal one is displaced upwards
and more spread-out. At first sight these results are at odds with the findings of Santos
Silva and Windmeijer (2001) who concluded that these regressors had a positive effect on
the decision to contact the specialist, but a negative coefficient (statistically insignificant
for CHRONIC COMPLAINTS) in the model for the number of referrals. However, given that
for most individuals in the sample the distribution of the number of visits has most of its
probability mass concentrated at 0 and 1, the fact that the coefficients on these variables
increase with o may just indicate a shift in the probability mass from 0 to 1, and this is
not incompatible with the results previously reported.

Another conclusion of the results in Tables 3 and 4, which is in line with the results
of Pohlmeier and Ulrich (1995) and Santos Silva and Windmeijer (2001), is that the
regressors related to job characteristics (IIEAVY LABOUR, STRESS, VARIETY ON JOB,
SELF DETERMINED and CONTROL) are not individually significant in any of the quantiles
estimated.

Using w = 0.875, the AML estimator leads to 75 percent of negative residuals and

therefore Bgﬁ% is the vector of parameters for the 75-th AML regression percentile, as
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defined by Efron (1992). For some covariates, this AML estimator leads to results that are
reasonably close to those obtained for the third quartile. This is the case of the variables
FEMALE, INCOME and EDUCATION. Moreover, as in the three quartiles, most of the
covariates related to job characteristics (IIEAVY LABOUR, STRESS, SELF DETERMINED
and CONTROL) are not individually significant, and the dummies related to the number
of inhabitants in the place of residence are all individually significant. However, there are
some notable differences between the two sets of results. A clear example of this is provided
by the semi-elasticities corresponding to CHRONIC COMPLAINTS and SICK LEAVE, which
are statistically significant both in the AML regression and in the third quartile, but
are much larger in the AML regression. Moreover, the variable DISABILITY is highly
significant in the third quartile but statistically insignificant in this AML regression. On
the other hand, HOSPITALIZED is statistically significant in the AML regression, but not
in any of the quantile regressions. Therefore, using the expectiles estimated by the AML
approach to approximate the regression quantiles can be somewhat unsatisfactory.

To sum up, this example makes clear that in count data models it is interesting to
study not only how the location of the conditional distribution changes with the regres-
sors, but also to analyse how the shape of the distribution is affected by the covariates.
Fully parametric models, like those used by Pohlmeier and Ulrich (1995) and Santos Silva
and Windmeijer (2001) to study these data, achieve this by modelling the effect of the
covariates on a few key aspects of the distribution. However, by looking at the estimation
results from that sort of models, it is not always obvious how the shape of the condi-
tional distribution is affected by the covariates. The quantile regression method used here
provides a more graphical description of the effect of the regressors on the shape of the
conditional distribution of interest. Of course, quantile regressions are not a substitute for
carefully constructed probabilistic models. However, they can be a valuable tool which

helps in the construction and understanding of more complex models.
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6. CONCLUDING REMARKS

Direct estimation of quantile regressions for count data is not feasible due to the combi-
nation of the discreteness of the data with the non-differentiability of the sample objective
function defining the estimator. We propose the application of quantile regression to jit-
tered count data as a way to make inference about relevant aspects of the conditional
quantiles of the counts. This is possible because the quantiles of the randomly perturbed
data have a one-to-one relation with the quantiles of the original data. Despite the discon-
tinuity of the conditional density of the jittered counts, the regression quantile estimator
has the usual normal distribution and standard inference methods are asymptotically valid.
The simulation results presented in Section 4 are promising in that they show that the
approximation to the asymptotic distribution is reasonable for moderate sample sizes.
Furthermore, using a well known data set on demand for health care, it was shown that
the proposed methodology is very easy to implement and leads to interesting results.

Naturally, quantile regression cannot replace the more structured and well proven models
for count data analysis. However, it can be a valuable additional tool that can help to
understand how the regressors affect, not only the location of the conditional distribution,
but also the shape of the entire distribution.

The results presented here can be extended in a number of ways. For example, the
functional form of the conditional regression quantiles can be generalized by considering
members of the inverse Box-Cox (1964) family. Another possible development of the
technique presented here is the use of simulation methods to integrate-out the added
uniform noise to increase the efficiency of the estimator. These developments are currently

being investigated.
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APPENDIX
A.1. Proof of Proposition 1

Let ps(z), i = 0,1,--. denote the conditional probability function of ¥ given X = z,

that is
Y =i with probability p;(x), i =0,1,- -

and p;(z) > 0 and Y ° pi(z) = 1.
Standard convolution arguments imply that the conditional distribution of 7 =Y + U
(U being uniform in [0,1) and independent of X )is

Fpx(z|lz) = P(Z < z|z) = Zpi(a:)P(U < z—1i)

= Zpl(a:) min(z —i,1)*"

where min(a)* = 0 whenever a < 0.
Let iq = Qy (a]x), i.e., the value in the support satisfying,

to—1

ipl(a:) >« and Zp,(a:) < a.
=0 i=0

Denote also by z, the a-th conditional quantile of Z given z. Then, omitting the depen-

dence on x to simplify notation,

[za—1]—1
= FZ\X(Za) = Z Di + Prza—1] (20 — (Za - 1”
i=0

Therefore,
[za—1]—1
Z pi(z) < «
=0
and
[zo—1]
Z pi(z) > @
=0
with equality when z, is integer. The result follows from the definition of i,,. Q.E.D.
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A.2. Proof of Proposition 2

The results follow as in Pollard (1991), once we show that one can do without the
continuity of fri,(-|-) at 2’/ («). The strategy of Pollard’s proof is to develop a quadratic
approximation to the sample objective function defining 4 (o) whose minimizing value has
a limiting normal distribution and is asymptotically equivalent to % (). It that process, the

“continuity assumption” is only required to ensure that the “limiting” objective function
M(t;x) = E(py(€a — 1)|7)

with €, = T(Z;a) — X'v () (note that, Q. (alz) = 0), possesses a second order Taylor
expansion around ¢ = 0.
Assumption (A2a) implies that f,,(0]x) is continuous for almost every z (a.e.-z) and,

consequently, M" (t;x) is finite at t = 0, and equals
2 [I(e <t)fyu(e|z)de
ot

Therefore, the warranted second order Taylor expansion

= fu2(0]z), a.e-z.

M(t;0) = M(0;2) + 5 4o (O]) +0(s?),

exists a.e.-z (c.f. Pollard, 1991, equation (1)). Q.E.D.
A.3. Proof of Proposition 3

Tet

D, = (1/n) zn:wlatla:;
with -
w; =T (zpy (@) I{F, (Qz (a)) £ Z < F, (Qz (o) + 1)},
where )z, () is used as shorthand for @z, (o|z).
Notice that, as n passes to oo, F,,(x) — |x]. Thus, by dominated convergence, as
n — oo,

B lwgzsal] — B [TW (2} () {[Qz ()] £ Z; < |Qz (a) + 1] }az]]

31



which, a simple change of variable shows to equal

B [ frio(@py (o) )zsa]
The law of large numbers then yields
D, % D.
It remains to prove that [)n — Dn . 0. First notice that

|w; — wi| < Bini + Boni

with
B = [TO (2} () = T (zpy (a))|

and

Bow = |TW (al7 () ](‘] {7(Q7 @) 2 < B, (Q (@) +1) |
—1{F, (@2 (0)) < 7 < Fu (@ (0) + D).

Therefore HDn — DnH can be bounded above by the sum of two terms the first being,

(1/n) Y [i])? Bini = 0,(1).

This order of magnitude follows from a mean value expansion of By,; and the fact that

for any 4 (o) 5 ~ ()
(1/m) Y sl > T® (23 () = B {JJa)® T (ay (@)} = O,(1)
(Newey and McFadden, 1994, Lemma 4.3) and that
S |75 (% () = v ()| = 0p(1).

The last result follows as F/ [Ha:ZHQ} < oo implies that sup,.,, |z || = o, (v/10).

32



This term,

Let us now turn to the second term of the upper bound of HDn — Dl

(1/n) 3" ||:)|” Bans, is bounded above by,

(1/m) Y Nl [T (@l ()] {1 = Fu(Qa ()] < [P (Qle)) = Ful@a ()]}
(/) 3 Nl (19 @ty ()| 1{1 2 = Fu(@a(0) + DI < | B (Qu0) + 1)
- F(Qz(e) +1)|}

We will show that the first of these terms is 0,(1). The second is analogous. To simplify
notation, put A; = F), (in(oz)) — F,(Qz,()). For any n > 0 and any e,

PI1/n) Y Nlasl* [T (2 ()] 117 — Fu(Qz ()] < 1A} > 1]
< Pl(1/n) Y flzl* [T (2y (@))] 1{]Z; = Q)] < €} > )

P sup A >

1<i<n

Markov’s inequality, and the fact that, conditional on x,
E[{]|Z; = Fi(Qz(a))| < €}] < 2¢,

show that the first term goes to 0 with e.

To complete the proof we will show that A; = 0,(1) uniformly in i. First notice that
D) [Sup\\%v(a)\\ﬁé ‘T(l) (a:é*y)‘ Ha:ZHQ] < 00, for some ¢ > 0 (A5) implies that (e.g., Pollard,
1991), SUP |y~ (a)<s | T (zy)| ||l = 0y (v/n). Therefore, by a mean value expansion,
SUD | <icp ]in(oz) — Qz ()| = 0,(1). Assumption (A6) states that this convergence must

be faster than c,, that is, for n sufficiently large,

P [ sup |Qz,(a) — in(oz)‘ < ecnl >1-6

1<i<n
for any 6 > 0 and ¢ > 0. But, from the definition of F,(-), for any n and zq, |z — x¢| <

cc, = |y (z) — Fi(x0)| < €. Consequently, for arbitrary ¢ and 6

!

b, (Qz(a)) — Fn(QZ(oz))‘ <e Vi< n} >1-6
as n passes to co. Q.E.D.
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A.4. Description of Variables

Table A.1: Description of Variables

FEMALE
SINGLE
AGE
INCOME

CHRONIC COMPLAINTS

PRIVATE INSURANCE
EDUCATION

HEAVY LABOUR
STRESS

VARIETY ON JOB
SELF DETERMINED
CONTROL

Por-0/5

Popr-5/20
Por-20/100
PHYSICIANS DENSITY
UNEMPLOYMENT
HOSPITALIZED

SICK LEAVE
DISABILITY

1 if female

1 if single

age in decades

net monthly household income

1 if has chronic complaints for at least one year

1 if had private medical insurance in the previous year

number of years in education after the age of sixteen

1 if has a job in which physically heavy labour is required

1 if has a job with high level of stress

1 if job offers a lot of variety

1 if has a job where the individual can plan and carry out job tasks

1 if has a job where work performance is strictly controlled

1 if place of residence has less than 5000 inhabitants

1 if place of residence has between 5000 and 20.000 inhabitants

1 if place of residence has between 20.000 and 100.000 residents
number of physicians per 100.000 inhabitants in the place of residence
number of months of unemployment in the previous year

1 if was more than seven days hospitalized in the previous year

1 if missed more than 14 work days due to illness in the previous year
1 if the degree of disability is greater than 20%
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